Sequence Compaction to Preserve Transition
Frequencies

Ali Pinar

Lawrence Berkeley National Laboratory
and

C. L. Liu

National Tsing Hua University

Simulation-based power estimation is commonly used for its high accuracy despite excessive com-
putation times. Techniques have been proposed to speed it up by compacting an input sequence
while preserving its power-consumption characteristics. We propose a novel method to compact
a sequence that preserves transition frequencies. We prove the problem is NP-Complete, and
propose a graph model to reduce it to that of finding a heaviest weighted trail on a directed
graph, along with a heuristic utilizing this model. We also propose using multiple sequences for
better accuracy with even shorter sequences. Experiments showed that power dissipation can
be estimated with an error of only 2.3%, while simulation times are reduced by 10. Proposed
methods effectively preserve transition frequencies and generated solutions that are very close to
an optimal. Experiments also showed that multiple sequences granted more accurate results with
even shorter sequences.

Categories and Subject Descriptors: B.7.2 [Hardware]: Integrated Circuits—Design Aids; F.2.2
[Theory of Computation]: Analysis of Algorithms and Problem Complexity—Nonnumerical
Algorithms and Problems; G.2.2 [Mathematics of Computing]: Discrete Mathematics— Graph
Theory; J.6 [Computer Applications]: Computer-Aided Engineering

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Sequence Compaction, Power Estimation, Graph Algorithms

1. INTRODUCTION

Growing need for low-power systems requires accurate estimation of power dissipa-
tion, which has been the subject of numerous recent research efforts. The proposed
techniques can be classified as static and dynamic [1]. Static techniques use sta-
tistical information about input sequences to estimate switching activity. These
techniques are computationally efficient, but not accurate. Dynamic techniques
explicitly simulate the circuit for a typical vector sequence. These methods can
give very accurate results, especially when applied at the circuit level, but they
require excessive computation time. Besides, results are highly dependent on the
input vector sequence. To alleviate such dependency, lengths of the input sequences
should be very long, leading to excessive simulation times. But still, these methods

This work is supported in part by the National Science Foundation (NSF) under grant 1-5-31333
NSFE MIP 96 12184. The first author is als o supported by the Director, Office of Science, Division
of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy
under contract DE-AC03-76SF00098.

Authors’ addresses: Ali Pinar Lawrence Berkeley Lab, One Cyclotron Road MS 50F, Berkeley,
CA 94720. e-mail:apinar@lbl.gov. C.L. Liu, Dept. of Computer Science, National Tsing Hua
University, Hsinchu, Taiwan, ROC. e-mail: 1liucl@mx.nthu.edu.tw.

are used for their accuracy at least before taping out a chip [2]. For a review of
power estimation literature, surveys by Pedram [1; 3] are valuable resources.

For a CMOS circuit, dominant source of power dissipation is dynamic transition
current. In combinational circuits, power consumption corresponding to an input
vector sequence depends only on the transitions between successive input vectors.
Thus if a given vector sequence can be transformed to a shorter one while preserving
the transition frequencies, the shorter sequence can be used to estimate power
consumption for the original. Some recent works studied this problem for both
sequential and combinational circuits. Methods proposed by Tsui el al. [2] and
Marculescu et al. [4] have the disadvantage of generating vectors that are not in
the original sequence. Huang et al. [5] used a two phase strategy: the first phase
derives transition profile of internal signals by a fast power estimator, and the
second phase generates a shorter sequence using this profile. Marculescu et al. [6]
used a Markov model to generate a compact sequence and subsequently proposed a
hierarchical model with macro and micro states to model the original sequence [7].
Finally, earlier results of our work were presented in [8]. Methods for sequential
circuits have been studied in [9; 10].

This paper investigates combinatorial aspects of compacting a sequence with
invariant transition frequencies. We call this problem the Sequence Compaction
problem. We prove the problem is NP-Complete, thus a practical solution requires
heuristics. We also propose a graph model to reduce the sequence compaction
problem to that of finding a heaviest weighted trail on a directed graph, along with a
heuristic to find such trails. In our model, each distinct vector in the input sequence
defines a vertex, and each transition is represented by a number of parallel edges.
The number of parallel edges and the weight of each edge is defined by how many
times the transition appears in the original sequence. We also discuss generating
multiple sequences with different compaction factors, as opposed to merely a single
sequence, for better accuracy with even shorter sequences.

Proposed techniques have been applied to MCNC91 circuits [11], using SPICE
for simulations. Experiments verify that simulation times can be significantly re-
duced with highly accurate results. Error in estimations is limited to only 2.3%,
while the simulations are 10 times faster. We also investigated the reliability of
compacted sequences. The objective of compaction is to avoid simulating long
sequences, so accuracy of an estimation is not verifiable. A compacted sequence
is reliable, if it preserves all transition frequencies. A compacted sequence might
still give a good estimation, albeit unpreserved transition frequencies, but such a
sequence is not reliable. Our experiments verify that generated sequences preserve
the transition frequencies with great accuracy, thus are reliable. Experiments also
show that solutions are very close to optimal, and scale well with higher compaction
factors and longer sequences. Experiments also confirmed that multiple sequences
grant better accuracy with even shorter simulation times.

The next section defines the problem, and proves its NP-Completeness. A graph
model to reduce the problem to that of finding a heaviest weighted trail in a di-
rected graph, and a heuristic based on this model are the subject of § 3. Using
multiple sequences for power estimation is discussed in § 4. Experimental results
are presented in § 5, followed by concluding remarks and future work in § 6.

e —
v Vi

Fig. 1. Graph G = (V,E), where V = {vg,v1,v2} and E = {eg,e1,€e2,€3,e4}. Numbers in

parenthesis indicate edge weights.

2. SEQUENCE COMPACTION PROBLEM
This section provides background information on graph theory, presents a formal
definition of the sequence compaction problem and analyzes its complexity.

