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| | Abstract
- Chemical Dynamics Applications of
Semiclassical Methods

by
Jianhua Xing

Doctor of Philosophy in Chemistry
University of California, Berkeley
Professor William H. Miller, Chair

Quantum mechanics is the ultimate theory in studying chemical dynamics.
~ However, in practice full quantum calculations are limited to-small systems. Semi-
classical initial-value-representation (SC-IVR) method is a potential alternative
for including quantum effects into classical trajectory calculations. This work
presents efforts on applying SC-IVR method and approximations onto various
chemical dynamics problems. ‘

A nonadiabatic process involves nuclei motions on several potential energy
surfaces. The McCurdy-Meyer-Miller hamiltonian maps the discrete (multi-
surface) system into a continuous system, which is ready for SC-IVR applications.
A‘ three-state model was tested with the SC-IVR method and its linearized ap-
proximations. The calculated absorption spectra, auto-correlation functions, and
branch populations agree well with exact quantum results.

A novel application of the McCurdy-Meyer-Miller hamiltonian for describing
tunneling was discussed.

Calculating thermal rate constants of chemical reactions is a central task
in theoretical chemical dynamics. The thermal rate constants were calcﬁlated
with the Miller-Schwartz-Tromp correlation function formalism. The calculation
involves imaginary and real time propagator, which were calculated with path—

integral (PI) and SC-IVR, respectively. The focus of the study was on practical ’



ways of implementing t/he PI and vaﬁous versions of the semiclassical method:
the full double space SC-IVR , the forward-backward (FB), and the linearized
SC-IVR methods. Tests were performed on a system with an Eckhart barrier

bilinearly coupled to harmonic baths, and encouraging results were obtained.
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Chapter 1

Semiclassical Basics

1.1 Introduction

Within the energy range of chemical reactions, quantum mechanics is the
final theory. The last several decades have seen tremendous progresses in molec-
ular electronic structure calculations. Nowadays, many ﬁSer-friendly computer
packages of quantum chemistry exist for non-experts, and quantum chemistry
calculations are routine tasks to most modérn_chemiSts. In contrast, theoretical
studies of chemical dynamics (or generally, about nuclei motions) are far behind.
While molecular beam experiments have demonstrated the close agreement be-
tween quantum mechanical calculations and experimental results for small sys-
tems, currently full quantum mechanical calculations are restricted to three or
four atom systems. The difficulty 1s appérent: the wavefunction of a system
needs to be expanded on a basis set, and the number of basis functions grows
exponentially with the number of degrees of freedom. The situation is quite like
a “full CI” calculation in the electronic structure theories. One may be surprised
why nuclei motions are harder to study than electronic motions, while electrons
are supposed to be more quantum b.ehaved than nuclei do. One reason is that
the electronic hamiltonian can always be decomposed into one-particle and two-

~ particle operators, and the nuclei hamiltonian (obtained by integrating out the

electronic degrees of freedom, e.g. the Born-Oppenheimer approximation) can not
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in general. Within currrent cbmputer techhology, approximate methodologies for
chemical dynamié studies have been-developed. Some of them are in parallel
to the electronic theory, for example, the multi-conﬁguration-time-dependent-
hartree method?.

- The semiclassical (SC) method is an asymptotic type approximation. Deriva-
tions of a SC formula usually start with a series expansion of the classical action
over h, and usually the series is cut off at the first order of A. For chemical
applications, which are composed of nuclei much heavier than electrons, this
approximation is sufficient in most situations. The first example of semicias-
sical theory is the Wentzel-Krammers-Brillouin (WKB) approximation and its -
generalizations?. The WKB approximations can be used to derive the ”cor-
rected” Bohr-Sommerfeld"’ and Einstein-Brillouin-Keller* 'quantization relations.
The WKB approximation is an energy-domain theory. For dynamical processes,
the propagator, exp(—iﬁ t/h), is more useful. The form of semiclassical propaga-
tor was first proposed by Van Vleck®, then was derived through a stationary phase
approximation of the Feynman’s path integral representation of the’propagator

by Gutzwiller and others®™®. The Van Vleck propagator reads,

A _ 0°Si(az, a1) S ~F/[2
(wleap(-it/ M) = 3|t (- T3t} ariny
exp[iS;(dz, a1,t)/h — imv;/2], (1.1)

where F' is the number of degrees of freedom, and the classical action S and
_the Maslov index v will be defined in the next section. Physically, the Van Vieck
formula expresses the propagator as a sum of all the classical trajectories starting
from q; and arriving at gz at time t and the path ihtegral paths infinitesmally
close to these classical paths. Finding the classical paths is a boundary condition
problem, and is‘numer.i_c'ally awkward. One can only use the “shooting” method,
which is not convenient for multidimensional problems. Miller, in 1970, suggested
the initial value representation (IVR)' . He noticed that integration over both

of the two end points was needed in most applications. One may do a variable
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transform from q, to p;, the intial momentum, and reachs,

0
J

Early works on semiclassical dynamics result in the “instanton” theory of tunneling!?,

(1.2)

which becomes a popular tool in both chemistry and physics.

In the last decade, there is a rebirth of interest in the semiclassical method 224,
Currently most of the works adopt a coherent-state semiclassical propagator pro-
posed by Herman and Kluk'?. Unlike the Van Vleck propagator, the Herman-
Kluk propagator treats the momentum and coordinate on an equal foot, which
is attractive both theoretically and practically. Many studies have demonstrated
the accuracy and practibility of the Herman-Kluk propagator. Several approx-
imate semiclassical theories were also developed, such as the forward-backward
(FB)2730, the generalized forward-backward (GFB)3!, and the linearized SC-
IVR?5%_ In the following section,_.the basic formula and methods used in modern

research on semiclassical dynamics will be discussed.

1.2 Theory‘

Here we discuss SC-IVR in the coherent-state representation, the more famil-
iar coordinate (momentum) representation can be obtained as a limiting case.
For the current discussioh, one only needs to know that the coherent-state rep-
resentation is a mixed representation of coordinate and momentum. -A coherent

state is given by

(xlpa) = (%l) 1_/4 exp [—%(x —@)" - (x—q) + %pT (- q)] , (1.3)

in the coordinate representation, and

(plpa) = (ﬁ) " exp 56— @) 7 (x- @)+ 207 (x~ q)] (1.4

in the momentum representation, where v is a constant matrix.  Therefore, a

coherent-state wavepacket gives gaussian distribution for both coordinate and
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momentum. The coherent-state basis set is bvercomplete, and the closure relation
is given by, . .
/dp/dq P, (p,a,7=1 - (1.5)

A semiclassical approximation for the flux correlation function can be obtained
by using the IVR for the time evolution operator e~ iHY/ h and the Herman-Kluk

(HK)!? or coherent state version of which is given by:

e UM (2nh)~F / dpo / dqo Ci(po, Q0)e™*®%)/ % |p.q, ) (poqol, (1.6)

where F' is the number of degrees of freedom, (po,qo) are the initial momenta
~and coordinates for a classical trajectory, ps = p:(Po, Qo) and q: = q¢(Po, Qo) are
the values at time ¢ that result from this trajectory, and S; is the classical action

integral along it,

t
St(pO; qO) = dr quT - H(pT) q’r)' . (17)
0

where the HK “pre-factor” Ci(po, qo) in Eq. 1.6 is given by

Ct(PO,QO) - .
171 _1 _1 1,1 101 1 _1
l§ ('Yquq'Y 2+ 2Mppy? —ihy:Mgpy? + ﬁ"/ 2Mpq7 2)

where My, etc., are elements of the monodromy matrix®’

1/2
,(1.8)

M= ( Mag Map ) = ( 99:/0%0 9a:/Op ) - (1.9)
Mpq Mpp apt/ Jdqq apt/ Opo ,

“The Maslov index comes from the fact that there are two possible branches when
~one performs square root on a complex number in the prefactor cal_culation. The
correct one is the one ensuring continuity of the prefactor over time (that is
the reason why one needs to monitor the prefactor along a trajectory). The
resulting Maslov index is absorbed to the action in Eq.. 1.‘6.‘

If one denote zT = {q, p} and zT = {q:, p:}, the equations of propagating z;

and the monodromy matrix are given by,

' dZt _ OH ’
=15 (1.10)
dM . 0H

- = 7J. . 1.11
dt aztazt ( )
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with the initial condition qo, po, and M(t = 0) = I, the unitary matrix. The

symplectic matrix J is defined as,

0 I
T e

The monodromy matrix has the following useful properties,
M1.J = J.MT | (1.13)

For simplicity, in the remaining part of the thesis, if not specified, # is set to
_unity.
In many applications, calculations with the following matrix element are

needed, |

(ps, as; vele i pi, a1y = (2m)~F / dpo / ddo Ce(po, qo)e™®, (1.14)

where
" ® = S;+po-(do—ai) —pe-(a — ar)
1 1
+§AZE)F . Fi . AZO + 5AZ;I‘ . Ff . AZt (115)
where
Azg = (qo — i, Po — Pi) (1.16)
Azf = (qt—anPe—Pr) a1
e v _ _ '
I, = ( T+7 T+ ) (1.18)
. 2 i
Y+% Y+7
Iy v
Iy = ( Yrve viae ) | (1.19)
e i :
Trye -+

The case s — oo corresponds to projecting the result to coordinate representa-
tion.
The derivatives of ® are needed for various Filinov filtering methods,

0o

— = Ti-J-Azg—MT-T¢-J- Az, (1.20)
aZO '
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0%®

= - J-MT.1;-J-M, 1.21
aZOBZO Li-J . f ' ( )
: od : -T
gz— = ——-Fi . J . AZt + M o I‘f N J : AZO, . (122)
. _ .
5® | -
= - I+MT.Ie-J-M1, 1.23
thazt + R f ( )
where one has used,
aS
(o), = .
Qe d0
[0S ‘ -
(-6—) - ()
0/ g,

In real applications, quite often one ends up with calculéting the following

quantity,
- Cyup(t) = tr[AemtBe_im] (1.26)

The SC-IVR result gives the following general result:

Can(t) = [ dao [ ddj [ dpo [ dpb(po,ao | 4 | vh,db) (Pt | B | pe,ac)
X exp{i[St(Po, @) — Se(Po, 4o)l} Ci(Po, 90) CelP5, %), (1.27)

where q¢ = q¢(Po, do) and q¢ = q;(pp, q(,).. This is a double space -calcula,tion,
which involves pairs of trajectories. _

While each pair of trajectories in the above integrand are independent of each
other, their contributions are damped by the coherent state product matrix, so
“only two trajectories close enough make significant contributions. This observa-
tion suggests further approximations of the SC-IVR formulation.

The forward-backward (FB) SC-IVR is based on the Fourier representation

of the operator B (here for simplicity one assumes that B only depends on q)

B@) = (;}%B(ps)ei"s“l. (1.28)

Then one may focus on the unitary operator

U = ¢flteipsdpifit : (1.29)



1.3. VARIOUS FILTERING METHODS | 7

~ which can be viewed as a single propagator with a time-dependent Hamiltonian2873%¢

(so only one trajectory is involved). In other words, the trajectory propagates in

the following pattern,

Po,do — pt,Qt—)pt Pt +Ps, 4t =4q¢ — Py, do-

The FB-IVR formula for the correlation function is given by,

dps ~ dqodpo

FB —_

) = ®:) [ G |
Co(Po, Qo; Ps) € #So(o.doiPs) (POQOIA‘IPBQ())- (1.30)

- The LSC-IVR formula is obtained by assuming that in the double space in-
tegration, only two trajectories very close make significant contributions. The

basic formula is
P 1\/ '
Cap(t) = tr[AelHtBe_’Ht]%(%) / dqodpo Aw(qo, Po)Buw(as, PtX1.31)

where A, and B, are the Wigner functions corresponding to these operators,
e.g., '

A A
Aua,p) = [dAqe ™ A9q+ ZT1dlg- S (1.32)

1.3 Various Filtering Methods

To faciliate convergence of integrating an oscillatory function, the Filinov
filtering method was developed32. The basic idea of the Filinov method is to do
a coarse-graining of the integrand, so it becomes less oscillatory. The integral

under interest is of the form
I =/ dz f(z)e®®, (1.33)
where f(z) is a slowly varying function of z, and ®(z) is complex,

&(z) = ¢(z) + i0(z). | (134)
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~ Then the following expression of unity

1=/ 1lr0smams [7 g qemsol wammigt ) (1.35)
m ’ -0

is inserted into the integrand of Eq. 1.33. Next ®(z) is expahdéd quadratically

around zg,
B(z) ~ B(z0) + ¥'(20)7 - (2 — 70) + %(z 7)) B"(20) - (2 —20)  (1.36)

where @' and ®” refer to,

P'(z) = G‘I;ZO) (137)
3"(20) = %zq;(azz"o). (1.38)

