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               Abstract 
 
As biotechnology sweeps the world, it is appropriate to remember that the great virtue of 
thermodynamics is its broad range of applicability.   As a result, there is a growing literature 
describing how chemical thermodynamics can be used to inform processes for old and new 
biochemical products for industry and medicine. 
 
A particular application of molecular thermodynamics concerns separation of aqueous proteins by 
selective precipitation.  For this purpose, we need phase diagrams; for constructing such diagrams, 
we need to understand not only the qualitative nature of phase equilibria of aqueous proteins but also 
the quantitative intermolecular forces between proteins in solution.  Some examples are given to 
show how aqueous protein-protein forces can be calculated or measured to yield a potential of mean 
force and how that potential is then used along with a statistical thermodynamic model to establish 
liquid-liquid and liquid-crystal equilibria.  Such equilibria are useful not only for separation 
processes but also for understanding diseases like Alzheimer’s, cataracts and sickle-cell anemia that 
appear to be caused by protein agglomeration. 
 
 



 
 
Historians of science have often pointed out that thermodynamics provides two strong, possibly 
unique, advantages:  first, thermodynamics has a very wide range of application; it is used in a large 
variety of scientific disciplines (physics, chemistry, earth sciences, astronomy, engineering, life 
sciences) and second, because it is an integrative science concerned with bulk properties, it can 
provide useful answers to scientific problems with a minimum of experimental data.  
Thermodynamics can provide useful information on material properties based on a few experimental 
measurements without specification of molecular details.  It is this integrative, coarse-grained 
feature of thermodynamics that makes it attractive for describing some of the overall features of 
biological systems, that is, for systems that, on a molecular scale, are so complex, that a detailed 
description is extremely difficult because it would require a large and expensive experimental effort. 
 
This article considers thermodynamic properties of proteins in aqueous solutions that may also 
contain salts or other water-soluble solutes.  Special attention is given to phase equilibria.  Our 
discussion is simplistic in the sense that consideration is given only to gross, overall properties, 
toward obtaining a bird’s-eye view that gives the main features while neglecting numerous details.  
The goal-oriented viewpoint represented here uses molecular thermodynamics toward attaining 
some broad approximate results that can be reached relatively easily, rather than specific, highly 
accurate results that require a formidable experimental effort for a limited application. Molecular 
thermodynamics combines classical and statistical thermodynamics coupled with models from 
physics and chemistry toward achieving practical ends.   
 
Phase behavior of aqueous proteins is of particular importance in medicine and for separation 
processes in biotechnology.  There is strong evidence to suggest that protein aggregation is 
responsible for a variety of serious diseases including eye cataracts, sickle-cell anemia and 
Alzheimer’s disease; better understanding of protein phase behavior may assist in preventing or 
curing such illnesses.   
 
In the separation of biochemical products, the aqueous broth leaving a bioreactor inevitably is a 
mixture; a common primary separation step is to add a precipitation agent (typically ammonium 
sulfate) that selectively precipitates some of the proteins in the broth.  Better understanding of the 
pertinent phase equilibria can help to optimize that and other separation processes (1). 
 
To establish a quantitative method for describing phase equilibria in aqueous protein solutions, we 
require two kinds of information.  First, we require a thermodynamic relation that gives the chemical 
potential of a protein as a function of its state, i. e. temperature, concentration of protein and of other 
species present in the solution and, very important, pH because the net electric charge of a protein (a 
polymer of aminoacids) depends strongly on pH.  The desired thermodynamic relation can be 
obtained from any one of a variety of theories through statistical thermodynamics.  
 
Second, to utilize a statistical-thermodynamic theory, we need a quantitative expression that 
describes the intermolecular forces between two dissolved protein particles; this quantitative 
expression depends on their separation, that is, on center-to-center distance r. 
 
The force F between two globular proteins in solution is related to the potential of mean force W r  by ( )
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The potential of mean force is similar to the more-commonly known potential between two 
molecules in vacuum (2).  For example, according to Coulomb’s Law, the potential for two 
charged particles i and j, separated by center-to-center distance r, is given by  
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where ei is the charge on particle i and ej   is the charge on particle j.  However Eq. (2a) assumes that 
the two particles are in vacuo.  If, instead, they are in a medium (i. e. a solvent), the corresponding 
potential of mean force is 
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where D is the medium’s dielectric constant.  The adjective “mean force” indicates that, for any two 
particles i and j in a medium, the potential of mean force is the free energy of the ij pair, averaged 
with respect to all possible configurations of the solvent molecules. 
 