2.1 Graph Theory Terminology

A graph G = (V| E) is defined by two sets: a finite set V of elements called vertices
and a finite set F of edges. FEach edge is identified with a pair of vertices. If
the edges of the graph are identified with ordered pairs, then the graph is called
a directed graph, otherwise it is called an undirected graph. We will be working
on directed graphs in this paper. Fig. 1 illustrates a graph. Edges that have the
same end vertices and the same direction are called parallel edges (e.g., ep and e;
in Fig. 1). A trailin a graph G = (V, F) is a sequence of vertices vg, v1, va, ... 0
such that (v;,v;41) € F for 0 < i < k, and each edge in F occurs at most once in
a trail. In Fig. 1, vg, v1, va, vg, v1 is a trail (parallel edges can be used separately),
however vy, vg, v1 18 not, because there are no edges from vs to v;. Weights can be
assigned to edges of a graph. Then, the weight of a trailis the sum of weights of
its edges. In this example, the weight of trail vy, v1, ve, vp,v1 182—14+4+3 =8. A
path is a trail where each vertex occurs at most once. A Hamiltonian path in G is
a path visiting all vertices. In Fig. 1, vy, v1, v2, vo 1s not a path since vy is repeated.
vg, U1, V9 18 a Hamiltonian path, since it is a path that visits all vertices.

2.2 Problem Formulation

Sequence compaction aims at transforming a sequence to a shorter one with similar
characteristics. Here, we work on sequences of binary input vectors of a circuit and
want to preserve power dissipation characteristics. A compacted sequence preserves
power dissipation characteristics of the original sequence, if it “moves” all the inter-
nal states of the circuit with the same frequency as the original. The major source
of power dissipation in a circuit is the switching activity, which is triggered by tran-
sitions in the input vectors. If a sequence can be compacted into a shorter one with
the same vector transition frequencies, then the compacted sequence can be used
to estimate power dissipation of the original sequence. Preserving vector-transition
frequencies is not the only way to preserve power characteristics. Techniques have
been proposed to preserve bit transitions instead of vector transitions, where com-
pacted sequences might include new vectors and transitions that are not in the
original sequence. Preserving vector transitions is better for sequences of fewer vec-
tors with a lot of repetition (e.g., control-code driven circuits), whereas preserving
bit-transition frequencies is better for sequences with a limited repetition of vectors.
Alternatively, vectors can be decomposed into highly correlating bit groups, and
transition frequencies for these groups can be preserved [4]. Correlating bits can
be found by graph partitioning, which can be avoided with the Markov model [6].

Accuracy of compaction requires preserving the transition probabilities of all
transitions. In [13], Marculescu et al. prove that satisfying the condition

p(t) = p'()] <€ (1)

for all transitions, limits the error in estimation to O(¢), where € is an infinitesimal
quantity and p(¢) and p/(¢) denote the transition probabilities of transition ¢ in the
original and compacted sequences, respectively. Here we use a slightly different
objective function. Formally, an input sequence S = (s1,52,...,5;,5;,...5m) 18 a
sequence of binary n-vectors. A transitiont = (s;,s;) is an ordered pair of distinct
n-vectors. We will use S(t) to denote the number of transitions ¢, and T(S) to
denote the set of transitions in sequence 5. Based on these definitions, we define
the sequence compaction problem as follows.

Given a compaction factor ¢, and an input sequence S={s1,82,...,8m); construct
a new sequence S’ to minimize cost C(S, 5, c), where

o580 = Y B S0l S0 Ul (2)
teT(S)

This formula aims at preserving frequencies of all transitions individually, as advised
in Eq. 1, and gives a more tractable function for a combinatorial problem. Ideally,
the cost of the compacted sequence will be zero (i.e., if a transition ¢ appears S(t)
times in the original sequence it will appear S’(t)=S5(¢)/c times in the compacted
sequence), however this is not always possible, and the cost function punishes any
deviation in preserving the frequency of a transition. We normalize the difference in
estimation to preserve frequency of each transition, since the power dissipation for
transitions can be quite diverse. It 1s worth noting that techniques to be described
can be used with alternative cost functions, as discussed in § 3.3.

Accuracy A(S, 5, ¢) of a solution S” can be defined as A(S,5,¢) = |T(S)| —
C(S, 5, ¢), where |T(S)| denotes the cardinality of set T'(S). We will use the cost
metric for most of our discussions, and refer to accuracy occasionally for simplicity
of presentation. Notice that minimizing cost is equivalent to maximizing accuracy,
since |7T'(S)| is a constant.

Our formulation does not involve an explicit constraint on the length of the
compacted sequence. Compaction factor provides an inherent constraint on length,
and we would expect the compacted sequence to be ¢ times shorter than the original.
This formulation gives flexibility on the length of the compacted sequence for more
accurate solutions.

Example 1: Let S = (ABCABCABCABC) and ¢=4. Here, A, B and C rep-
resent binary primary input vectors of the circuit. (A, B), (B,C) and (C, A) are
transitions in this sequence. S((A, B)) = 4, because there are four (A, B) transi-
tions in S. Similarly, S((B,C)) = 4, and S((C, A)) = 3. Let S = (ABCA) be a
compacted sequence. The cost C(S,S’, ¢) of this sequence is: lS((A’BS)z(_X*BS;S(A’B))l +
IS((B,C)=ex5' (B,O))] | |S((C, AN =exS'((C,AD| _ |d—dx1] | |4—dxl] | |3=4x1]| _ 1
S((B,C)) + S((C,A - i+t =7 t -3 =3

One way to estimate power for a sequence is to measure the power dissipation

for each distinct transition, which is impractical due to the enormous number of

measurements. If the simulator reports cycle-by-cycle power dissipation however, all

transitions can be concatenated to a single sequence, so that power for a transition is
the change in total power dissipation in the corresponding cycle. Straight-forward
concatenation of transitions generates a sequence of length twice the number of
distinct transitions, however a clever ordering of the transitions yields a shorter
sequence. For instance, for transitions (A, B) and (C, A) we can use sequence CAB
instead of ABC'A. A shortest sequence that covers all transitions at least once is
required, which corresponds to finding a (variant of) Chinese Postman tour [12] in
the graph where there is a vertex for each vector, and an edge for each transition.
In this work, we work on generating one compact sequence whose total power
dissipation will be used to estimate the power dissipation of the original, which has
also been the subject of related work [2; 4; 5; 7; 9; 10; 13; 14].