The inte'gration over z is done analytically, and one obtains,

[0 2|
= /_wdz"f(zf’)\lml_T'qm

exp [i@ + iﬁ ot B - %(ﬁ + ®') - (éa —i®")71- (B + <I>’)] .(1.39)

In the above derivation, one assumes that f(z) is a slowly varying function,
therefore can be expanded over zo and keep the constant term f(zo) only. In
certain situation, it gives more accurate result if one include the dependence of
f(z) on z. For example, in rate constant calculations, one confronts an integral

in the form
[ . K .
I= / dz 7e®@, ' : (1.40)

o0

After performing the above Filinov procedure, one ends up with
7 = /oo dzo ____M_ 2 + ZZ(,B+ @/)_(20‘ _ i(I)”)-_l
- Je 1200 — 19" - e i
exp [i@ + %[3’ ol B %(,3+ ') - (20— i®") L - (B + @')] . (1.41)

In a SC-IVR application of the Filinov method, there can be different de-

composition of the integrand into f(z) and f(®). The two ways usually adopted
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in the literature are: a, f(z) includes the prefactor, and all the terms appear

in the exponent are assigned to ®; b, only the imaginary part of the exponent

~ is assigned to @, that is, ® is real, and f(z) includes all the remainings of the

integrand. There are two set of parameters in Eq. 1.39 and Eq. 1.41: « and S.
Various realizations of the Filinov filtering method in SC-IVR calculations can be
obfained with differeﬁt choices of these parameters and different decompositioné
of the integrand. ” | |

A method to reach (at least partially) stationary phase without resort to
integration in complex plane is the Wang-Manolouplos-Miller version®3. In this

version, decomposition type a is adopted, and B is chosen as,
B =058 =2ba-6"(z¢)"" - ¢'(20), (1.42)

where b is a constant parametér within [0, 1], and « is chosen as an diagonal

constant matrix,
a=al, (1.43)

where I is the unity matrix. One may show that the gradient of fhe imaginary
part of the exponent in Eq. 1.39 is approximately zero with the above choice of
a and fy. This method is probabily the best Filinov. method one may construct
for SC-IVR without resort to infegration in complex plane. Numerical tests show
dramatic improvement on the converging rate in some test systems. This method
involves matrix inversion, which is in general combutational_ly expensive for large
systems (bﬁt see chaper 4). In addition, only if ¢" =0, the simple form of §y can
be obtained from the stationary-phase condition. This may limit its applic'ation.
In all the versions of the Filinov filtering method discussed below, 5 = 0.
The basic idea of the Walton-Manolouplos version!? is to choose o to be a
diagonal matrix, and adopt decomposition a. This version also involves matrix
inversion. Since the extra exponent term [—1/29’ : (2o — i@”)_l - ®'] in Eq.
1.39 can have positive real part, the diagonal elements of a should be sufficiently

large to avoid blowing up of the integrand. Mathematically the blowing up is due

_to the fact that the expansion in Eq. 1.36 may result in an inverted gaussian.
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This limitation of the values of « also applies to the Wang-Manolouplos-Miller
version. Fortunately, in practice « is always chosen to be rather large so the
filtering procedure does not distort the original integration significantly.

If o is given by 2a — i®"” = ¢, with ¢ being a diagonal constant matrix, one
reachs the Makri-Miller version®$. Clearly, in this version no matrix inversion is
needed.

In a series of Filinov filtering versions proposed by Herman®®, the main point
is to adopt deComposition b, and to choose « as a constant diagonal matrix. This

version is very simple to implement. Unlike other versions, this type of Filinov

filtering is not exact for a gaussian integrand. However,i in practice it usually '

gives quite good result since « is always chosen to be rather large. Another trick
used by Herman is to expand the exponent over z; rather than zo. The argument
is that in Eq. 1.22 and 1.23 terfns involving the final point z¢ has no d_epéndence
on the monodrbmy mafrix, and can be neglected. This may be advantageous if

one calculates the wavefunction.
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Chapter 2

Nonadiabatic Processes

2.1 Introduction

The correct description of electronically nonadiabatic processes is an active
area of research in chemical reaction dynamics. Experimental and theoretical

studies of excited electronic state dynamics have revealed that nonadiabatic inter-

actions, such as intersections and avoided crossings of potential energy surfaces,

are more the rule than the exception. This fact has profound implications for
photochemistry, where the interesting dynamics begins on an electronicvexcited
state. The purpose of this work is to test the performance of recent developments
in semiclassical (SC) initial value representation (IVR) methods to describe the
photodissociation dynamics of systems with multiple surface crossings.

In the context of a fully numerical solution of the Schrédinger equation, the
modeling of dynamics on multiple coupled surfaces is straightforward®. A numer-
ically exact integration of the Schrédinger equation, however, presents formidable
computational challenges for all but the simplest few-body problems.*’

Two classes of trajectory-based methods are popular in dynamics studies:
surface-hopping models®®3 and mean-field type (Ehrenfest) models®®. While
having found extensive applications, both methods have inherent problems that
sometimes lead to serious errors.*! A more rigorous, less ad hoc method is there-

fore desired.



12 o ‘CHAPTER 2. NONADIABATIC PROCESSES

N

McCurdy, Meyer, and Miller?243 introduced several ways of modelling the
electronic degrées of freedom (DoF) involved in a nonadiabatic process by clas-
sical DoF, so that with a classical treatment also of the nuclear DoF one had
a dynamically consistent description (at the classical level) of the complete vi-
bronic dynamics. The particular version of these approaches proposed by Meyer
and Miller (MM)*2 has proved most enduring, and a number of applications some
twenty years ago showed it to work reasonablly well, though there are cases where
it fails.41** An important recent contribution was the interesting work of Stock
and Thoss?? which showed that if the MM hamiltonian were treated quantum me-
chanically, it would describe the original vibronic system exactly; i.e., the MM
hamﬁtonian is an exact quantum mapping of the original vibronic hamiltonian.
Since the MM hamiltonian provides a classical model of the electronic DoF, how-
ever, one can also utilize it semiclassically with SC-IVR methods. This SC-IVR
version of the MM model for electronically nonadiabatic processes has recently
been tested for several 2 (electronic) - state systems: the 1 (nuclear)-dimensional
model problemé suggested by Tully for testing nonadiabatic dynamics,*® for the
spin-boson model for dissipative systems,?>*® and for nonadiabatic dynamics of
the ultrafast photodissociation of ozone*”, ICN'®, and pyrazine'8/. \

In this chapter we explore the capabilities of the SC-IVR approach to sys-
tems where more than two electronic surfaces are involved. To our knowledge
this is the first test of SC-IVR methods for treating nonadiabatic dynamics of
multichannel photodissociation reactions presenting more than one surface Cross-
ing. The test is performed for three model problems chosen in such a way to
- encompass different possibilities frequently found in photddissociatipn reactions.
The differences between the models are the relative time scales on which the ab-
sorption and branching processes take place and the nature and proximity of the
coupling between the PESs. ' |

A linearized approximation to a full SC-IVR calculation was also tested in this
work. Since the computational cost of this approximate method is only slightly
more than that for an ordinary classical calculation, it is useful to_'explbre ité

region of validity.
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The chapter is organized as follows: Section 2.2 outlines the semiclassical
approach for modeling nonadiabatic dynamics and defines the observables of in-
terest, Section 2.3 presents the results for the three model problems defined below
“and compares them with full quantum calculations. Section 2.4 summarizes and

concludes.

2.2 Theory

2.2.1 The Meyer-Miller Hamiltonian

The MM model introduces one cléssical DoF for each electronic state of the
vibronic system. MM originally used action-angle variables for the “classical
electronic DoF”, though they employed the corresponding Cartesian variables for
the actual trajectory calculations. Cartesian variables are the preferred choice for
SC-IVR approaches, and in terms of them the MM Hamiltonian for a m-electronic

state system is

H(P,R,p,x) = g + % >_[(pip; + zim; — 8;;) ReVij (R) + (piz; — pyze) ImVi;(R),
” (2.1)
where (P,R) and (p,x) denote the nuclear and “electronic” variables, respec-
tively, and V;;(R) is the diabatic electronic PES. (Theré is also an analogous
expression for the adiabatic electronic representation.) |
It should be emphasized that the “electronic” coordinates and momenta are
not related to individual electrons, but rather describe the collective electronic
‘manifold of m states. The m electronic states {| ¢;)} correspond to the basis
{l #) =| 01---0,31,0;41 - - -0y),2 = 1,m}, where O and 1 refer to the ground
- state and the first-excited state, respectively, of a harmonic oscillator with unit
mass and force constant. This basis is complete in the manifiold of states with
one quantum of excitation in the m oscillators. (The total number of quanta in
the m “electronic” oscillators is a constant of the motion, both classically and

quantum mechanically.)
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2.2.2 Evaluation of Observables by SC-IVR Methods

The total photo-absorption cross section o(A), as a function of the photolysis

wave length A, is given by the Fourier transform of the survival amplitude £(¢),

o)) = / dt €(t) e = - / dt (T(R,x) |8 | 0(R, )
(2:2)
where ¥;(R,x) = 1o(R)¢i(x), o being the initial (typically the ground) vibra-
tional state wavefunction for initial electronic state ¢. '

The time dependent population of electronic state n is obtained as:

Pat)= [dR | (g R | ) P 23)

2.2.3 Linearized Approximation

The linearized approximation to the semiclassical method (LSC-IVR) leads
to the classical Wigner model. In a LSC calculation, only coordinates and mo-
mentums are necessary to propagate, and no prefactor is involved, which greatly
simplifies the calculation. Therefore, the LSC methods was also tested due to its
simplicity and hence potential applications.

The transition probab'ility' from initial electronic state 7 to final electronic

state f at time t corresponds to Eq. 1.31 with:
A=) (T | | (24)

B=|4)(9| o (25)

‘While the initial nuclear wavefunction g is a gaussian wavepacket centered at

(Ro, Ry), both Ay and B, can be evaluated analytically,

AuR,P,x,p) = n(R,P)s(x,p) (2.6)
B,(R,P,x,p) = 4§ (x,p) | @
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Vi | Dei| Bi|Rei| Ay| Ryl ayj| ]

Vi1 [ 0.003]0.65 5.0 0.00
Vo | 0.004 | 0.6 4.0 0.01
Vis | 0003 (065 60| | 0.006
Vig || | 0.002 | 3.40 | 16.0
Vas 0.002 | 4.80 | 16.0

Table 2.1: Parameters (in a.u.) used in Model I

where,

p(R,P) = -26—7(R—Ro)2f(P—Po)2/7) ' (2.8)

1 o
pe(x,p) = 2‘N+1’(mi+pi—5)exr>[—>32;f’ (z2 + p2)] (2.9)

2.3 Applications to Three-State Systems

2.3.1 Model Problems and Initial Conditions

‘ Three model systems were studied, which physicallyfcorrespo_nd to the ul-
- trafast dynamics on.three coupled excited electronic states with one of them
populated by a femtosecond laser pulse.

In all the models, fhe three diabatic potentials are assumed to be Morse type

potentials:

Vi = De;(1 — e Aile=Reid)2 4 ¢ (2.10)

and the nonadiabatic coupling terms are taken to be of Gaussian form centered .

at the crossing points:
%]- = Aije._ai’j(x_Rij)z. (211)

The potential curves are shown in Figure 2.1 and the numerical values of the.
parameters are given in Table 2.1, 2.2, and 2.3, respectively.
In the three models considered, the system is excited instantaneously from

“the harmonic ground state to excited state 1 at time zero. Therefore the initial
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Figure 2.1: The diabatic PES for Model I, II and III (panels a,b and ¢ repectively).
The Gaussian non-adiabatic coupling is shown at the bottom. The position of
the initial excitation is indicated by the arrow at the equilibrium geometry of the
ground state. The parameters for each Model are given in Table 2.1.
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Vii | Dei| Bi|Rei| Ay| Rij| ay| o
Via 0.0210.65| 4.5 0.00
Voo | 0.01 1040 4.0 0.01
Va3 || 0.003 | 0.65 | 4.4 - 10.02
V12 0.005 | 3.66 | 32.0

Vis || 0.005 | 3.34 | 32.0

Table 2.2: Parameters (in a.u.) used in Model II

Vi | Dei| fi|Rei| Ayl Ryl ay]| «

. V| 0.02] 04] 40 0.02
Var | 0.02]065]| 4.5 | 0.00
Vis || 0.003 | 0.65 | 6.0 0.02
Vi 0.005 | 3.4 |32.0
Vis 0.005 | 4.97 | 32.0

Table 2.3: Parameters (in a;u) used in Model III

nuclear wavefunction is a Gaussian wave-packet centered at the ground state
equilibrium bond length R, and populated on state 1.