For symmetric spherical particles i and j, potential  depends only on r and on the properties of i 
and j.  By contrast, W ( depends, in addition, on the properties of the medium. 

Γ
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While much is known about the statistical thermodynamics of spherical particles (3), much less is 
known about the potential of mean force for such particles that we use to represent globular proteins. 
 To construct a phase diagram, we need a statistical-thermodynamic theory for fluids and a 
statistical-thermodynamic theory for solids.  Here, phase diagram refers to a plot of temperature 
versus density (protein concentration) and fluid refers to a fluid of protein particles in a solvent 
medium.  For a reasonable first approximation, we can use the Random Phase Approximation (RPA) 
theory of fluids (4,5) and the (modern) van der Waals theory of solids (6).  But what shall we use for 
W ( ?  We can obtain some information from theory and from molecular simulations.  But a more 
reliable source of information is one of several experimental methods as discussed in a later section. 
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Phase Diagrams for Aqueous Proteins 
 
The potential of mean force determines not only the quantitative details of a phase diagram but also 
its qualitative features, as illustrated in Figure 1.  If the range of attractive forces is reasonably large 
(i. e. of the order of particle diameterσ ), we obtain the conventional phase diagram shown on the 
left side of Figure 1 where, as density rises, we first have a transition from dilute fluid (gas) to dense 
fluid (liquid) and then from liquid to solid.  However, if the attractive range is short (that is, a small 
fraction of σ ), then, as density rises, we go directly from dilute fluid to solid unless the temperature 
is below critical temperature Tc; in that event, as density rises, we first go through a metastable fluid-
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fluid transition and then, with further increase in density, to the solid.  The essential difference is 
this: for long-range attraction, the freezing line lies to the right of the fluid-fluid transition.  For 
short-range attraction, the freezing line lies initially to the left and then above the metastable liquid-
liquid region. These calculated phase diagrams (4) were obtained by molecular simulations using the 
potentials of mean force indicated in the diagrams (6) where  is the depth of the energy well, i. e. 
where W r . 

ε
( ) / 1ε = −

( ) ( )W r

 
There is much evidence to suggest that the metastable liquid-liquid region of a protein solution is 
responsible for cataract formation (7).  As the eye ages, its protein concentration changes and one (or 
more) proteins may achieve a concentration that exceeds the left-side saturation concentration as 
indicated in Figure 2.  Following phase separation, the highly concentrated liquid phase does not 
settle but remains in the eye as a fine dispersion whose optical properties seriously interfere with 
vision.  The experimental data in Figure 2 show that when the concentration of native γ -crystallin 
exceeds about 100 mg/ml at body temperature (37oC), a second liquid phase is formed whose 
concentration is about 700 mg/ml.  It is this second liquid phase (that may eventually become 
crystalline) that is responsible for cataract symptoms. Precipitation of the second phase can be 
avoided by adding a small amount of glutathione that forms a soluble complex with γ -crystallin to 
keep it in dilute solution.  These experimental results provide the first step for a possible method to 
prevent cataracts in the human eye, a disease that strikes many millions of elderly men and women 
throughout the world.  Similar studies have been reported for sickle-cell anemia and for fibril 
formation that appears to be responsible for Alzheimer’s disease (8, 9, 10, 11). 
 
Potential of Mean Force from Theory or Simulation 
 
Although there is a huge (colloid) literature concerning the theory of W ( for charged particles, we 
can here discuss only a few representative results.  We consider a globular protein of diameter 

with net electric charge q.  We consider three contributions to W ( : 

)r

σ )r
 
            W r      (3) ( ) ( )hs el dispW r W r= + +

 
where hs stands for hard-sphere repulsion, el stands for electrostatic repulsion (or attraction) and 
disp stands for attractive dispersion.  The first term is readily obtained using diameter σ .  The 
second term is found from Debye-Hückel theory (or one of its modifications).   Due to fluctuating 
dipoles of the polarizable protein particles, the third term is calculated from Hamaker’s theory based 
on the London dispersion potential.  Eq. (3) is the basis of the well-known, 54-year old DLVO 
theory where the initials stand for Derjaguin, Landau, Verwey and Overbeek (12).  Numerous 
variations of DLVO theory have been proposed including that by Sogami and Ise (SI) (13).               . 
 