A similar problem has been studied to generate representative instruction traces
for architecture-level performance analysis [15; 16]. Iyengar et al. try to generate
shorter instruction sequences that preserve cache utilization and branch prediction
performance. Instructions are grouped to fully-qualified basic blocks (instruction
blocks that give the same performance whenever executed), and preserve the fre-
quencies of these blocks. The two problems are related in the broad sense (both
try to generate shorter sequences preserving some characteristic), but differ in com-
binatorics. In Iyengar et al. preserve the frequencies of the entities, whereas we
preserve the transition frequencies between the entities.

2.3 Complexity of the Sequence Compaction Problem

This section proves that the sequence compaction problem is NP-Complete. Before
the proof, we restate the problem as a decision problem, which we will refer to in
this section: Given a compaction factor ¢, an input sequence S = (s1,82,...,5m),
and a bound B; decide if there exists a sequence S' so that C(S,5,¢) < B.

The Hamiltonian path problem [17] will be reduced to the sequence compaction
problem for the proof. First, we will construct a sequence S for a given directed
graph, where vertices and edges will be represented by subsequences, then try
to compact this sequence. A compacted sequence with a small enough cost will
indicate the existence of a Hamiltonian path in the graph.

Theorem 1: The Sequence Compaction problem is NP-Complete.

Proof: Let GG = (V, E) be a directed graph for which a Hamiltonian path is being
sought. Each vertex and edge will be represented by a unique subsequence, which
is repeated to make room for compaction. These subsequences will be concatenated
into a single sequence by putting separators between every vertex and edge subse-
quence. The path described by a compacted sequence can be identified by replacing
a vertex subsequence with the corresponding vertex. Here is the construction: Let
M, N > 4 be arbitrarily large and even integers.

(1) Corresponding to each vertex v; € V, construct subsequence v;1, v;2, ..., N,
repeat the subsequence for M times, and add #; at the end. Thus, sequence for
vertex v; will be v;1, 59, ..., UiN, Vi1, . . . UiN, - . . OiN, Ty

(2) Corresponding to each edge (v;,v;) € E, construct subsequence v;n, vj1, €ijk-
Repeat the subsequence for M/2 times, each time with a different & value. Thus
sequence for edge (v;,v;) will be vin, vj1, €551, vin, V51, €i52, - - -, ViN, V51, €55 M /2

(3) S is a concatenation of all these subsequences followed by a sentinel y.

€0 € €3
Yo v V2 V3

Vorvoz N ViV 2o VinYaY 22 Yan %Y = Van

Fig. 2. Compacted sequence describing a Hamiltonian path. Graph has a Hamiltonian path

€0 €1 €3 . . .
vg — v1 — vz — vy. Corresponding compacted sequence is presented on the right.

In this construction, dummy variables: z;, e;;, separate sequences corresponding
to vertex and edge transitions, enabling encoding a set as a sequence. A subsequence
like v;1,v;2, ..., v;y corresponds to vertex v; in the path, and a transition vy, vj1
corresponds to edge (v;,v;) . We will try to compact this sequence by a factor of
M. Proof is based on the following remarks:

(1) Any transition that is not in the original sequence cannot be in the compacted
sequence, since the cost of such a solution as described in Eq. 2 is co. This ensures
that v;1 can only be followed by v;2, or generally, an input v;; for 1 < j < N and
v; € V can only be followed by v;;41. In other words, subsequence representing a
vertex either appears as a whole, or does not appear at all.

(2) If a vertex transition v;1,v;9,...,v;n occurs just once, penalty will be zero.
Each deviation from one will add a cost of N —1. Absence of v;yv;; transitions
will cost 1. Minimum cost due to vertex subsequences is |V|, achieved when each
vertex sequence occurs exactly once.

(3) For each edge transition v;n, vj1, zero or one appearance cost the same: 1. After
the first appearance, each extra appearance costs 2. Thus minimum total cost for
edges is |F|, achieved when each edge transition occurs at most once.

(4) Dummy variables e;;; and ; appear in two transitions, and if these variables do
not appear in the output, cost due to these transitions will be 2. If these variables
occur in the output, associated costs will be 2% (M —1). Minimum total cost for
these variables will be M * |F| and 2 % |V, respectively.

These remarks are valid albeit the order vertex and edge transitions are con-
catenated in sequence S, thanks to the separators at the ends of vertex and edge
subsequences. Remark 2 implies that the cost of S’ is minimum when it includes all
vertex subsequences exactly once. Moreover these subsequences must be connected
by edge transitions, because by Remark 1, the compacted sequence does not have
any transitions that are not in the original sequence, and a transition (v;n,vj1)
occur in the sequence only if there is an edge from v; to v; in the graph. Also
by the first remark, v;; is followed by the vertex subsequence v;s,...v;n, that is
there are only vertex subsequences connected by edge transitions in the compacted
sequence. Thus S’ will consist of all the vertex subsequences with one edge transi-
tion in between. This is an ordering of vertices with edges connecting them, thus
a Hamiltonian path. A compact sequence describing a Hamiltonian path is illus-
trated in Fig. 2. Minimum total cost is 3 % |V| 4+ (M +1) % | E|, which is achieved
when solution describes a Hamiltonian path. Any other solution has a higher cost,
thus we can conclude that graph G has a Hamiltonian path if and only if cost of
the compacted sequence is equal to 3 * |V| 4+ (M +1) * | E|.