The three different models can be characterized as follows: Iﬁ Model 1 the

initial coupling Vi, will first induce population transfer between states 1 and 2
and then the coupling is between states 2 and 3. The off-diagonal terms, Vi,
and Va3, are vefy well Separated. In Model II, the branching processés occur at
a shorter t_ime- and the initial coupling Vj, is between states 1 and 2, and the
second Vi3 between state 1 and state 3. Also, the off-diagonal coupling terms are
very close to each other. Model III has non-vanishing coupling for Vi, and Vlg,
- except that the off-diagonal coupling terms are very well separated.
The nuclear mass m and ground state vibrational frequency w are the same
. for the three models and equal to 20000 a.u. and 5x 107% a.u. (1097 cm™),
respectively. The value of R, of the ground state from which the excitation is
performed is denoted by the arrow in Figure 2.1. The values of R, are 2.9, 3;3
and‘2.1 a.u. for Models I, II, and III, respectively.



18 o CHAPTER 2. NONADIABATIC PROCESSES

Full quantum mechanical results were obtained using the split-operator method?®.

2.3.2 Computational Details

The coherent state basis used for SC propagation was chosen to have the same
width as the ground state wavefunction. To faciliate convergence, Herman’s first
order Filinov filtering method® was used in the full SC calculations for model I

| and II, with Filinov parameters ¢ = 40000. No filtering was applied for model
II1, since numerical tests shows no improvement with filtering. For all the results
reported in this work, a number of 300000 to 400000 trajectories were used to
converge the results. ‘

As can be seen from the MM hamiltonian, Eq. 2.1, the nuclear DoF may ‘
occasionally experience an inverted potential and move backward (to smaller
R). While some of these trajectories may manage td move forward again, some
of them may keep on gaining kinetic energy by moving along the inverted po-
tential. In a fully converged calculation, contributions from these trajectories
vanish; however, these trajectories usually havé very large prefactors and intro-
duce numerical instabilities. Including these trajectories (if the calculation can be
numerically completed) may introduce severe contamination, and requires many
more trajectories to converge the results. The usual way to deal with these unsta-
ble trajectories (as was done in all the full SC calculations reported in this work)
is simply to drop them according to an ad hoc criterium??: for model I, II, and
ITI, those trajectories with prefactor bigger than 108, 108, and 10'°, respectively.
The number of dropped trajectories is only a small percentage (less than 1%)of
the total number of trajectories, and has no significant. effect on the final results.

" In a recent paper*® Coker et. al. have suggested dropping the §;; term in -
Eq. 2.1 (tlhe zero-point energy of the “electronic” oscillain the classical equations
of motion (though retaining it in the classical action). -Though we find their
arguments for this variation of approach to be rather dubious, it does eliminate
the possibility of the coefficents of the diagonal terms V;(R) becoming negative,

so we tried this modified theory for our present exa,mplés. In all cases, however,
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we found that it gave worse results than the standard version of the MM-SC-IVR,

procedure.

'2.3.3 Absorption Spectrum and Survival Amplitudes

In Fig. 2.2 the real part and modulus of the semiclassical survival amplitudes
&(t) (dots) are compared to the corresponding quantum mechanical results (solid
line) for the three models. With the exéeption of small deviations in the shape of
the envelope of the survival amplitudes, one sees that the semiclassical results are
in excellent agreement with the qﬁantum mechanical calculations, both in terms"
of the frequencies and the relaxation times for the three model systems studied.
The absorption spectra were calculated from the survival amplitudes by Eq. 2.2,
and are shown in Fig. 2.4. One sees that the semiclassical photo-absorption
spectra agree with quantum mechanical calculations well in terms of the shape
and position of the absorption band. The small differences in the absorption
intensities can be traced to small deviations in the survival amplitude envelope.

For model I, the ultrafast decay of the autocorrelation function happens within
the first 18 fs after photo-excitation of the system. Absence of recurrences at
longer times ( panel a in Fig. 2.2) indicates that the photo-fragmentation pro-
cess is direct, in the sense that the wave packet moves in the space of nuclear
coordinates directly towards dissociation. Branching processes between the elec-
tronic states become important only after 15-20 fs (panel a, Fig. 2.5), when the -
system reaches the coupling region. Therefore, non-adiabatic couplings have only
a minor effect on the absorption spectra and the spectrum shows no structure
(panel a, Fig. 2.4).

The spectra corresponding to Model II (panel b in Fig. 2.4), at variance with
Model I, presents a structure which is consistent with the presence of recurrences
in the autocorrelation function({panel b in Fig. 2.2) . In this case branching pro-
cesses becomes significant immediately after the excitation process. The presence
of the coupling induces a back-and-forth electronic population transfer. This be-

havior is evidenced in the evolution of the electronic populations in panel b of
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autocorrelation function

time{fs]

Figure 2.2: Comparison of the modulus and real part of the survival amplitudes
associated with photo-excitation to electronic excited state 1 calculated according .
to the semiclassical methodology presented in section 2.2 (dashed line), compared
with the corresponding quantum mechanical results (solid line). Panels (a), (b)
and (c) show the results for Models I, II and III respectively. '
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Figure 2.3: Spectra
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Figure 2.4: Comparison of the absorption spectra calculated according to the
semiclassical methodology presented in section 2.2 (dotted line), compared with
the corresponding quantum mechanical results (solid line). Panels (a), (b) and
(c) show the results for Model I, II and III respectively. The slightly negative
absorption coefficient in panel b is due to numerical errors.
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Fig. 2.5(see discussion below). B
For Model III, as in Model I, the dynamics of the photodissociation process is
direct, and the non-adiabatic coupling has no effect in the determination of the
absorption spectrum. Therefore the absorption spectrum is structureless(panel
¢, Fig. 2.4). The primary difference With model I is that in this case the autocor-
relation function decays more slowly and consequently the absorption peak has

a smaller width.

2.3.4 Evolution of the Electronic Populations

The evolution of .the time-dependent electronic populations was calculated
with the full SC-IVR methodology and also its linearized LSC-IVR version. Since
the semiclassical propagator is not unitary, and there is “population leakage”
associated with the Meyer-Miller Hamiltonian?? , all the populations reported in
this work have been renormalized so the sum of populations of the three states
is always one. | | |

The evolution of the time-dependent electronic populations for each model
potential is shown in panels a, b aﬁd c in Fig. 2.5 fbr the Models I, II, and
II1, respectively. It is seen that at any time the evolution of the elecfronic state
population calculated according to the SC-IVR presented above is in very good
agreement with full quantum mechanical calculations. Each of the thfee models
involves two branching processes. The difference between the models are the time
at in which these process occurs and the states that are coupled. For Model I the
branching process first occurs between the initially populated state 1 and state 2,
and then there is a secondary population transfer between state 2 and state 3. For
~ Models IT and III the initially populated excited state 1 is coupled to two other
electronic states; in Model II the branching processes oc"cur.‘ in a much shorter
time than for Model IIT. Model III thus presents the most expensivé calculation
since the branching processes occur on .the longest time scale.

Fiha.lly, Fig. 2.6 shows the eletronic populatioﬁs given by the linearized ap-

proximation to the SC—IVR, the LSC-IVR, corhpared to the accurate quantum
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Figure 2.5: Evolution of the electronic populations P, (¢) for each electronic state.
SC-IVR (squares) are obtained according to the methodology presented in section
2.2. The solid line are the corresponding quantum mechanical results. Panel(a),
(b) and (c) show the results for Model I, IT and III respectively.
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time[fs]

Figure 2.6: Evolution of the electronic populations P, (t) for each electronic state.

" LSC-IVR (crosses) are obtained according to the methodolgy presented in section

2.2. The solid line are the corresponding quantum mechanical results. Panel(a),
(b) and (c) show the results for Model I, IT and III respectively. :
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30a it is shown that quantum

results. In an earlier work on thermal rate constants
effects were well described by LSC-IVR for short time, but the longer time dy-
namics was purely classical. This is consistent with the results shown in Fig. 2.6.
For Model II (panel b, Fig. 2.6) the simple LSC-IVR gives almost quantitative
agreement for the evolution of the electronic populations because of the very fast
time scale on which the branching processes is determined. For Models I and III,
on the other hand, the LSC-IVR gives poor results (Fig. 2.6 panel a and c) ,
consistent with the fact that the branching processes have taken place in a longer
time scale. One may notice that in Fig. 2.6a, one of the states has negative
pbpulation at around 25 fs. This is due to the fact that populations calculated
from the Wigner model are not always positive, as can be seen from Eq. 1.31 to

Eq. 2.9.

2.4 Conclusions

In this work the capabilities of the Meyer-Miller hamiltonian with SC-IVR
method have been tested to describe multichannel photodissociation reactions.
For the three models considered, it is shown that the absorption spectra and
" the evolution of the populations in each electronic state, calculated by SC-IVR
method, are in excellent agreement with full quantum mechanical calculations.

The LSC-IVR is much easier to apply than the full SC-IVR. As seen from the
resulting expressions, it.involves the overlap of the Wigner distribution function
for the initial state with the classically time evolved Wigner distribution of the
final state. The actual dynamics of the LSC-IVR is thus completely classical; the
Wigner distribution provides the boundary conditions for the claséical trajecto-
ries. As a consequence, fhe LSC-IVR approach provides a very good description
for the model system where the non-adiabatic coupling occurs on a very short
time scale, but it becomes less accurate as the nonadiabatic interaction occurs at

longer times.
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Chapter 3

Description of Tunneling

3.1 Intro‘duttion

It has been Well;.appreciated for a long time that the correct semiclassical
description of tunneling (or, more generally, “classically forbidden”) processes re-
quires classical trajectories that explore complex-valued regions of phase space®® 3¢

. E.g., in the 1 — d WKB approximation for barrier tunneling, the momentum of
the particle is imaginary when it is inside the barrier. Recent work by Kay®® and
Heller et. al.557 re-emphasizes this fact. For practical reasons, however— for

example, if one wishes to use classical molecular dynamics to treat systems with |
.many degrees of freedom—one would like to have at least an approximate way of
describing tunneling-like phenomena that utilizes only real-valued classical trajec-
tories, within either a fully classical or a semiclassical apprbach. Several examples
of such approaches exist; e.g., a model used by Makri and Miller®®®® (which is
patterned after Tully’s surface-hopping models for treating electronically non-
adiabatic processes®®) is a fairly primitive way of describiﬁg tunneling processes
with only real-valued trajectories, but it has found some utilitys* 7 . Within the
semiclassical (SC) initial value representation (IVR) it has also been shown that
purely real-valued classical trajectories can describe tunneling processes to a very

useful extent® ", (The very reason the IVR was first introduced”, in fact, was

to be able to describe classically forbidden vibrationally inelastic scattering with
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real-valued trajectories.)

In this chapter we present another family of models for describing tunneling
(or any classically forbidden) processes with real-valued classical trajectories; it
can be implemented at a fully classical level, as described in Section 3.2, or much
more accurately using the SC-IVR version of semiclassical theory, as described

in Section 3.3. Some numerical tests are presented and discussed in Section 3.4.

3.2 The Model

We illustrate the model by application in this chapter to 1-dimensional barrier
transmission, but one can easily imagine how models of this type could be applied

more generally. The Hamiltonian of the system we consider is thus of the form
H=P?/2M) +V(R), | (3.1)

‘where V(R) is a potential barrier in 1 — d, —00 < R < 0.