The net charge q on a protein depends on pH as illustrated in Table 1 that gives net charges for 
lysozyme and for ovalbumin.  At any fixed pH, two identical protein particles carry the same net 
charge; both are either positive or negative.  If we neglect the small contribution from dispersion 
attraction, we would expect the forces between these two protein particles to be repulsive, which is 
(essentially) equivalent to saying that W ( should be positive.  When the medium contains 
monovalent salts, the DLVO theory is in qualitative agreement with molecular simulations as shown 
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in Figure 3.  However, as shown in Figure 4, when the medium contains divalent salts, molecular 
simulations show that the potential of mean force is negative for some values of r, indicating that 
(essentially) for those values of r, the two like-charged proteins experience attraction.  The simple 
theories (DLVO and SI) are unable to show this result that follows from electrostatic binding of the 
divalent ions to the oppositely charged protein particles (14). 
 
The DLVO potential of mean force can be improved by considering charge distribution.  A protein 
particle has many electric charges situated at various locations; q is only the net charge.  The charge 
distribution can be represented by a dipole moment  as indicated in Figure 5.  To account for 
charge distribution through a dipole moment, the potential of mean force is  

µ

 
( ) hs qq qu dispW r W W W W Wµµ= + + + +            (4) 

 
where again, hs refers to hard-sphere repulsion due to finite size (diameter σ ); qq refers to charge-
charge interactions (Debye-Hückel); q  refers to charge-dipole interactions and  refers to 
dipole-dipole interactions.   

µ µµ

 
Because contributions q  and  are orientation-dependent, to obtain a potential of mean force 

 for phase-diagram calculations, it is necessary to calculate orientation averages where each 
orientation is weighted by its Boltzmann factor.  It has been common practice to angle-average W  
and  separately because the mathematics to do so is much simpler than that needed to average 
them together, as required by theory.  The necessary analytic expressions for simultaneous averaging 
have been published only recently (15).  Figure 6 compares Monte-Carlo simulations (16) with 
analytic results based on Eq. (4) neglecting the last term.  While simultaneous averaging gives better 
agreement with simulations than separate averaging, quantitative agreement is not good. 

µ µµ
( )W r
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Experimental Methods 
 
Because theoretical models and simulation calculations are based on numerous simplifying 
assumptions, they can provide only qualitative or, at best, semi-quantitative results for the potential 
of mean force. Such results are nevertheless useful because they can serve as a guide for trends.  But 
for quantitative results, we must make experimental measurements.  Regrettably, even these can give 
us only rough results because, to interpret experimental data toward obtaining a potential of mean 
force, we must also make a variety of simplifying assumptions. 
 
A well-known procedure for investigating intermolecular forces in gases is to measure low-density 
volumetric (PVT) properties that give the second virial coefficient B.  Per mole of spherical 
molecules, B is related to the two-body potential by Γ ( )r
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where k is Boltzmann’s constant and  is Avogadro’s number.   AN
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Similarly, for globular proteins dissolved in a fluid medium, the osmotic second virial coefficient B 
is related to the two-body potential of mean force W by essentially the same relation: ( )r
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The osmotic second virial coefficient is readily measured by osmometry (17) or, more accurately, by 
low-angle laser-light scattering (LALLS) (18). 
 
Figure 7 shows osmotic second virial coefficient B for the aqueous globular protein hen-egg 
lysozyme (Molecular weight 14000) at pH 4.5 and 25oC as a function of sodium chloride 
concentration (19). Results are shown for native lysozyme and for a mutant where a phenylalanine 
residue (F) has replaced the aspartic-acid residue (D) at position 101.  Because B is negative, the 
protein-protein forces are predominantly attractive, becoming more so as the molality of salt rises.  
Attractive forces between two mutant protein particles are stronger than those between two native 
protein particles because the F residue is more lipophilic than the D residue; thus, hydrophobic 
attraction is stronger for the mutant. 
 
Because W  appears under an integral sign in Eq. (5b), experimental data for B cannot give a 
unique potential of mean force; for a fixed temperature and a given value of B at that temperature, 
numerous forms of W (  can satisfy Eq. (5b).  A common procedure is to assume that W (  is 
given by the DLVO theory plus an additional attractive contribution represented by a simple 
potential function, e.g. the Yukawa potential or the sticky-sphere potential or the square-well 
potential.   

( )r

)r )r

 
For data reduction, we require two independent parameters: the protein diameter σ  that is often 
available from X-ray crystallography, and the protein’s pH-dependent net charge q obtained from 
acid-base titration data.  For native lysozyme, σ =  3.44 nm and at pH4.5,  q = +9.8.  Hamaker’s 
constant H is typically set equal to 5kT. 
 
For the Yukawa or square-well potential, the additional contribution concerning W r requires two 
parameters: a range (domain) where the additional attractive force is effective and, most important, a 
characteristic attractive energy є or є (specific).  Figure 7 shows that, for the mutant, є is appreciably 
larger than that for native lysozyme. 