Notice that the cost of a solution for the compaction problem can be verified in
polynomial time, thus the sequence compaction problem is NP-Complete.]

3. SOLVING THE SEQUENCE COMPACTION PROBLEM

3.1 Graph Model

This section describes our graph model for an instance of a sequence compaction
problem, where a heaviest weighted trail describes an optimal solution for the com-
paction problem. In this model, each distinct vector in the input sequence 1s repre-
sented by a vertex, and each transition is represented by multiple weighted directed
edges. Equivalence between a heaviest weighted trail and an optimally compacted
sequence is established by the way edge weights are assigned. Remember that edges
of the graph correspond to transitions of the sequence, and if an edge occurs once
more on the trail, corresponding transition will occur once more in the compacted
sequence. Thus, edge weights can be computed as the decrease in C(S, 5, ¢) when
the corresponding transition appears in the compacted sequence. In this case, in-
crease in the weight of a trail when an edge is added will be equal to the decrease in
cost of the compacted sequence when the corresponding transition is added to the
sequence. Greater the sum of edge weights of edges is, less the cost of the compacted
sequence will be. More specifically, each transition ¢; in S, will be represented by

several edges €;1,€59,...€55, ... with w(e;1) > w(epn) > ... > w(ey) > ... If an
optimal solution covers j copies of edge e;, then there is an optimal solution that
uses the first j edges: €;1,€;2,..., ¢, because edge weights are nonincreasing and

a heaviest weighted trail is sought. Thus, the weight of the jth edge can be set as
the change in cost, if transition ¢; is added once more to S’, which already has j —1
copies of transition ;.

| ' Hen) if S(t;) > cx*j
w(ey)= B0 GO ISt —eedl L J 2 e sin) < e (j-1)
i S(t:) ASWE=¢ Giherise

S5(t:)

where % represents the modulo operation.

A graph G = (V| E) that represents the sequence compaction problem for input
sequence S={(s1,82,...,8i,...,8n) and compaction factor ¢, has a vertex v; for each
input vector s; in S. Each transition ¢ = (s;,s;) in S is represented by multiple
coples of edge (v;,v;):

(1) (%2 copies with weight 55

(2) one copy with weight %, if LMJ + (1)

c c

—c 1
5@

(3) sufficiently many copies with weight

Edges generated by the first rule correspond to transitions that will always reduce
C(S, 5", c), whereas edges generated by the last rule always increase the cost, to pe-
nalize overestimation. The second rule corresponds to approximating ﬂcﬁ by L%QJ

or f@] This formulation might produce excessive number of edges, disabling a

1An optimal solution might employ negative weight edges for subsequent positive weight edges.
The number of negative weight edges between two vertices should be less than that of positive
weight edges in the graph, since a sequence of nonrepeated negative weight edges should precede
at least one positive weight edge. Maximum number of positive weight edges in the graph is i*Tlil,

4l times.

which occurs when each transition occurs ==

-1/2

-3/5
[OA‘s/e-)(T's/m(1s/e)1

SN
\! ¢
e [(1/2,1),(=3/2,M)] @

(a) (b) (c)
Fig. 3. (a) Number of transitions for the sequence in Example 2. (b) A subset of the
edges. (c) graph after edges are packed, where edges are labeled as [(weight of the edge,
multiplicity), ...]. e.g., From B to D, there is 1 edge with weight 3/5, 1 edge with weight
1/5, and M edges with weight —3/5, where M =9 is total number of positive weight edges.

practical solution. However, parallel edges with identical weight can be packed into
one edge with multiplicity to reduce the problem size. Notice that there are at most
three different weights for each edge. Thus, the size of the graph is determined by
the number of distinct input vectors, which determines the number of vertices, and
the number of distinct transitions, which determines the number of edges.

Theorem 2: A heaviest weighted trail in the graph for a sequence S corresponds
to an optimal solution, and weight of the trail is equal to accuracy of the solution
for the sequence compaction problem.

Proof: Proof comes from the way weights are assigned to edges.]

Example 2: Let S = (BDABCABDABDCABDABCBDCABC) and ¢ = 3.
Fig. 3 (a) illustrates number of transitions in this sequence. There are b transitions
from B to D. Weight of the first B— D edge can be calculated as the difference in
the cost of zero and one appearance, thus w(egpi) = w 3 . Weight of
the second edge is difference between underestimating and overestimatmg transition
BD, and can be computed as w(eppa) = M £. Any other edge will
cost —3/5. Fig. 3 (b) illustrates some of these edges with thelr weights. Graph
after packing parallel edges with the same weight into edges with multiplicity is
depicted in Fig. 3(c). In this graph, maximum weighted trail is B—D—A— B—

C—A—B—D—C. Weight of this trailis 2+ 3 + 1+ 2 + 2414141 =159

30
Corresponding compact sequence s S = (BDABC’ABDC’). Cost of this solution is

E' Note that accuracy of the solution .A(S, S = |T()| —C(S, 8 =1-4=1¢
is equal to the weight of the trail.

3.2 Finding a Heaviest Weighted Trail
Although finding a heaviest weighted trail is NP-Complete, there are polynomial-
time algorithms for special cases. Our heuristic removes positive weight cycles to
achieve a graph, free of positive weight cycles where a heaviest weighted trail is easy
to find. The heuristic has three steps: (1) detecting and removing positive weight
cycles (2) finding a heaviest weighted trail in the reduced graph (3) improving
solution quality by adding the cycles back to this trail.