The model we propose was motivated by the McCurdy-Meyer-Miller model
43,75713,42,14,18(1),2220 for describing the electronic degrees of freedom (in electroni-
" cally non-adiabatic processes) by auxiliary classical variables, but it can be stated
more generally and independently of that work. Speciﬁcally, we introduce an aux-
iliary degreé of freedom, a harmonic oscillator of unit frequency and mass, with
coordinate and momentum operators £ and p; if the oscillator is in quantum state

n, then since- Y .
g(ﬁz +2%)|¢n) = (n +5)16n) (3.2)

where we use units such that A = 1, and |¢,) is the usual eigenstate of the

harmonic oscillator, one has the identity,

L 42 41 mi) = 6 53)

The Hamiltonian H (]5, R, p, Z) in-the expanded, 2 — d space is now defined by

~

H(P,R,p, %) = P*/(2M) + aV(R) +(1— a)%(ﬁz +#+1-2m)V(R), (3.4)
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where « is an arbitrary parameter which in principle can take any value. We
think of Eq. 3.4 as the Hamiltonian for a multichannel scattering problem, R
being the scattering (or translational) coordinate and z the coordinate for the

bound degree of freedom. It is clear that an exact wavefunction for Eq. 3.4 is
U(R, z) = ¢ (z)¥(R), - (3.5)

and with this choice the quantum mechanics resulting from the Hamiltonian 3.4

is identical to that of the original 1 — d Hamiltonian 3.1 (because
S+ + 1= 2V (Row)l) = VRNl ). (3.6)
Another way to look at Eq. 3.4 is to rewrite it in the following way:
H(B, B, p,%) = P2/(2M)+V(R)+'[%(1_a)(;a2+:z2+1-zﬁ)+(a—1)]V(R); 3.7)

the last term in the above expression is zero when operating on the wavefunction
defined by Eq.. 3.5, and therefore may be thought of as a pseudo “quantum”
potential. ‘

The classical (or semiclassical) model is now obtained by treating the 2d
system classically; i.e., Hamiltonian 3.4 is taken to be a classical Hamiltonian.
For definiteness (and also simplicity of application, below) we choose the state
n of the auxiliary degree of freedom to be its ground state, n = 0, so that the

classical Hamiltonian of the 2 — d system becomes

H(P,R,p,z) = P?/(2M) + %[(1 —a)(p*+2}) +1+ a]V(R). (3.8)

To see the effect of the auxiliary degree of freedom at the classical level, we
compute the transmission probability using the “classical Wigner” model, i.e., a
classical trajectory calculation with initial conditionschosen from the appropriate
Wigner distribution funcﬁon. The Wigner distribution for the ground state of

the oscillator degree of freedom is

puw(Zo, po) = €72/, . (3.9)
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where €y = 3(p} + z3), and the translational degree of freedom is taken to be a
pure momentum state. Since %(p2 + z?%) is a constant of the motion (classically
as well as quantum mechanically), a classical particle will be transmitted via the
Hamiltonian 3.8 if, and only if, the initial translational energy F is greater than
[(1 — @)eo + 3(1 + a)]Vi, where V; is the barrier height of V(R); i.e., the auxiliary
degree of freedom causes fluctuations in the barrier height. Averaging over the
Wigner distribution of the auxiliary degree of freedom thus gives the transmission

probability as
o - 1 '
P(E) = /0 deo 272h{E — [(1 - a)eo + 5(1+ )]V}, (3.10)
where h{} is the Heaviside function,

R{€} = 1 if&>0,
0 ifé<O,

andee have used the fact that

/_o:o dzg /_o:o dpo{ }=2m /Ooo deo{ }; | (3.11)

evaluating the integral over ¢, gives the final (classical) result

(E - 31+ )W)

PE) = {1- exp[—2 N

PALE - 51+ )V,

ifa<1, and

—2(E - {1+ a)V3)
1 -a)V

for a > 1. : - (3.12)

HLE ~ 5(1+)Vi] + expl A5 (1 +)Vs - B,
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" Figure 3.1: Transmission probability given by the classical treatment of the 2 —d
system, Eq. 3.12, for o = 0 (solid line), & = 1 (short-dashed line), and a = 1.3
(long-dashed line).

If the parameter « is chosen to be 1, then (as is clear from Eq. 3.8) the

auxiliary degree of freedom has no effect, and Eq. 3.10 reduces to
Pect(B)=h(E-Vi), (3.13)

| the classical transmission probability for the original 1 — d barrier Hamiltonian .
3.1. But for the choice a # 1, one sees (cf. Figure 3.1) that Eq. 3.12 gives a
result that qualitatively mimics the effects of tunneling.- As noted above, this
comes about because the classical distribution of energy in the auxiliary degree

of freedom generates a distribution of barrier heights and thus some prbbability
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of being transmitted at energies below the 1 — d barrier height V; (and reflected
at energies above the barrier).

So we have the situation that if the 2 — d system (with Hamiltonian 3.8) were
treated fully quantum mechanically, the transmission probability would be the
correct quantum value, indepdendent of the parameter o.. Treated classically, the
- transmission probablility is not independent of ¢, and in fact for o # 1 gives a
finite transmission probablility for E < V; (and also a finite reflection probability |
for E > V).

In the next section we treat this 2 —d system, Eq. 3.8, semiclassically, via

the initial value representation.

3.3 The Semiclassical Initial Value Representa-
tion

The SC-IVR approach with HK propagator discussed in Chapter I was adopted
here. For the present dppli'cation the coordinates and momenta include both the
translational degree of freedom, (R, P), and the auxiliary degree of freedom,
(z,p), i.e., q= (R, z) and p = (P, p). _

The transmission probability can be expressed as the lo‘nlg time limit of a time

correlation function,

P = lim Cap(t), (3.14)
where |
 Cap(t) = trlAeT B~ (3.15)

with operator A and B given by

A = |."I’o>(‘1’0|, ' ‘ (3.16)
B = |¢o){dolA(R). (317)

The initial state [¥,) is v
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i.e., the ground state of the auxiliary degree of freedom and a coherent state
. for translation. For this particular case, the correlation function can also be
expressed as )

Conl) = [TRBIpl TN (@19)

If the linearized SC approximation (LSC)26:% is applied to the IVR expression
for the correlation function, then one obtains the classical Wigner approximation,

Eq. 1.32.

3.4 Numerical Tests
The test system is chosen to be an Eckart potential™,
V(R) = Vpsech?’(R/a) (3.20)

with parameters that correspond approximately to the H + H, reaction: V}, =
0.425 ev, M = 1060 a.u., and a = 0.75 a.u.. The initial center position for
the translational cdherent state is R; = —6.0, with the coherent state parameter
vr = 0.5; for the auxiliary degree of freedom v, = 1, and these same values
for 7 are also used for the coherent states in the SC propagator, Eq. 1.6. The
translational coherent state is chosen rather broad in coordinate space so as to
be fairly sharp in momentum space. Results are shown below as a function of the
energy E = P?/(2M) corresponding to the center of the translational coherent
state. The quantum results were calculated by the split-operator algorithm™ for

this same initial state.
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Figure 3.2 shows the results of the SC-IVR, calculation (the transmission prob-
ability is shown for F < %, and the reflection probablity for E > V}), for several
-values of the parameter o, o = 0, 1, 1.3, compared to the correct quantum values.
a = 1 corresponds to not having the auxiliary degree of freedom (cf. Eq. 3.4), |
and one sees that including it, i.e., @ = 0 or 1.3, gives better agreement with the
quantum results. In particular, o = 0 shows a very significant improvement and
* suggests itself as perhaps the 'universal’ choice. o = 1.3 gives very good results -
~in the low energy tunineling region but less good results for over-barrier reflection.

~ For comparison, Figure 3.3 shows the results of the linearized SC approxi-
mation, i.e., the classical Wigner model; this is the same as the classical result
discussed in Section 3.1 except here averaged over the distribution of initial en-
ergy in phé translational coherent state. One sees that there is much greater
dependence on the o parameter than for the SC-IVR results in Figﬁre 3.2, and
thus less good agreement with the correct quantum values.

To focus more explicitly on the a-dependence of the SC-IVR results, Figure
3.4 shows the transmission probability as a function of « for one particular energy,
E = 0.4V}, fairly far into the tunneling region, for which the quantum transmis-
sion probability is 8 x 10™%. To understand these results, as well as those in
Figure 3.2, one may notice that the range the barrier can fluctuate is dependent
on the value of a. For a < 1, the whole potential varies from (14 a)V/2 to oo.
This sets a lower limit on the tunneling energy. For a given tunneling energy, a
should be large enough so the barrier fluctuation range covers it. For o > 1 the
whole poténtial varies from —oo to- (1 + a)V/2. While there is no lower limit on
the range the barrier can fluctuate, the weight of each barrier height is affected
by the value of . Therefore, in Figure 3.4, the tunneling probability increases
when « is away from 1, since more trajectories can pass through the barriér. The
semiclassical formulae discussed in this work are derived from the corresponding
quanturh formulae with the stationary-phase. assumption. If the stationary-phase
assumption is valid, one would expect the tunneling probability becomes inde-
pendent of a once the value of « is sufficiently different from 1. For a > 1, one

does see the tunneling probability firstly increases quickly with a, then slows
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Figure 3.2: Transmission (for E/V;, < 1) and reflection (for E/V, > 1) probabili-
ties for the 1 — d Eckhart barrier as a function of E/V;. The values of a in Eq.
3.8 are: 0 (short-dashed line), 1 (long-dashed line), and 1.3 (dotted line). The
solid line gives the correct quantum results. See the text for details.
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Figure 3.3: Transmission (for E/V; < 1) and reflection (for E/V; > 1) probabil-
ities for the 1 — d Eckart barrier as a function of E/Vj, given by the linearized
SC (or classical Wigner) approximation , Eq. 1.32, for o = 0 (short-dashed line),
a =1 (long-dashed line), and o = 1.3 (dotted line). For comparision, the correct
quantum results are also shown (solid line).
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Figure 3.4: Transmission probabilities as a function of « in Eq. 3.8, for E/V, =
0.4. Also shown is the correct quantum result (dashed line), which is independent

of a.
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down. For o < 1, Hamiltonian 3.8 overemphasizes the tunneling trajectories—as
can be seen from the classical results shown in Figure 3.1 and Figure 3.3. The
final tunneling probability is due to mutual cancellation of contributions from
these trajectories, which may result in large statistical errors. Therefore, choices
of o > 1 may have certain practical advantages.

Theoretically, the models discussed in this chapter can be understood in the
“following way: _

For the bare hamiltonian 3.1, when the limit A —)I 0 is taken, only trajectories
obeying classical mechanics survive. To give an accﬁrate and unambiguous de-
scription of nonclassical tunnnelling and over-barrier reflection phenomena, one
needs to resort to complex-valued trajectories. ‘In the well-known “instanton”
theory!!, for example, the tunneling path is generated by allowing the system to
move along an inverted potential, which is accomplished by using imaginary time
and momentum. : .

For the models discussed in this work, one expands the Hilbert space by adding
some ficticious degrees of freedom. The role of this ficticious degree of freedom
is to multiply the original bare potential by a varying factor. Therefore, the
physical subsystem “feels” not only the ofiginal potential, but a whole ensemble
of potentials with varying barrier height: some are higher than the physical
potential, some are lower , and even inverted— “instanton”-like trajectories. In
a quite different approach” ™, Takatsuka and coworkers noticed that including
only the instanton trajectories is not sufficient to describe tunneling in certain
systems. Furthermore, the over-barrier reflection effect and the tunnelling effect

are described on the same foot in the present approach, which can not be easily

achieved by other semiclassical tunneling theories.

3.5 Concluding Remarks

In this chapter, we have discussed a class of semiclassical models for describ-
ing tunnelling with real-valued trajectories. While adding a fictitious degree of

freedom is merely a mathematical trick, the underlying physics is to include clas-
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sical trajectories that are “off the energy shell” of the original bare hamiltonian
into the semiclassical calculation, an effect which has been shown to be essential
for describing tunneling with real-valued classical trajectories.

There are several qﬁestions remaining open: |

The form of the hamiltonian with one extra degree of freedom is clearly not
unique. One may choose different values of o in Eq. 3.8. One I;’lay coup_le the
fictitous degree freedom to the momehtum term instead of the potential term of
the bare hamiltonian 3.1. The question is how sensitive the tunneling probability
depends on the hamiltonian form, and what is the best choice. The tunneling
probabilities reported in this chapter are averaged over the energy distribution
of the intial wavepacket. In the work of Grossman and Heller®, the tunneling
probabilities for definite energy states were calculated from a correlation function.
Primitive results with this correlation type calculation show that the calculated
semiclassical tunneling probabilities with the expanded hamiltonian Eq. 3.8 re-
produce the analytic quantum results®® down to a certain energy. Below this
critical energy the results begin to deteriorate. The. location of the critical en- |
ergy varies with the value of a. This supports the idea that it is crucial that -
the range of fluctuations in the barrier of Hamiltonian 3.8 covers the tunneling

energy under study. Further study along this line would be useful.

3.6 Appendix A

In this appendix we discuss numerical details on performing SC-IVR calcula-

tions.