( )

 
Another relatively simple experimental method to obtain information concerning W r  is provided 
by cloud-point measurements.  At a temperature somewhat in excess of ambient, a homogeneous 
aqueous solution contains known concentrations of protein and salt in a glass container kept at a 
known temperature.  A strong light is placed at the rear of the container and a scope is placed in 
front.  As the solution is slowly cooled, the temperature is closely monitored.  When the scope 
reports the first trace of a finely dispersed precipitate, we record the cloud-point temperature.  This 
temperature, coupled with some assumptions and a statistical thermodynamic equation of state, can 
give us a potential of mean force.  Toward that end, the essential steps are: 
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A mathematical form is assumed for W r .  Grigsby (20) assumed that W r  contains the DLVO 
terms and a specific square-well potential with specified width and unknown depth є.  This unknown 
depth, a measure of specific protein-protein attractions, is obtained from simultaneous solution of 
two equations of phase equilibrium: 

( ) ( )

 
                          (6a) Pr Prµ µ′ = ′′

′′P P′ =                              (6b)
 

 
where  is the chemical potential of the protein and P is osmotic pressure; prime (1) and double 
prime (11) refer to the equilibrated phases at the cloud-point temperature. 

Prµ

 
From the statistical-thermodynamic model, we have expressions for  and P as functions of 
number density (protein concentration), temperature and W(r) (20).   From independent data, we 
know protein diameter σ ,  net charge q corresponding to the experimental pH, and the dielectric 
constant of water.  There are two unknowns: square-well depth ε  and the number density of the 
precipitated phase. 

Prµ

 
Figure 8 shows some experimental cloud-point temperatures for lysozyme in a variety of aqueous 
salt solutions (20).  For most cases, as salt concentration increases, the cloud-point temperature rises, 
indicating that increasing salt concentration raises protein-protein attraction.  At the pH indicated, 
lysozyme has a negative net charge.  Consistent with the theoretical results shown in Figures 3 and 
4, the cloud-point data show that the effect of a divalent cation is qualitatively different from that of 
a univalent cation.  
 
While relatively simple, the three experimental methods indicated above have some disadvantages.  
Osmometry and LALLS and cloud-point measurements require a relatively large amount of protein 
(in the region 100 or 200 mg).  Osmometry and LALLS are often not useful for small proteins or 
protein segments because for such cases the membrane is not sufficiently semi-permeable and 
because the particle size is too small relative to the commonly used wavelength of light.  These 
limitations are overcome by a different experimental method: fluorescence-anisotropy (21, 22). This 
method measures the dimerization constant for the equilibrium 
 
 
                              (8) 22Pr Pr
 
 
where Pr stands for protein or protein segment.  As shown by Chandler (23), the association 
equilibrium constant K is related to W (  by )r
 

[ ] 21 exp ( ) / 4
2

crK W r kT
σ

π= −∫ r dr                (9) 

 
where  is the diameter of Pr and rσ c is the range (or domain) of the attractive forces that lead to 
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dimerization.  
 
In the fluorescence-anisotropy method, a fluorescent label is attached to a very small amount of Pr 
and mixed with a larger amount of non-labeled Pr1 all in liquid solution.   The solution is subjected 
to monochromatic polarized light that optically excites the label.  The label emits radiation with two 
components: one parallel (11) and one perpendicular ( ) to the incident light.  The intensities I of 
these two components are measured to give anisotropy A: 

⊥

 

              2
II

II

I IA
I I

⊥

⊥

−
=

+
       .             (10) 

 
If the labeled Pr rotates rapidly, A is small but if the labeled Pr is dimerized with a non-labeled Pr, 
the speed of rotation is reduced and A becomes large.  By making measurements of A as a function 
of total concentration, dimerization constant K can be obtained providing information about W r  
through Eq. (9). 

( )

 
To illustrate, Fig. 9 shows some results obtained by fluorescence-anisotropy (24) for a protein 
segment from hen-egg lysozyme.  The segment [  has a molecular weight of 3000 
and its diameter is 0.188 nm.  In data reduction, W r  was assumed to be the three DLVO terms 
plus a specific square-well potential whose depth is ε  (specific).  Figure 9 shows the effect of 
protein secondary structure; when a denaturant, trifluoroethanol, is added to the aqueous solution, 
the secondary structure changes from α -helix to -sheet as determined by circular-dichroism 
measurements.  As shown in Fig. 9, /kT is large compared to unity. Therefore, for this protein 
segment in 0.16m sodium chloride solution, the DLVO electrostatic and Hamaker-dispersion 
contributions to W r are much smaller than that from the specific square-well potential.  Attractive 
forces for the -sheet structure are appreciably stronger than those for the α -helix structure. 