Positive weight cycles in a graph can be detected by applying Bellman-Ford
algorithm [17] repeatedly. There is not a unique solution for removing positive

Lo.0] 10,1)]

[(6°s/€)(1°s/1-)]

&

g

&

[(0,n] [(0,n]

Fig. 4. Augmented graph for Example 3. Edge weights are labeled as [(weight of edge,

multiplicity),...]. e.g., there is one edge with weight % and 9 edges with weight _TS from B
to D.

weight cycles of a graph. Different algorithms as well as different implementations
of the same algorithm will give different solutions. This might have a minor effect
on the quality of solutions produced by our heuristic. Once positive weight cycles
are removed, a heaviest weighted trail in the reduced graph becomes a path, which
can be identified using the Bellman-Ford algorithm, after the graph is augmented
with a source vertex s, a terminal vertex ¢ and edges from s to every other vertex
and from every other vertex to ¢. The costs for these edges are zero, and the
multiplicities are one. A heaviest weighted path from s to ¢ in this augmented
graph will be a heaviest weighted trail in the original graph. This trail can be
improved by inserting positive weight cycles removed at the first step. If a vertex
v in the cycle is on the trail, the cycle can be inserted to the trail by opening it at
vertex v to make a trail with v at both ends, and replacing vertex v of the original
trail with this trail.

Example 3: Let S = (BDABCABDABDCABDABCBDCABC), and ¢=3 as
in Example 2. Graph for this sequence is depicted in Fig. 3(c). Positive weight
cycles in this graph are B— D — A — B and B — (' — A — B. Graph after
removing these cycles and negating edge weights i1s presented in Fig. 4. Shortest
path from s to ¢ follows s — B — D — C' — t. Cycles and the trail have B in
common. Removing source and sink vertices and inserting cycle B—C — A — B,
we get trail B—C — A— B— D — (. Inserting the other cycle B—D—A—B
on the first B, we get the trail B—D—A—-B—-C—A—B—D—CC and the
corresponding compact sequence is S’ = (BDABCABDC).

3.3 Extensions of the Model

The proposed graph model introduces a novel method to construct compacted se-
quences. The model has flexibility to support different heuristics to give better
performance, or to handle sequences with different characteristics, or to be used
in conjunction with other methods in the literature such as hierarchical models.
Different heuristics can be employed to find a trail after reducing the compaction
problem with the proposed graph model. The heuristic described in the previous
section is designed for and is effective on unimodal sequences, however it may not
be as effective on multi-modal sequences [14]. For this type of sequences, we can
design new heuristics. One possible problem with the current heuristic 1s that it
may not be possible to add cycles from a different mode of operation to the trail,
which is not likely for unimodal sequences. To avoid leaving cycles out, we can add

10

a path to the end of the trail to reach one of the vertices in the cycle to add this
cycle to the trail to cover all modes of operation.

The techniques proposed can also be used in a hierarchical way. Marculescu et
al. [7] proposed modeling the input sequence with macro and micro states to handle
multi-modal sequences. Macro states correspond to different modes of operation of
the circuit, and micro states correspond to operation of the circuit within a certain
mode. The compacted sequence is generated at two steps. First a sequence of
macro states is generated, and then each macro state in the sequence is replaced
with a compacted sequence for the corresponding operation mode. Our techniques
can easily fit into the hierarchical model by being employed to generate macro- and
micro-state sequences.

Our methods can easily support alternative cost functions as well. One might
want to work on slight variations of our cost function, or transitions might be
weighted depending on some estimations on their power consumption. For any cost
function, edge weights will still be computed as the difference in the cost function
if one more edge appears on the trail, and an optimal solution is still defined by a
heaviest weighted trail.

4. CONSTRUCTING MULTIPLE SEQUENCES
Discussions so far focused on generating a single sequence to preserve the transition
frequencies of the original sequence. Alternatively, multiple sequences can be gener-
ated to collectively preserve transition frequencies, which might help both for better
accuracy and shorter sequences. Compacted sequence does not always preserve fre-
quencies of all transitions, either because of the imperfectness of the heuristics or
difficulty of the problem itself. Accuracy can be increased by generating a second
sequence to cover the underestimated transitions in the first sequence. Note that the
second sequence is influenced by the first one, it tries to make up for the shortcom-
ings of the first sequence, thus the two sequences collectively preserve the transition
frequencies. With the robustness that the sequence provides, we can use the first
sequence more aggressively to generate sequences with higher compaction factors.
Consider the sequence S = (ABCDABCDABCDABCDACBEACBEA), where
the ABC DA subsequence 1s repeated 4 times, whereas the AC'BE A subsequence
is repeated only twice. If we generate a single sequence for ¢ = 2, then the compact
sequence will be S" = (ABCDABCDACBEA). However, we can generate two
sequences {ABCDA) and (ACBEA) with respective compactions factors of 4 and
2, to achieve the same accuracy with a shorter total sequence length.

Here 1s the formal definition of this problem: Given an input sequence S, and
compaction factorsciy > ¢o > ... > ¢; > ¢y, construct sequences S7,5%,...50, ..., 5,
to minimaze

k

3 |S(t) — 2 izy ci * Si(1)]
«€1(5) S()

Given the compacted sequences, power consumption of the original sequence P(5)
can be estimated as the weighted average of power consumptions of compacted
sequences, i.e., P(S) = |S| Zle P(S;) * ci/Zle ¢ * |S;]. Note that compacted
sequences collectively preserve transition frequencies as opposed to all of them
independently trying to achieve the same goal.