First, let’s make the following variable transformation:

Zo = 19 c0s(6p) . V ©(3.21)
Po=—Tg sin(ﬁo) v (322)

Then, it can be shown that for the 1-state MM hamiltonian

H=P/@M)+V+ (@49~ D(1-a)V (329
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To is a constant of motion, and the electronic coordiate x and momentum p can

be solved analytically:

T = posin(; + 2o cos §; = rocos(fy — () (3.24)
p = —Zosin{; + pocosls = posin(fp — ;) - (3.25)

where ¢, is defined to be:

G = (l—a)/otdtV

- 2(1 - o) g dX

S G-on+(+a) (Et 2/0‘“_’ dt) (3.26)
I R |
= Ao+ (+a) (Et 2% F dX) (3:27)

with E to be the total energy. Therefore, (; is related to the action with only the
nucleus degree of freedom included. To be complete, one may also notice that

the following term appeared in the action expression can also be integrated out

analytically,
t dz t
: dtp— = (1- / 2
/0 P (1-a) | dt p°V
1 1. . .
= 57”(2)@ + Z(pg — x3) sin (2¢;) + zopo sin® ¢; (3.28)

Let’s define vectors z, Zo, and the symplectic matrix J as

2 = {XuPi} (3.29)
Zo = {Xo,Po} ' (330)
0 I |
J = (_I 0‘) (3.31)

\

In a semiclassical calculation, one may propagate all the necessary variables ac-

cording to the following relations:

dZt OH
= J. == .32
d <Ozt> 3 0’H 0Oz

dt \ dzg ' 02,0z, Oz¢

” (3.33)
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as

= -1 | (3.34)
% = oV (339
i) - w0 6w
i) = (%) 39

The remaining mbnodromy matrix elements can easily be obtained from the above
quantities through the chain rule, and will not be given here.
Similarly, for the MM hamiltonian H = 3(z* + p* — 1)(P%/(2M) + V(X),

there are two constants of motion:

€ = T°+p*—1=a23+p2—1 (3.39)
& = P?/(2M) +V(X) = P}/(2M) + V(Xo) (3.40)

The electronic coordiate £ and momentum p are again given in the form of 3.24
and 3.25, respectively, with the exception that a can be solved analytically in
this case: | '
t ,
a= / dt €, = ept B (3.41)
0 .
In a semiclassical calculation, the propagation variables and their time deriva-

tives are as follows:

X, X - %"P/M | (3.42)

P, P= —%g—; | (3.43)
aa—))((o’ 57.)((0 - 261:4 ;)l; (3.44)
xS e, r -
oP P e 0V 00X (3.47)

0Xo’ 0Xo  20X0X 0X,
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P oP . 92V 08X

3Py’ P~ 20X0X 9P, (3.48)
aP 8P — ._.6_6 BQV . _6__}5_ — l.a_.‘{_ (3 49)
Oe,’ de,  20X0X e, 20X "

The remaining elements of the monodromy matrix can be obtained easily from

the above variables and the expressions of z and p.
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Chapter 4

Thermal Rate Constants

4.1 Introduction

Calculation of thermal rate constants is one of the central tasks in theoretical
studies of chemical dynamics. Given the potential energy surface (PES) of a sys-
- tem, one can define ai dividing surface, which separates the PES into reactant and
product region. A thermal rate constant measures how fast a system, initially in ,
thermal equilibrium within the reactant region, moves to the product region. In
principle, the thermal rate constant is independent of the choice of the dividing
surface. Transition-state-theory (TST)8482 is widely used for thermal rate con-
stant calculations. It describes the dynamics of a system by the thermodynamics '
of the system at the transition state region. Formulation of the theory is based
on the no-recrossing assumption: trajectories cross over the dividing surface only
once. Computer simulations with classical mechanics are also popular in the
literature, and many numerical techniques have been developed for efficient cal-
culations of large systems, e.g. the reaction path sampling method for sampling
rare events33. For systems showing significant quantum effects including tunnel-
. ing and interference, such as proton transfer reactions, a rﬂe‘;hod beyond classical
mechanics is required. The transition state theory was originally formulated as'a
classical theory. In the past several decades, many efforts have been made to de-

velop a quantum version of the TST theory with some success®'1857%, Together
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with the advance of computer technology, many algorithms for numerically exact
quantum calculations have also been developed™**%2.  One method deserving
mention is the multi-configuration time-dependent Hartree (MCTDH) method!.
Ho&ever, generally speaking, these exact methods are still restricted to relatively
small systems. Therefore, further approximations are needed. Besides, for chem-
ical systems, quantum effects are usually small or moderate, and full quantum
calculations are unnecessary in many cases. This chapter will report some recent
efforts to apply path-integral and various SC-IVR methods to the calculation of

rate constants.

4.2 Theory

For simplicity, the mass-scaled coordinate is used throughout the chapter.

A formally exact expression for the thermal rate constant is given by the

Miller-Schwartz-Tromp correlation functions®3%4,
1 o ’
= — dt Cy. 4.2
o, /O f15 (4.2)
‘Where,
Cts = tr[Fgh(t)], ' (4.3)
Cpp = triFasFaons(®)]. (4.4)

In the above equations, an operator A(t) refers to a time-evolved operator,
A(t) = exp(iHt) A exp(—iHt). (4.5)

The projection operator his a function of the coordinates, and takes value 1
on the product region and 0 on the reactant region. The Boltzmannized flux

operator Fy is defined as,

Fy = exp(—fH/2)F exp(-BH/2) = exp('—ﬁl?l/z)%[ff, h)exp(—BH/2). (4.6)
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The constant A can take any arbitrary value in [0, 1]. H is the, Hamiltonian

operator of the system, and 8 = (kgT)~!. In the litefature, Cys and Cyy are |

called flux-side and flux-flux correlation functions, respectively. In this work,
the imaginary and real time propagations were treated by path integrals and the
semiclassical initial-value-representation method, respectively. The value of A in
the flux-flux correlation function form was taken as 1 /2. _

In the following discussion, the hat on each operator is dropped, and # is set

to 1.

4.2.1 The Path Integral Expression of the Boltzmannized
Flux Operator

In coordinate representation, F' is given by
p?
F o= [axx)il=, hs()ix

= [ dx[x)2 (plp, Al + [p, Hlp} (x

= /dx |x)%[p5(s)§xs- + 5@)%!’("', (4.7) .

where the function s defines the dividing surface. To derive a path-integral formu-

lation of the Boltzmannized flux operator, let’s review the usual procedure of de-

riving path-integral expression of the imaginary time propagator (x| exp(—8H)|x').

One first splits the Boltzman operator into N pieces,
(x| exp(—BH)|x) = (x| exp(~ABH) - - - exp(~ABH)|x'), (4.8)
Whefe AB = B/N. Then one applies the foliowing Trotter splitting,
exp(—~ABH) ~ exp(—ABT/2) exp(~ABV) exp(—ABT/2), | (4.9)

where T = p?/2 is the kinetic operator, and V is the potential operator. The

final discrete path integral expression can be obtained by inserting the following -

identity .
I= / dx [x:) (x| -  (4.10)
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in between terms of exp(—ABT/2).

For semiclassical applications, one needs

F/2
(x1] exp(—ABT)|xz) = (ﬁ) exp[—ﬁ(x1 —x3)2], (4.11)
and

{(x1| exp(— AﬂT/2)Fexp( AﬁT/2)|X2> _

= Z( Aﬁ) /dxé(s(x {exp[— (x xl)z]——; %exp[—;ﬁ(x x2)?]
1 ds 0 9

—{expl- Aﬁ( x2)’] o - o expl- Aﬁ(x x1) T}
= Kz—ﬁ— (@) /dxd(s(x))a—i - (x2 — X31)

exp{ == [(x — x1)? + (x — x2)7]} “12)

Ap
Putting everything together, a coherent-state matrix element of the flux-

Boltzman operator is given by

,<POQO,7|6XP(_rBH/2)F exp(—BH/2)|podp, )

_ ( )F/2( 1 )NF/z 1
AB 2rAB (1+7Aﬂ/2)F
/ dxy - - - dXN / dxs - (Xny2 — XN/2+1)
N/2 '
exp{—— Z(x -x5_1)% + Z - Xj-1)
2A,3 ! - —2+N/2 "

+2(xs — Xny2)? + 2(xs — XN/2+1)2] )

o R
Tyt — a0 + Fo = 6 + S (b + 2y’
N
- +ipo - (X1 _ qo) - ipb . (XN —Q:))] - Ap E V(Xj)}, (4.13)

j=1
The above expression can be viewed in the following way: the two phase points,
{Po, a0} and {pg,qp}, and a string of beads (which are weighted by ABV) are
connected by harmonic springs (with their strength determined by AS); one effect

of the flux operator is to force the middle one of the beads to lie on the dividing
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surface. Compared with a coordinate-representation matrix element of the flux-
Boltzman operator (which can be obtained by taking the limit v — c0), Eq. 4.13
has extra imaginary terms, which introduce numerical difficulties on evaluating
the matrix element. However, in the coherent-state representation, there exists
a Gaussian damping factor for the momentum. This turns out to be of great
advantage for semicalssical applications.

If one approximates ds(x) by

G5(x) 2 86(3) + 55+ (= %) = 5 [ exp . [s0) + 52 - x- 0|},

where X = (x1 + X2)/2, then
(x1| exp(-ABT/2) F exp(—ABT/2)|xz2)

1 [(8s as\* 0s
- Calep-00Dba) s (55 55)  Gamx) 52

exp {——A% (_g_; - -3;%) s(i)z] . (4.15)

This approximation removes the awkward ¢ function, and is supposed to be
accurate if Af is sufficiently small (which means that the width of the Gaussian
expression in Eq. 4.11 is small). The expression correspondlng to Eq. 4.13 can
be obtained easily, ‘and will not be given here.

A special case is that a reaction coordinate ¢; can be identified, and the

dividing surface is defined by ¢; only, e.g.

Furthermore, the Hamiltonian of the system may be well approximated by a
quadratic form, and the remaining non-quadratic terms are just small correc-
tions. As an example, in a series of studies of a double-well linearly coupled to
harmonic baths, Wang et al?326:3%¢ calculated the Boltzmannized flux operator
matrix elements by approximating the Hamiltonian with a harmonic reference -
Hamiltonian, and the result agrees with the exact results well if the temperature

is not too low.
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In general, the potential of the systern can be written as,

1
V= V(QO) - 50) (<11 —qo1)? + = Zw2(Qz q0i)* + AV, (4.17)
1.—2

and the Hamiltonian can be written as,

Z “p2+V = Hy + AV, (4.18)

z—l

where the reference Hamiltonian Ho is defined as

\ 1 1 1
Ho= §p1 - —w* (q1 —qo1)? + E :[ p; + 5“’? (¢ — 90:)*1 + V(q0)- (4.19)
1“2 )

Instead of applying the Trotter splitting as in Eq. 4.9, one may adopt the follow-
ing splitting,

exp(—ABH) = exp(—ABHy/2) exp(—ABAV) exp(—ABHy/2). - (4.20)

With the following result,

b .
(x1]| exp(—ABHy/2)|x2) = H 5 €XP [——a,(mh +z3,) + b; xhxm] ,  (4.21)
=1

one has,

(Poqo, 7| exp(—BH/2)F exp(—BH/2)|podo, V)
_ i b2 F bi 7 d (N- 1)/2
B _(—2—)d_11i1—[1{a1—+%\/>(27r)

[ dxa - dxn [(znp)n - @z )i xp(®), (4.22)

where the exponent ® is given by,

0 - -3

=1 a; + 7"' .
—bii(T1:90s + TNiq Oi) + ipoz'(bﬂ?u — a;qo;) — ip Oi(bixNi - ai.q,()i)]

1 N N
.__2. Z:Z[C(XJ2 + sz—l) — 2deXj_1] - Aﬁ ZAV(XJ)
J:

=1

1 a? + a;y; — b2
2 1 1
[ (s + 7o) +§ai’>’i(%z+‘1m) + _—51_—( T3, + o)

o1 ,
“’2‘[(‘11 - Cl)(I?V/m + x?\l/2+1,1) + 2‘_?llﬂUN/2,193N/2+1,1]- (4-23)
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In the above expressions,

o - sy
b = m ' . (425)
s
d = S—Eh[wAT] (427)

For the reaction coordinate, w; = iw?. Eq. 4.13 can be recovered by taking the
limit w — 0. v ‘
In the case that H can be well approximated by Hj, the coherent-state matrix

element of the Boltzmannized flux operator is given analytically,

. F ’
(Poqo, 7| exp(—BH/2)F exp(—BH/2)|podo, ) = [I fi, (4.28)
i=1
where,
_ ’Yil/2 >Bi Zl / . e Gmn.
exp [—% (qgi + ‘I%i) + i (Poigoi "'p’Oiq’Oi)]
(vgo1 — ip01)2 + (vq' o1 + ip'm)z ’
: 4.29

7B N 2 .
ho= (=) ool (G o8) +itnon ~dudo)

[(71/2 + A1) [(7g01 — 01)® + (¥q'01 + z’p’01)2]]

4[(m/2+ A1)* - Bf]

| 2B1(vgo1r — o1 ) (7 o1 + 0 01) _
) [ 4[(1/2+ A1)? - Bj] ] ’ | (4.30)

with |
w* cos [,&ut / 2] '
A1 = 2sin [ﬁw1/2] ) ‘ (431) o
wi
B, = (4.32)

2 sinh [Bwt/2]’ |
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w; cosh [Bw;]
A = 2 W 4.
17 2sinh [fw]’ (4.33)
w.
) _ 4.
Bia 2 sinh [Bw;] (4:34)

This result was used by Wang et. al**® in their forward-backward SC-IVR studies
of a double-well coupled to harmonic baths.

In the LSC approach, the Wigner function is needed, and is given by

Fy = @#/qu e~ PA9q — Aq|exp(—BH/2)F exp(—BH/2)|q + Aq)

S —— )(N+1>F/22(3—N)F/2

AB2m)F wAB
/dxl dXN/dXS ——— (XN/2 —XN/2+1)

N/2

: exp{———————[z —%5_1)° + Z (x5 — x3-1)°
' QAﬁ ” Jj=2+N/2 ! !
+(2q0 — x1 ~ XN)2 + 2(xs — Xnvyj2)? + 2(%s — Xny241) ]
N A,B . )

—ABY V(X)) — — P P (x1 — xn)} (4.35)

Jj=1
The expression corresponding to Eq. 4.22 is,

b2
Ta;

d; (N-1)/2 '
( ) /dxl -+~ dxn (TNj2,1 — TNj241,1)

R = 2 [
1 F
exp{ Z Z ("Em + ma 1 1) dixaixa—l,i] - :.2' 2[01(2%2 + x%z + x?\h)

a=2 i=1 : 1=1
b2 2 . b;
—(zy; — zNi)? + _;pf + 2iji(xli — zni)]
2 ? .

—2b;gi(z1; + zNs) — 70,
(]

+§(c1 - al)(x?wm + x%V/2+1,1) — d1TN/2,1TN/241,1

AYY] éj:l V(xa)} ' (4.36)

The analytical expression of the Wigner function for a quadratic hamiltonian

can be obtained?’, and is not given here.
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4.2.2 The SC-IVR Approach

The standard Herman-Kluk semiclassical propagator was used to approximate
the real-time propagator. The flux-flux correlation function involves two real-time
propagators, and is evaluated by,

1 2F poo oo . | ! I 1%t /

Cys(t) = (2_) / T / dpoedqoedp’odd’y Ci(Pa, d0)C'; (P'0: o)

T —00 -0
exp [iS(Po, o) — 45"+(P'0, @'0)] (Po, a0; 7| F5/2/P 0, 9’03 1)

(P's, d's; V| Fp/2lpe, a3 )- (4.37)
Therefore, trajectories need to be propagated in pairs. To obtain the thermal '

flux kQ,, Css(t) was evaluated at several time slices and integrated over t.

For FB/ SC-IVR, with the Fourier representation of the Heaviside operator ,

h(q) = lim /_ o:o dpsme“”é‘, | (4.38)
the fluxside correlation function is evaluated by,
C'fs‘ = (‘L)F /oo dps 1 Cr(ps) (4.39)
2/ Jo TiPs ,
Crn(ps) = /_: e /_o:o dpodao Im{Cy(Po, a0)
exp [i5:(Po, o)] (Po, do; VI Fs|P'0, d'0; 1)} (4.40)

where the trajectory propagates in the following way: (po,qo) —= (Pt, Q) —
(Pt,Qt,.Pu + ps) = (P'o-d0)- The integration of ;bs was done with a set of
grid points of p;, which means that several backward trajectories were calculated
with each forward trajectory. In Eq. 4.39, the following property of the integrand
Cri(ps) is used: Cpy(—ps) = Cp(ps)*, which is easily seen by examining contribu-
tions from two identical trajectories with opposite propagation direction. Special
cbnsidefations for the calculation of Cy3(0) are discussed in the appendix. |
The LSC-IVR results were calculated with
1\F foo 00 '
= (55) [ [ dpodas Fiw(po, a0, Mblas(®)) (441

5 L
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4.2.3 Quantum Calculations Via a Discrete Variable Rep-

resentation

The quantum rate constants were calculated via a discrete variable represen-

tation (DVR)2. Given an equally spaced grid for each degree of freedom ¢q,
CF = jula, | (4.42)
Jo = 0,£1,£2,--,

 where Ag, is the grid spaciﬁg and a = 1, - -, F. The Hamiltonian matrix

Hjl’"'ij;jllr‘"ijF“ 1S given by,

HJI ~JFid = V(qJ H 6.70:1] o Z Jasi'a H Jjpi'gr (4'43)
_ a=1 B=1Ba
with
o 1 . 7r2/3, i=7
Tave = a1 { e a0 (4.44)
O 2/(5 -3 #3"

and ¢;; is the Kronick-delta function. After diagonalizing the Hamiltonian,
H = UTcU, (4.45)
one has,

Cilt) = Texp [-— (e + ek/)] cos (e — ex)] [(ex| Flew)|?  (4.46)
kK’
“with
<€k|FI6k’> = Z ]a,kF‘Ja,J' ,U/ 1% (447)

Ja;j !

4.3 Numerical Tests

4.3.1 The Model

A model system involving a systein coordinate s bilinearly coupled to a set
of harmonic degrees of freedom {x;} was tested. Physically it describes a chem-

ical reaction in condensed phase. This model was studied previously by McRae
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et. al.%, and Liao et. al.%. The system-bath Hamiltonian is given by,

1, ) 1 2 cs\2
H = 5P + V(s)+ 3 S v+ (wimi - Zu_) . (4.48)

The potential V(s) is chosen to be a symmetric Eckart potential with parameters

mimicking the H + H, reaction in gas phase,
V(s) = Vo/ cosh®(as/2y/m), (4.49)

where a = 3.974°1, V; =.3428 cm™!, and m = 0.672 amu. The imaginary

frequency at the top of the bare barrier is given by,
w¥? = a®V,/2m, (4.50)

which is about 1100 ¢cm™!. The bath parameter is defined by a Gaussian friction

kernel, _
: 2 _ 2nw¥o? exp[—(w;0)?/2]
v 7(w;o)?

(4.51)

with w; =7 /7(: —1/2),i=1,2,---,N, 7 =20 for N =1, and 7 = 50 otherwise. -

Therefore, the bath is characterized by the friction ét’rength 77 and the time scale
o. Three values of o, 86.60, 18.48, and 3.696 fs, were considered in this work,
corresponding to slow, medium, and fast solvent responses. Details of the model
can be found in the paper of McRae et. al.%. '

For most of the calculations discussed below, normal mode coordinates were

used, which are obtained by diagonalizing the force constant matrix at the tran- -

sition state. One of the normal modes has imaginary frequency and is defined as

the reaction coordinate.

4.3.2 Sampling Methods

In a SC-IVR calculation, a multi-dimensional complex function needs to be
~integrated. Choices of the sampling method and the sampling function turn out

- to be crucial for converging the integral.
a. Double Space SC-IVR

-
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In the present work, the integration was done with a staging algorithm®":
integrations over the auxiliary x;, the phase points (po, qo), and (pl,; q,), were
done in stages. One reason for choosing the staging algorithm is to utilize the fact
that the computational cost of integrating x; is much less than that of integrating
the phase points, which involves trajectory propagation. For convenience of the
following discussion, each F-dimensional vector x;, qq, or qu will be called a
bead. Two ways of implementing the staging algorithm were tested.

The first method utilizes the observation that the harmonic approximation,
" Eq. 4..28 - 4.34, is a good approximation in many situations. Therefore, the
exponential part of the modulus of (po, qo; 7| F3/2|P'0, d'0; 7) given by Eq. 4.28,
can serve as a sampling function for (po,qo) and (p’y,qd’s). Numerical tests
show that using the diagonél elements of Eq. 4.28 as the sampling function gave
faster convergence rate, and was adopted in the calculations reported below.
The sampling function chosen in this way is a product of Gaussian and can
be sampled by primitive Monte Carlo methods. In certain cases, the reaction
coordinate frequency w?* is so high that exponents of the gaussians are positive, -
then the value of w! was reduced to avoid this problem. Once the two trajectories
were propagated, path integrals of the two Boltzmannized flux operators were
calculated with primitive Monte Carlo. For each flux operator, the sampling
function was chosen as the exponential part of the modulus of Eq. 4.22 with
AV = 0. The exponent of the sampling function is a Gaussian function, and
defines a set of normal modes of the path integral beads {x;,i = 1, N}. Therefore, -
" normal modes were first sampled with Gaussian distribution random number
generator, then transformed back to {xi,2 =1, N}. In Eq. 4.37, the path integral
(P't, d's; 7| F/2|Pt, Qe; 7y) needs to be evaluated at each time slice. The same
normal mode configuration can be used for all the time slices, since different
boundary conditions at different time, which depend on (p¢, q¢; p's, q’s), ensure
different cdnﬁgurations in x space. To speed up convergence, for every pair of
trajectories, path integral configurations were sampled 2000 ~ 5000 times.

In the second method, the beads were divided into primary and secondary

beads. The primary beads were sampled with Metropolis algorithm®, and the
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secondary beads were sampled by normal modes. Usually, the primary beads X
_include qg, qg, and some of the path integral beads {x!}. The sampling function
for the primary beads were chosen in this way: starting from the expression of
(Po> 90; V| Fp/2|P'0, d'0; 7)), Which is given by Eq. 4.13, approximate the potential
terms of the secondary beads between two consecutive primary beads x} and x}, to
be a constant (V (x]) +V(x})) /2 (one may also include linear and quadratic terms
of the Taylor series), and analytically integrate out those intermediate beads;
. the exponential part of the modulus of the resulting function was chosen as the
sampling function for the primary beads. The secondary beads were sampled in
a similar way as in method 1, and the normal modes of these bead were obtained
with the above constant potential approximation, Therefore, the whole sampling
procedure was as follows: _

1. Make N, steps of Metropolis moves, then propagate the trajectories.

2. Perform N, (usually No >> Nj) steps of normal mode sampling of the
_ secondary beads. The normal model configurations were generated from a multi-
| dimensional Gaussian distribution. To speed up diffusion in the sampling space,
for each step of normal mode sampling, step 1 was repeated with qo and q', fixed
(so no trajectory propagation is needed). |

3. Repeat the above: steps.

Sampling over (po, p’g) Was done with primitive Monte Carlo, since the sam-
pling function of (pg,p’y) given by Eq. 4.13 is in ‘Gaussian form. Every time
(do, q'g) moves, new values of (pg, p’g) Were generated.

Instead of using two fixed numbers N; and N,, one can also use a random
number to control transitions between Metropolis moves and normal mode sam-
pling. Numerical tests showed no noticeable difference between these two ways
of controlling. ' ’

For the Metropolis method, one needs to caiculate the normalization constant
of the weighting function in order to obtain the reactive flux. With the current

choice of the weighting function, it is equivalent to caiculate the absolute value of
| C;£(0). For the current work, the absolute values of C;7(0) were obtained with

the Gaussian sampling method discussed above. In general, one can always relate
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the system under interest to another system with known results, similar to the
case of free energy calculations in molecular simulations of liquids.