11
Table I. Circuit properties

Circuit | Gates | Inputs | Outputs Circuit | Gates | Inputs | Outputs
i3 20 132 6 cordic 102 23 2
C432 160 36 7 C880 202 41 32
C1355 546 41 32 1908 880 33 25
C3540 1669 50 22 C6288 2406 32 32

Our graph model and heuristic can be employed for this problem. First, se-
quence S§ for ¢y is constructed, and then before constructing S, edge weights
are recomputed considering the transitions already contained in S7. While con-
structing the graph, in which the trail for the ith sequence S; will be sought,
weight of an edge is computed as the change in the objective function, when one
more copy of the corresponding transition occurs in S;. Transitions already cov-
ered by preceding sequences S7,5%,...,5/_,, are also taken into account. Let
P;(t) denote the number of times transition ¢ is covered in the first i—1 com-
pacted sequences; P;(t) = Z;_:ll S;(t) * ¢;. Remember that S;(t) denotes how
many times transition ¢ appears in the sequence S;. Weight of the jth edge w(e;:)

corresponding to transition ¢ for constructing the ith sequence is computed as
iy = [S()=Pi(t)=car(y

J

pacted sequences S;i1,...S5k, to be empty while computing edge weights, which

might cause sequences with large compaction factors to greedily overestimate some
transitions. For instance, assume we have 8 copies of a transition in the original
sequence, and compaction factors for the two sequences to be generated are 5 and
3. It seems to be a better choice for the first sequence to include 2 copies of this
transition with cost of 2/8 than just one copy with cost of 3/8. However, the second
sequence can cover the remaining copies of the transition resulting in zero cost, if
the first sequence includes only one copy. Another problem arises when the first
sequences use negative weight edges to add more positive weight edges to the trail.
But again these positive weight edges might be covered by subsequent sequences.
To hinder the aggressiveness of early sequences, it is helpful to construct sequences
with high compaction factors using only positive weight edges. More specifically,
satisfying condition S(t) > >7_, ¢; * Si(t) (always underestimating a transition)
for the first few sequences is more effective.

5. EXPERIMENTAL RESULTS
We start with describing our experimental setup and proceed with thorough anal-
ysis of proposed techniques for single- and multiple-sequence generation. Three
metrics are employed to evaluate the proposed techniques: (i) accuracy of esti-
mations for circuit simulations (i) reliability: preservation of transition frequencies
(i11) closeness to optimal solutions. For circuit simulations, we worked with SPICE
for maximum accuracy on 8 MCNC91 circuits [11] in Table I, and 3 compaction
factors: 3,5, and 10. We measured power consumption of circuits for six biased
sequences of length 2000. Each sequence mimics to cover multiple macro-states of
the circuit, i.e., sequence starts with a group of frequently repeated vectors, then
moves to a different state with a different group of vectors (not necessarily dis-
tinct), and proceeds. This provides enough repetition to enable compaction, yet
yields nontrivial test instances. In terms of bit-level switching activity, sequences
can be grouped into three with two in each group.

The sequences were compacted using simple random sampling (RS) [14] us-
ing each transition as a unit, Markov model (MM) [6] and proposed heaviest
weighted trail method (HWT). Table II presents average accuracies, calculated

—D)|=|S@)=Pi(t)—coxj .
<)tl 1S =Pit)=cixl Thig scheme assumes subsequent com-

w(e

12

Table II. Missprediction percentages for SPICE simulations

Circuit c=3 c=25 c=10

Name RS MM HWT | RS MM HWT | RS MM HWT
i3 3.3 2.4 0.6 4.7 2.3 0.7 6.2 1.7 1.2
cordic 4.4 4.3 1.3 5.4 4.9 3.0 7.1 4.8 3.2
C432 2.9 3.0 0.8 4.1 2.7 0.6 5.9 3.1 1.1
C880 5.2 5.1 0.8 6.7 5.3 1.9 9.2 5.8 2.2

C1355 6.1 8.6 1.5 6.9 9.4 2.3 8.2 9.4 2.7
C1908 5.2 3.3 1.6 6.6 4.2 2.5 8.5 5.3 2.9
C3540 4.8 3.8 1.1 6.7 4.6 1.7 8.4 5.1 2.0
C6288 5.9 6.5 1.4 7.2 8.4 2.6 9.5 8.6 3.2
Average | 4.7 4.6 1.1 6.0 5.2 1.9 8.9 5.5 2.3

Table ITI. Missprediction percentages for sequences with different bit-level switching activity

Circuit Low Medium High
Name MM HWT | MM HWT | MM HWT
i3 2.1 0.7 2.2 0.7 2.5 0.8
cordic 4.6 2.8 4.8 3.1 5.2 3.1
C432 2.7 0.5 2.6 0.7 2.9 0.7
C880 5.1 1.8 5.2 1.9 5.6 2.1
C1355 8.2 2.1 9.3 2.4 10.7 2.5
C1908 3.8 2.5 4.2 2.5 4.7 2.6
C3540 4.2 1.6 4.6 1.6 5.0 1.8
C6288 8.2 2.5 8.3 2.6 8.8 2.8
Averages 4.9 1.8 5.2 1.9 5.7 2.1

as: WHOO, where AP(S) is the average power dissipation for sequence
S. The difference between RS and other two columns verify the importance of
tracing transition frequencies. We also see that HWT can predict original power
consumption very accurately. The ratio of costs of the solutions generated by MM
and HWT in these experiments are 3.6, 3.1 and 2.8, for ¢ = 3,5 and 10, respec-
tively, on average. This shows how improvement in preserving transition frequencies
translates to accuracy in estimations. Differences between original and estimated
values for HWT are negligible. Table III presents missaccuracies in estimations
for ¢ = 5 on three sequence types with different bit-switching activities. Tracing
transition frequencies becomes more crucial as the variance in power dissipation
among transitions increases. As expected, performances of both methods MM and
HWT degrade as switching-activity variance increases, but performance of HWT
is more steady due to better preserved transition frequencies.

Compaction methods are proposed to avoid simulating long sequences, thus accu-
racy of an estimation cannot be verified. In a compacted sequence, some transitions
may be overestimated while some others are underestimated, and errors can cancel
each other to give an accurate estimation. Such a compacted sequence is definitely
not reliable. A reliable solution estimates each transition accurately, which directly
implies accuracy in estimations. We compared the reliabilities of HWT and MM
solutions for 750 sequences of length 20000 and 7 compaction factors: 3, 5, 10, 20,
30, 40 and 50. The sequences can be grouped into five according to the number of
transitions that dominate the sequence. In group 1, the most frequent 10% tran-
sitions in the transition set constitute 80% of the sequence. In groups 2, 3, 4 and
5, respectively, the most frequent 20%, 30%, 40% and 50% transitions constitute
80% of the sequence. As seen in Fig. 5, there is a drastic difference in terms of
cost values, thus preserving transition frequencies between the two methods. For

13

[Eim20304ms]

;
‘
,
H .
2 N
5 3
S, &
.
.
o
Compaction Factor Compaction Factor
(a) Average (b) Breakdown for 5 sequence types
sol
: .
os 0
E E
§u5 E‘”
2 2
_Ew _:
g s
os os
os 0s

3 H w 3 4 B 3 H w E 3 4 B

B
Compaction Factor Compaction Factor

(a) Average (b) Worst
Fig. 6. Closeness to an upper bound on an optimal solution

¢ = 3, cost of an MM solution is more than 7 times bigger than that of HWT
(cost ratios for sequences in SPICE simulations are smaller, due to shorter length).
The ratio decreases as compaction factor increases, and performances virtually get
closer. However, it should be noted that cost of an optimal solution increases with
increasing compaction factor, as well. We can split the cost of a heuristic solution
into two as cost of an optimal solution and cost due to imperfectness of the heuris-
tic. In this case, the rapid increase in the first component overshadows the second.
Thus the closing gap should be attributed to increasing cost of an optimal solution.
But still, cost ratio is 4 for ¢ = 40, showing that HWT solutions are remarkably
better than MM solutions in preserving transition frequencies. We did not observe
any sensitivity on the sequence type of relative performances of two methods.

Next set of experiments investigates closeness to optimality. Since the value of
an optimal solution is not known, an upper bound on the accuracy of an optimal
solution, which we call accuracy A* of an ideal solution, is used. In an ideal solution
each transition is estimated in the most accurate way, i.e., a transition ¢ that
appears S(t) times in original sequence S, should appear round(%ﬁ) times in S’,
where round maps its input to the nearest integer. This is only a bound on the
optimal value, because such a sequence does not necessarily exist. Notice that
accuracy of an ideal solution A* is equal to the total positive weight edges in the
associated graph. Fig. 6 presents results for compacting 750 sequences of length
20000. Numbers in these figures are calculated as: :%, where A’ denotes accuracy
of the generated solution. Fig. 6 (a) presents the average, and Fig. 6 (b) presents
the worst of 750 runs. We see that accuracy of HW'T solutions are not only close
to ideal solutions on average, but also consistently good.

@Two Sequences W Three sequences|

5,103 10,205 20.40,10
Compaction Factor

(a) Length

(5 Two Sequences @ Three sequences|

5,103 1020,5 20,4010
Compaction Factor

(b) Accuracy

Fig. 7. Solution qualities for multiple sequences

Length Ratio
°

05

04

02

0
2 3 4 5

Number of Sequences

05

Accuracy Improvement

Number of Sequences

(a) Length

:
n
(b

) Accuracy

14

Fig. 8. Effect of number of sequences

We also investigated the scalability of our methods by keeping the compacted
sequence length constant at 1000, and scaling the total sequence length and com-
paction factor. Sequence lengths are 5000 for ¢ = 5, 10000 for ¢ = 10, 20000 for
¢ = 20, and so on. Compacted sequence qualities were within 93%, 93%, 93%, 93%,
and 92% for ¢ = 5, 10, 20, 40, and 80, on average, and within 89%, 89%, 88%, 89%,
and 87% for ¢ = 5, 10, 20, 40, and 80, in the worst of 100 sequences. These results
show that HW'T can effectively compact very long sequences with large compaction
factors without any loss in performance.

Fig. 7 compares solution qualities of generating 2 and 3 sequences with a single
sequence using four different compaction factor sets. The first (second) column in
each set corresponds to generating two (three) sequences with the first two (three)
compaction factors that are displayed under columns of that set. Single sequence
solutions use the first number as the compaction factor. Ratios of total sequence
length of multiple sequence solutions to length of a single sequence solution are
presented in Fig. 7 (a). Fig. 7 (b) shows improvement in accuracies for multiple se-
quence solutions over a single sequence solution. Numbers are computed as AkA;lAl,
where A4; and A, correspond accuracies of a single-sequence solution and multiple-
sequence solution with & > 1 sequences, respectively. The first set shows that it is
possible to get a more accurate solution with almost half the total sequence length.
Generating a third sequence improves accuracy but slightly increases total sequence
length. Improvement in total sequence length decreases with higher compaction
factors, mostly due to the first compaction factor being too high, leaving very few
edges for the first trail to cover. In another experiment, solution qualities (both in
terms of accuracy and sequence length) are compared for generating k=1,2,3,4,

15

Table IV. SPICE simulations for MS and HWT
Circuit c=3,5,2 c=25,8,3 c=10,15,7
Name HWT MS | HWT MS | HWT MS
i3 0.6 0.4 0.7 0.5 1.2 0.5
cordic 1.3 1.0 3.0 1.6 3.2 2.1
C432 0.8 0.6 0.6 0.5 1.1 0.7
C880 0.8 0.5 1.9 1.2 2.2 1.1
C1355 1.5 1.1 2.3 1.6 2.7 1.7
C1908 1.6 0.9 2.5 1.4 2.9 1.7
C3540 1.1 0.8 1.7 1.1 2.0 1.2
C6288 1.4 1.0 2.6 1.8 3.2 2.3
Averages 1.1 0.8 1.9 1.2 2.3 1.4

and b sequences, where compaction factors are chosen as the first £ of 3,5, 10, 20,
and 40. The first k—1 sequences use edges produced only by the first rule as was
discussed in § 4. Fig. 8 (a) shows the ratio of total length of sequences to length
of a single sequence, and Fig. 8 (b) shows improvement in accuracy, numbers are
computed as A’lel , where Ay and Ay, correspond to accuracy of a single sequence
and a multiple sequence solution with & > 1 sequences, respectively. As seen in
Fig. 8 (a), length of sequences can be significantly decreased by generating more se-
quences. Accuracy decreases slightly as we increase the number of sequences. This
is probably because the first sequences with high compaction factors aggressively
cover most of the positive weight edges, leaving little room for the last sequences
to operate.