In a recent paper®, Yamamoto et. al. suggested another version of the staging
algorithm: sample the phase points (po,qoe) and (p'g,d’y) with the Metropolis
algorithm, and the weighting function of which is obtained by converging the
integrand of Eqn. 4.37 with fixed (po,qo) and (p'y,q’y) at t = 0. In other
words, the weighting function of the phase points is a renormalized function by
integrating out the path integral degrees of freedom numerically. Compared with
the two approaches discussed above, the advantage of this approach is that one
has a better weighting function for the phase points, especially the momenta,
and the number of trajectories needed to converge a SC-IVR calculation might
be less. The disadvantage is that one needs to converge a multidimensional
complex function at least once at every Metropolis step, which quickly becomes
impractical when the system size increases. In addition, this procedure is not
straightforwardly applicable to systems with a general dividing surface, since the
extra terms about the middle path infegra.l beads appearing in Eq. 4.13 and Eq.
4.35 can not be included in normal model samplings easily. One may combine
the renormalization staging algorithm with the second method discussed above,
and obtain the weighting function of the primary beads by integrating out the
secondary beads numerically.

b. FB SC-IVR _

.Sampling methods of the FB SC-IVR calculations are similar to the double
' spaée calculations. Both the primitive and Metropolis MC methods are applicable
to FB calculations. In this case, the exponential part of the diagonal element of
the coherent matrix given by Eq. 4.28 in the primitive method, or by Eq. 4.13
in the Metropolis method is used for generating the sampling function. B

The normalization constant calculation of the Metropolis method needs some
special treatment, since C,(0) is not easy to calculate directly. The method used

in this work is based on the fact that the following quantity,

Z.(8) = tr [exp(~BH/2)5(s) exp(~BH/2)] (452)
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which resembles the free energy of a constrained system, and its derivative,
Q%s,é—ﬂl =tr [exp(—ﬁﬁ/Z)(ﬁd(s) + 6(s)ﬁ) exp(—ﬁﬁ/Z)] . (453)

can be calculated with the same sampling function as in a FB calculation. Next,
one tries to find out the absolute value of Z,(f) at one value of §, either deduced
from a known rate constant, or by relating the system to a system (e; g., a har-
monic system), for which Z;(8) can be calculated directly. The second method is
similar to the thermodynamic perturbétion method one routinely uses to calcu-
late free energies in a computer simulation®. Then, the normalization constant
can be deduced from the absolute value and the relative value of Z,(5) obtained
with a Metropolis sampling. '
c. LSC-IVR

A LSC-IVR calculation uses Eq. 4.36 and the analytic Wigher function?® of
the quadratic hamiltonian to generate the sampling functions for the Metropolis
and primitive samplings, respectively. Details including the normalization con-
stant calculation are similar to the FB calculation. .

The lineafized approximation can also be applied to the flux-flux correlation
function%. Implementation of the calculation is similar to the double space cal-
culation, except that only a single spacé integration is needed, and the sampling

functions are generated from the Wigner function.

4.3.3 Generalized Filinov Filtering

The coherent element of the Boltzmannized flux operator is complex, and a
modified version of the Wang-Manolouplos-Miller Filinov filtering method® was
designed to speed up convergence of its calculation. The integral under interest

- is of the form
I= / dz 7@, (4.54)

o0

Following a similar procedure as discussed in Chapter I, one reaches,

* 2|a' : | AY ¥ —1'
= ,l———— ');(20: — i®");
I /_oodz() T — i@ [zl+z;(ﬁ+ )( a—19");
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: 1
exp {iCIJ + iﬂ a7 B - (B4 @) (2a—i0") (B + <1>')] (4.55)
Following Wang et. al, 8 is chosen as,
B = bBy = 2ba - 0" (z0) " - ¢'(z0), - (4.56)

where b is a constant pafameter between 0 and 1, and « is chosen as a diagonal

constant matrix,
- a=al (4.57)

- where I is the uriity matrix.

A further approximation is to omit V" while calculating 6"”. This is justi-
fied since V" should be much less than the contribution from the kinetic term
(otherwise the number of beads should increase). With this approximation, the
matrix inversions need only be done once at the beginning of the calculation,

which greatly reduced the computational cost.

4.3.4 Numerical Details

In all the calculations, the total number of path integral beads for each degree
of freedom ranged from 8 at 1000 K to 20 at 200 K. For fluxflux correlation
function calculations, each of the flux operator calculations uses half of the beads.

The dividing surface is located at the transition state, perpendicular to the
reaction coordinate q;.

At quantum mechanics level, the calculated rate consfant is independent of
the coherent state widths, v. However, in a SC-IVR calculation, the coherent
state widths do affect convergence rate, and also affect accuracy of the final
results slightly. For example, it has been numerically proved that results with a
Herman-Kluk propagafor (finite ) is usually more stable and easier to converge
than a Van-Vleck propagator (y — c0). In a double-space SC-IVR calculation,
values of «y should not be too big, otherwise only two trajectories very close at
t make significant contribution to Cf f.(t), which dramatically increases sampling

difficulties. On the other hand, one should avoid very small values of v (to the
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momentum representation limit) to fully utilize the advantage of the Herman-
Kluk propagator with a Gaussian damping factor. In this work, values of y were
“chosen as: 7; = wt cot(Bw?/2), Yiz = wi.

In the Metropolis sampling method, a forée—biased_ Metropolis algorithm®® was
used. |

Eq. 4.28 was used to generate the weighting function of the phase points in
the Gaussian sampling method. Eq. 4.22 was used for path integral calculations
in both of the two sampling methods. The reference hamiltonian in Eq. 4.28
was based on the the normal mode frequencies at the transition state geometry.
In the case that the temperature was too low, and the qﬁadratic system has no
meaningful rate constant defined, a reduced imaginary frequency would be used.
The reference hamiltonian in Eq. 4.22 was not necessarily the same as that in
Eq. 4.28. Instead, in some calculations frequencies of some modes were reduced
so the reference hémiltonian in Eq. 4.22 does not deviate too much from the true
potential when the coordinates were far away from the transition state point.
Otherwise using the reference hamiltonian would reduce instead of increase the
accuracy of path integral calculations (with the same number of beads).

For each pair of t_x*ajectories, the number of sampled path integral configura-
tions was 2000 in the case of fast and medium solvent responses, and 5000 for slow
responses. The exception is LSC calculations of the flux-side correlation func-
tions, for which 20000 path-integral configurations were sampled for each Wigner
function calculation (note that only one Wigner functioh element calculation was
needed for each trajectory). ’ | |

The filtering method discussed in Section 4.3.3 was used for all the semiclas-
sical calculations. To choose the values of « and b, one first calculated sévetal
coherent state matrix ele;nents with different choices of « and b, and selected the
pair of values that filter most and still close enough to the converged unfiltered
value of the matrix elements. Then the semiclassical calculations were performed
with the selected filtering parameters. Fig. 4.1 shows a Wigner funcion element
- for a 10-medium ;esponse solvent mode model calculated with different values of

bo and o = 60. The temperature is 200K. Clearly convergence of the result was



4.4. RESULTS AND DISCUSSIONS

FB

TK)| QM| SC | LSC1| LSC2|
1000 [[ 1.72e11 [ 1.72e11 | 1.80ell | 1.65e11 | 1.66ell
500 9.10e8 | 9.26e8 | 9.74e8 | 9.0e8 | 8.22¢8
300 2.08¢6 | 2.13¢6 | 1.97¢6 | 2.04¢6 | 1.60e6
200 5.33e3 | 5.30e3 | 2.56e3 2.45e3

Table 4.1: Reactive flux for the 1-D Eckhart barrier.

n| QM| SC|
0 || 9.54el | 9.29el
2 | 5.92-1 | 5.91e-1
5 || 1.63e-2 | 1.63¢-2
8 || 1.35e-3 | 1.38¢-3
10 || 3.32¢-4 | 3.40e-4

Table 4.2: Reactive flux for the 2-D system-fast response bath at 200K.

greatly speeded up with filtering.

59

To save computer memory in quantum calculations, the following trick was

adopted: grid points with energy larger than a cutoff energy E, were discarded.

The value of F, was experimented with several calculations to ensure no notice-

able effect on the calculated reactive flux values.

4.4 Results And Discussions

'4.4.1 Double Space SC-IVR

The reactive flux of the 1-D Eckhart barrier was calculated at various temper-

atures, and the results were given in Table 4.1 and Fig. 4.2. All the calculations

converged within 20000 pairs of trajectories. One may see that the double space

SC-IVR results agree with exact quantum results very well.

Next, a set of 2-d systems with the barrier coupled to one harmonic bath were

studied. The reactive fluxes were focused on 200K, at which the tunneling effect
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Value of a Wigner function element
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0 50405 16406 1.5¢406 20406

Number of trajectories

Figure 4.1: The value of a randomly selected Wigner function element calculated
with various filtering parameters. The system has 10 medium response solvent
modes, T = 200K, a = 60, the value of 5, takes 0.1 (dot-dashed), 0.5 (dashed),”
and 1 (long-dashed), respectively. The solid line is the unfiltered result, and the
Bo = 0 curve is indistinguishable from the unfiltered curve. '

n ” QM | SC l FB | LSC1 ] LSC?2 | wt (em™}) [
0 | 3.20e3 | 3.22e3 . 9.9e2 1164
1 i 5.93e2 | 6.14e2 | 1.1e3 1.0e3 | 3.4e2 927
3 || 6.87el | 6.96el | 9.45el | 6.50el | 4.1lel . 654
5 |l 1.40el | 1.42¢1 | 1.50el | 1.39¢el | 1.18el 522
10 1.30 1.30 1.29 1.21 1.26 374

Table 4.3: Reactive flux for the 2-D system-medium reépbn‘se bath at 200K.
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Figure 4.2: The reactive fluxes of the 1-D Eckhart barrier as a function of temper-
ature calculated with various methods: QM (solid line), SC (cross), FB (squre),
LSC1 (diamond), and LSC2 (triangle). The classical TST result is also shown

for comparision (star).

n| QM| SC|
0 || 1.40e4 | 1.47e4
3 | 4.78e3 | 4.65e3
5 || 2.59e3 | 2.47e3
8 || 8.27¢2 | 1.01e3
10 | 5.57e2 | 7.59¢e2

Table 4.4: Reactive flux for the 2-D system-slow response bath at 200K.
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is prominent. For fast and medium solvent responses, only 3000 to 10000 pairs
of trajectories were needed tol converge the double space SC-IVR calculations to

- within 5% statistical errors. The semiclassical and quant‘u:m results agree within
5%, and were show in Fig. 4.3. A flux-flux autocorrelation function for the model
with medium solvent response and n = 5 is shown in Fig. 4.4, which reveals that

~ the dynamics is straightforward, and recrossing is insignificant. This behavior
is typical for the model with fast and medium solvent responses studied in Fig.
4.3. For this type of fast dynamics, a SC-IVR calculation is expected to converge
easily.

For slow solvent responses, on the other hand, the dynamics becomes slower
and recrossing shows manifest effect with increasing friction strength 5. This be-
havior imposes difficulties on both quantum and semiclassical calculations. For
quantum calculations, one need to use a very large grid to describe the system.
For SC-IVR calculations, one need to run trajectories for longer time, which may
result in larger prefactor, larger separafion of two trajectories which may be close
initially, and more oscillation of the integrand, all of which lead to harder con-
" vergence. For the calculationé with n < 5 shown in Fig. 4.3, 10000 to 20000.‘
pairs of trajectories Were used, and the semiclassical results agree with the corre-
sponding quantum results to within 5%. However, for the result of n = 8 shown
in Fig. 4.3 and Fig. 4.4, 50000 pairs of trajectories were used. From Fig. 4.4
one sees that values of C’f 7 at time longer than 2000.a.u. are still not fully con-
verged. The d‘iscrépancy between the SC-IVR. flux and the qua,ntum.'result is
about 23%. It is even worse for n = 10. In Fig. 4.5, the upper figure shows |
the calculated Cy;.- 50000 pairs of trajectories were used for the semiclassical .
calculations. While there is good agreement between the quantum and semi-
classical results up to 3000 a.u., Cyy does not diminish afterwards, but keeps on
oscillating around zero for much 10nger time. Both quantum and semiclassical
calculations were extremely difficult in this case, and no converged results were
obtained. This multi-recrossing behavior can be intuitively understood frem the
upper figures of Fig. 4.6 and Fig. 4.7. The normal model Hamiltonian, which is

obtained from the fo_rce constant matrix of the full Hamiltonian at the transition
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state coﬁﬁguration, deteriorates quickly while the system moves away from the
transition state. Consequently, trajectories experience strong coupling between
the two normal mode coordinates. For a typical trajectory, the reaction coordi-
nate starts from the transition state region, then bounces back and forth by the
potential, and it takes very long time for the system to fully leave the transition
state. This back-and-forth behavior results in recrossing of the reaction flux.
' Cys(t) with recrossing takes much longer time to diminish, and‘the difficulty of -
converging a SC-IVR calculation increases with time. This recrossing behavior
also explains why TST-type theories gave poor results’, since the assumption of
- no-recrossing is violated. A possible solution is to rotate the coordinate (and so
the dividing surface) to reduce recrossing. For simple systems like the 2-D model '
studied here, one rriay examine the potential energy surface directly to choose the
new coordinate. In general, one may run a few trajectories with several choices
of the coordinate, and pick up the one giving the fewest number of trajectories
with back-and-forth behavior near the transition state region. In another study
of n = 10, the normal mode coordinate was rotated 85 degrees anti—cloékwise.
The resulting potential energy surface under the new coordinate was shown in
the lower figure of Fig. 4.6, and some typical trajectories were shown in the lower
figure of Fig. 4.7. Clearly, these trajectories propagate directly away from the
transition state region. The semiclassical Cyy was calculated with the Metropolis
sampling method, and was shown in the lower figure of Fig. 4.5. Recrossing still
exists, but is reduced. Values of C’ff. at time shorter than 2000 a.u. were con-
verged within 10000 pairs of trajectories, and agree well with quantum results.
However, the part of Cyy at time lon.ger than 2000 a.u. shows no significant im-
provement with additional trajectories. The final semicalssical result calculated
with 50000 pairs of trajectories underestimates the flux by a factor of 2, with
most of the error come from the long time part of Cfy;.