Finally, Table TV presents average error in SPICE simulations for 6 sequences
of length 2000. MS corresponds to generating three sequences with compaction
factors listed, and HW'T corresponds to generating one sequence with the first
compaction factor at the top of the column. The table shows that accuracies can
be improved by generating multiple sequences. Error in estimations reduces to 0.8,
1.2 and 1.4 from 1.1, 1.9 and 2.3, respectively. The improvement is minor, because
HWT estimations are already accurate, but the numbers justify generating multiple
sequences as a valuable alternative for “harder” sequences.

6. CONCLUSION

We addressed the sequence compaction problem for efficient and accurate power
estimation. We proved that transforming a sequence into a smaller one with min-
imum deviation in transition frequencies is NP-Complete. We also proposed a
novel graph model to reduce the compaction problem to that of finding a heaviest
weighted trail in a directed graph along with a decent heuristic to find such trails.
Generating multiple compact sequences with different compaction factors is also
discussed. Proposed methods have been applied to MCNC 91 benchmark circuits,
using SPICE for simulations. Results showed that our methods can significantly
reduce simulation times with very high accuracy. Moreover, transition frequencies
are preserved to make results very reliable. Experiments also showed that multiple
sequences yield more accurate estimations with even shorter sequences.

One possible extension of this work is to combine the proposed combinatorial
framework with other compaction methods in the literature. Another extension is
enhancing the method for sequential circuits, where switching activity is determined
not only by the input vectors but also by the current state of the finite state
machine (FSM) of the circuit. Although techniques for combinational circuits are

16

not directly applicable, we can simulate the FSM and mark each input vector with
the state of the FSM. This translates the input sequence to a sequence of tuples
of the input vector and the FSM state. Preserving transition frequencies on this
tuple sequence will preserve the power characteristics. This translation reduces
the problem to the sequence compaction problem studied in this paper, however it
will suffer from enlarged memory requirement. The number of distinct vectors and
transitions in the tuple sequence can be much larger than those of the original input
sequence. Hybrid approaches might be employed to tradeoff between the accuracy
of deterministic methods and the memory efficiency of probabilistic methods.

References

[1] Pedram, M., Advanced power estimation techniques, Low Power Design in Deep Submicron
Technology, Edit. J. Mermet and W. Nebel. Kluwer Academic Publishers, 1997.

[2] Tsui C., Marculescu R., Marculescu D., and Pedram M., Improving efficiency of power sim-
ulators by input vector compaction, Proc. 33rd ACM/IEEE Design Auto. Conf., pp.
165-168, 1996.

[3] Pedram M., Power simulation and estimation in VLSI circuits, The VLSI Handbook, Edit.
W-K. Chen. The CRC Press and the IEEE Press, 1999.

[4] Marculescu D., Marculescu R., and Pedram M., Stochastic sequential machine synthesis
targeting constrained sequence generation, Proc. 33rd ACM/IEEE Design Auto. Conf.,
pp. 696-701, 1996.

[5] Huang S.H., Chen K.C., Cheng K.T., and Lee T.C., Compact vector generation for accurate
power simulation, Proc. 33rd ACM/IEEFE Design Auto. Conf., pp. 161-164, 1996.

[6] Marculescu R., Marculescu D., and Pedram M., Vector compaction using dynamic markov
models, IEICE Trans. Fundamentals of Electronics Communications and Computational
Sciences, Vol. E&0-A, No.10, pp. 1924-1933, 1997.

[7] Marculescu R., Marculescu D., and Pedram M., Hierarchical sequence compaction for power
estimation, Proc. 84th ACM/IEEE Design Auto. Conf., pp. 570-575, 1997.

[8] Pinar A., and Liu C.L., Power invariant vector sequence compaction, Proc. 1998 IEEE/ACM
Int. Conf. Computer-Aided Design, pp. 473-476, 1998.

[9] Marculescu R., Marculescu D., and Pedram M., Block Entropy and High-Order Temporal
Effects in Composite Sequence Compaction for Finite-State Machines, Proc. ACM Int.
Symp. Logic Programmable Electronic Devices, 1997.

[10] Marculescu D., Marculescu R., and Pedram M., Sequence Compaction for Probabilistic Anal-
ysis of Finite-State Machines, Proc. 34th ACM/IEEE Design Auto. Conf., pp. 12-15,
1997.

[11] Yang S., Logic Synthesis and Optimization Benchmarks User Guide V3.0, distributed as a
part IWLS91 benchmark distribution, 1991.

[12] Papadimitriou C.H., and Steiglitz K., Combinatorial Optimization, Prentice Hall, 1982.

[13] Marculescu R., Marculescu D., and Pedram M., Sequence Compaction for Power Estimation:
Theory and Practice, IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, Vol. 18, No. 7, pp.973-993, 1999.

[14] Ding C-S., Wu Q., Hsieh C-T., and Pedram M., Stratified random sampling for power eval-
uation, IEEE Trans. Computer Aided Design, Vol: 17(6), pp. 465471, 1998.

[15] Iyengar V.S., Trevillyan L.H., and Bose P., Representative traces for processor models with
infinite cache, Proc. 2nd Int. Symp. High Perf. Comp. Architecture, pp. 62—72, 1996.

[16] Iyengar V.S., and Trevillyan L.H., Evaluation and generation of reduced traces for bench-
marks, IBM Research Report, RC 20610, 1996.

[17] Cormen T.H., Leiserson C.E., and Rivest R.L., Introduction to Algorithms, MIT Press, 1990.