The large errors of the SC-IVR results at long time set the limitation of
current ways of implementing the method. Especially, the inability of making
improvement with additional trajectories implies that the weighting function,

which is based on only information at ¢ = 0, is a bad choice if time is too
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long, which is not surprising. A possible solution is to choose a time-dei)endent
weighting function. To solve the normalizétion problem in practice, one may
~apply the umbrella sampling technique to the time domain: define a series of
.time windows, with overlaps between neighboring windows; choose one time-
dependent sampling function for each vwindow; connect these sections of C¢y, and
calculate Cys(0) to obtain the flux. |

For the current system, both of the two sampling methods discussed in Sec
4.3 work well. For systems described reasonably well by a reference harmonic
Hamiltonian, the Gaussian sampling method is simpler. However, this method is
limited by the requirements that the imaginary frequency can not be too hlgh
and the dividing surface is a linear function of coordinates. While the first re-
quirement can be relaxed by modifying the imaginary frequency of the reference
Hamiltonian, as did above, the second requirement can not be relaxed easﬂy On
the other hand, the Metropohs sampling method is generally applicable.

To test the numerical performance of the SC-IVR method, calculations were
performed for a system with increasing number of medium response bath modes.
The results are shown in Table 4.5. The SC-IVR calculation became more difficult
to converge when the number of bath modes was increased. While calculation
with a 5 bath mode system still could be convérged within 30000 pairs of tra-
jectories, for a 10 bath mode system, there was no clear hope of converging the
result even after 10° pairs of trajectbries. »

In this work, the symmetrized flux-flux correlation function (A = 1/2) was
used. Thef_efor‘e, path integral calculations were needed for every time slice. One
may suggest to take (A = 1), so only one path integral calculation at ¢t =0 is
necessary. However, the symmetrized form has special numerical advantages. By

rewriting

Cys(t) = Cy4(0) gj ; ((8, : - ' (4.58)

one sees that the order of magnitude of the flux is determined by the value of
Cy5(0), and accurate evaluation of Cys(0) is essential. For the symmetrized form,

the two coherent state matrix elements in Eq. 4.37att = O are complex conjuga,te
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| QM| SC| FB| LSC1| LSC2|
5.33e3 | 5.30e3 | 2.56e3 ' 2.45e3
1.40el | 1.42el 1.5el | 1.39el | 1.18el
1.4e-2 | 15e-2| 1.4e-2| 1.0e-2

2.0e-14 | 2.2e-14 | 2.0e-14

c’—‘:cn»—lo:

Table 4.5: Reactive flux as a function of the number of medium-response bath
modes at 200K

of each other, and the imaginary phases of these two elements cancel each other.
At longer time, there is still partial cancellation of the phases, which results in
a relatively smooth integrand, and greatly facilitate SC-IVR calculations. The

price to pay is to repeat path integral calculations for each time slice.

4.4.2 FB SC-IVR

The FB calculations were focused on the medium solvent response case. From
Table 4.1, 4.3, and 4.5, one can see that the FB and LSC results are Similar
in accuracy. Both give good results at high temperature. For systems with
small system-bath coupling, which correspond to higher imaginary frequency w!
and larger quantum effect (see Table 4.3), the FB and LSC results become less
accurate. Generally speaking, the computational cost of a FB calculation is much
higher than a LSC calculation. Especially, values of Cy, for small p, are more
difficult to converge, but these data points usually contribute most to the reactive
flux (or rate constant). The one-bath mode calculation with n = 0 could not be
converged even with 40000 forward trajectories. Fig. 4.8 shows the result of
Cyp calculated as a function of ps for a 5 solvent mode system. A number of
20000 forward trajectories were needed to converge the result. Therefore, the FB

method may not be a good choice for rate constant calculations.
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4.4.3 LSC-IVR

Results of the linearized approximation are denoted as LSC1 and LSC2 for
~the flux-side and flux-flux versions, respéctively, and are giVen in Tdble 4.1, 4.3,
and 4.5. Most of the LSC calculations were performed with 20000 to 40000 tra-
jectories. Calculations show that the reactive fluxes calculated with the linearized
flux-flux correlation function were less accurate than those calculated with the
linearized flux-side corfelation function. This conclusion is in agreement with
what was found by Yamamoto et. al.. Fig. 4.9 clearly demonstrates that quan-
tum coherence of the flux-flux correlation function can not be fully described by
the linearized approximation. On the other hand, most of the quantum effects
in a flux-side correlation function (especially at high temperature) is contained
in the Boltzman operator, and is treated accurately by path integrals. However,
a LSC1 calculation is usually more difficult to converge. The LSC1 calculations
for the 1-D barrier, and the system-one medium response bath mode with =0

at 200K cannot converge even with 10° trajectories.

4.5 Conclusions

_ In this chapter, several ways of implementing the SC-IVR/PI methodology
to reaction rate constant (or reactive flux) calculations were discussed. By test-
ing on a model system, the calculated reaction fluxes agree well with quantum
results, if the associated dynamics is not too slbw. For slow, indirect dynamics,
modifications on the current methods are needed, and some possible ways of im-
provement were discussed in the chapter. This work also reveals that PI/SC-IVR
calculations become harder to converge at very low temperatures. One possible
solution is to calculate low temperatureé rate consténts from the higher tempera-
ture results through analytic continuation, a method proved to be very accurate
in previous studies'®. In current study, the number of path integral beads was
the same for all the degrees of freedom, which is an unnecessary constraint. One

may use fewer beads for low frequency degrees of freedom to reduce the 'compu- '
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tational cost.

Formulations for the FB-IVR/ PI and LSC/PI methodologies were also given
and were tested with the model system. Calculations show that the FB-IVR/PI
and LSC/PI methods give similar accuracy, but a LSC/PI calculation is computa-
tionally much less demanding. Both methods give good results if the temperature
is not too low, or the-barrier is not too narrow.

A way of implementing the modified generalized Filinov filtering method into
coherent state PI calculations was also discussed. It was shown that the filtering

method greatly accelerate the calculation.

4.6 Appendix

In the FB calculations of Cpy(ps), Eq. 4.40, Cy(0) can not be calculated
directly. One way is to calculate Cy; for small p,, and obtain Cy,(0) by extrap-
olation. Another possibility is to calculate Cf;(0) directly through L’ Hopital’s

rule, which requires calculation of the following quantity,

, . 6 oo oo .
Cfb(pS) = _Zaps /_oo /_oo dpodqo Ci(po, do)
exp [1S:(Po, do)] {Po, do; 7| F5|P 0, D0 1) lps=0- (4.59)

One may easily recognize that this type of quantities has been studied by Thoss
et al’! on discussing the relation between LSC and differential FB, and the final

expression Iis,

, oo o0 1 0?1 0
Cholps) = /_oo - '/_oo dpodqo que {1 - Xij(%%g—i - %8_1)%:)
(Po, 40; 7|F3|Po, ao; 7)- (4.60)

Numerical test shows that for a free particle system Cj,(0) calculated by these
two methods agree with each other. However in general applications, Eq. 4.60 is
hard to converge due to the fact that integration over a scattered distribution of
q1¢ is needed. In all the FB calculations reported in this chaptér, the extrapolation -

method was used.
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Figure 4.3: The reactive fluxes as a function of the friction parameter . From
upper to bottom, fast, slow, and medium solvent responses, respectively. Symbols

are the same as in Fig. 4.2.
/
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Figure 4.4: Cy; as a function of time (in atomic unit) calculated with quantum
DVR method (solid line) and SC-IVR (stars). Upper: medium response, n = 10;
bottom: slow response, n = 8.
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- Figure 4.5: Cyy as a function of time (in atomic unit) calculated with quantum
DVR method (solid line) and SC-IVR (stars). Both two figures are for slow
solvent responses with 7 = 10. The difference is that the dividing surface of the
upper one was based on the normal mode coordinate, and that of the lower one
was chosen by rotating the normal mode coordinate. See Fig. 4.6.



4.6. APPENDIX | - 71

1000

-1000
-300
ql
T T T Y T 200
slow friction f=10 |
r : after rotation 150 .

q2

- , 1150

ql

Figure 4.6: The potential energy surfaces of the two situations discussed in Fig.
4.5 for the model of slow solvent responses and n = 10. The upper one was
plotted with the normal mode coordinate, which was obtained at the transition
state geometry, and the lower one was obtained by rotating the normal mode
coordinate 84 degrees anti-clockwise.
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Figure 4.7: Several typical trajectories (only the reaction coordinate g; shown '
here) with the two different choices of the dividing surface in Fig. 4.6.
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Figure 4.8: Cf(ps) for the 5 medium bath mode model. The values of Cy; were
difficult to converge at small values of p;.
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Figure 4.9: Cyy(t) for the 1d model at 200K calculated with QM (solid line) and
LSC2,_ respectively. '
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Chapter 5
Summary and Conclusions

This work has demonstrated that SC-IVR method and its approximations are
capable of describing various chemical processes. These studies show that SC-IVR
method is a promising candidate for studying quantum dynamic effects in large
(especially condensed phase) systems. The formulation of a SC-IVR calculation
is straightforward. As long as one can express the problem in a propagator form,

one can readily substitute the quantum propagator by a semiclassical propagator.
| A grid-based full quantum calculation scales exponentially. For large systems,
the memory requirement quickly goes beyond current technology. On the other
hand, a SC-IVR calculation is trajectory-based, and the memory requirement is
- usually just limited by what is needed for a single trajectory, which has a N2
scaling (mostly due to the monodromy matrix). Therefore, memory requirement
is usually not a concern for a S_C-IVR calculation.

The bottleneck for applying the semiclassical method is efficiency. All the SC
calculations end up converging a multi-dimensional complex integrati.on, and one
confronts the notorious “sign” problem. Here the “sign” problem manifests itself -
as the extreme difficulty to integrate a highly oscillatory function by a Monte
Carlo method. In studies present in this thesis, two directions were explored to
overcome the difficulty. One is to use various filtering method, and so to make
the integrand less oscillatory. This direction has some success. Some calculations

shown in this thesis can not be converged without the help of filtering. However,
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the filtering method has its intrinsic limitations. All the filtering methods are
based on analytically averaging over the .vi'cinity of each sampling point, and
thus the filtering parameter is limited to certain range so the integration is not
significantly modified. The filtered integrand usually behaves better than the
original one, but the “sign” problem is not fully solved. As mentioned in Chapter
I, the filtering method is closely related to a renormalization procedure. Both
proceed by integrating out the high-frequency part of the integrand. It remains
to see if one can borrow more ideas from the renormalization group theory, which
has been successfully applied in statistiéal mechanics.

The second direction is to work on the sampling procedure. The focus is to
find a good sampling funcfion. Some requirements of the sampling function are:
1. it should reflect the important regions of the integrand (both 4real and imagi-
nary parts) as close as possible;

2. it should be easy to evaluate;

3. the normalization constant calculation should be easy.

In the studies discussed in this thesis, the modulus of the full or an approximate
form of the integrand was usually chosen as the sampling function. In addition,
although the integrand is generally time-dependent, a time-dependent sampling
function is avoided. Considerations for this choice are to évoid propagating tra-
jectories while evaluating the sampling function, and to treat all the time slices
(or p, grid points in a FB calculation) all in once. It is unclear if one can gain
more by choosing a set of time-dependent sampling functions (the normalization
constant calculation in this case might be complicated and tricky). Critical tests
may be needed to solve this issue.

For very large systems, a double space or FB SC-IVR. calculation may be
slowed dowh by the monodromy matrix prbpagation (without it the calculation
would scale linearly' as a classical molecular mechanics calculation), and the pref-
actor calculation (which required determinant calculation of a 2F x 2F matrix).
- Some approximate ways of calculating the prefactor were propoéed in the litera-
ture, but more systematic studies are needed. '

The linearized approximation in many cases gives very good results. Consider-
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ing its great simplicity (not much extra cost compared to a classical calculation),
more tests should be performed to exanﬁne its limitations, so one knows when
the linearized result is reliable.

In conclusion, the semiclassical SC-IVR method and its approxifnations are
promising for studying large systems,.and the future focus should be on niaking
them more efficient and practical. Applications of these methods to realistic

problems are also in demand.
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