]4 (11 36)T LYS −
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Potential of Mean Force and Crystallization 
 
Proteins do not crystallize readily from solution unless the solution conditions are “just right”.  
Because B, the osmotic second virial coefficient, can be measured readily for different solution 
conditions, it would be helpful for protein crystallographers to establish a possible correlation 
between B and the likelihood of protein-crystal formation. 
 
Crystallographic data for proteins are in much demand by pharmaceutical chemists because they 
provide the best way for determining a protein’s three-dimensional structure.  Often the most 
difficult part of protein crystallography is to make the protein crystal; because protein particles are 
very “fussy” about forming or not forming crystals, producing such crystals is as much art as 
science, often requiring extensive trial and error.  Toward finding optimum crystallization conditions 
(temperature, pH, nature and concentration of added solutes), it would be useful to obtain guidance 
from B data for a variety of such conditions. 
 
Because B is closely related to W r  and because W r  has a major influence on crystal formation, 
it is reasonable to hope that experimental osmotic second virial coefficients might correlate with 

( ) ( )
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successful or unsuccessful conditions for crystallization.  Indeed, such a correlation has been 
established by George and Wilson as shown in Figure 10.  George and Wilson found a 
crystallization window, that is, a region of B where crystallization is favored.  Outside that window, 
crystallization did not occur (25). 
 
To form a crystal, dissolved protein particles must be in the correct orientation.  If the forces of 
attraction are too strong, protein particles do not have enough time to “get together” in just the right 
way; they agglomerate to form an amorphous precipitate.  On the other hand, if there are no forces 
of attraction (B>0), there is no precipitate, amorphous or crystalline.   For crystal formation, the 
forces of attraction should be weak; in other words, B should be negative but not excessively so.  
Figure 10 shows that, when B is in the region –1 to –8 mL mol g-2, crystallization is favored.  When 
B is outside that region, crystallization is not likely.  Thus, experimental B data that can be obtained 
relatively quickly, serve as a useful screening criterion for favorable crystallization conditions. 
 
Two-Protein Systems 
 
For a system containing only one type of protein, the potential of mean force reflects the 
intermolecular forces for two identical protein particles dissolved in a solvent that may also contain 
other solutes such as salts.  This potential of mean force, coupled with a single-component equation 
of state (provided by a statistical-thermodynamic model), is sufficient to calculate an approximate 
phase diagram.  However, if the solvent (that may include salts) contains two types of proteins 1 and 
2, we need a two-component equation of state and three potentials of mean force:  W , W r  
and .  How can we obtain W experimentally?  Osmometry, LALLS and cloud-point 
measurements are not suitable for a direct measurement of W  because these measurements give 
the combined effect of all three potentials of mean force.  Fluorescence-anisotropy can be used for 
direct measurement of W  but a simpler method is provided by quantitative affinity- 
chromatography (26) as shown in Figure 11.  Protein 2 is immobilized on the surface of a solid 
support that fills the chromatographic column.  A protein-free solution at the desired pH and at the 
desired salt concentration flows over the solid support.  At time t=0, a small quantity of solution of 
protein 1 is injected immediately upstream of the chromatographic column.  A detector immediately 
downstream of the column registers the arrival of protein 1 giving retention time t

11( )r 22 ( )

12 ( )W r 12 ( )r

′

12 ( )r

12 ( )r

r.  In a separate 
experiment, the same procedure is used except that now there is no immobilized protein 2 on the 
column; that experiment gives retention time tro.  The key experimental quantity is the reduced 
relative retention time (retention factor) k : 
 
                  k t      .      (11) ( ) /r ro rt t′ = − o

dr

 
From , and some simplifying assumptions, we can calculate the osmotic second virial cross- 
coefficient  that [as in Eq. (5b)] is related to W (r) by  

k ′

12B 12

 
( ) 2

12 122 exp ( ) / 1A o
B N W r kT rπ

∞
= − − −∫                                    (5c) 

 
Figure 12 shows some results for  obtained by Teske (26) for an aqueous two-protein system kι
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containing ovalbumin (2) and lysozyme (2).   Results at 25oC are shown as a function of pH for two 
cases: first, for an aqueous solvent containing 0.1m ionic strength sodium chloride and second, for 
an aqueous solvent containing 0.1m ionic strength magnesium chloride.  Again, we see the 
difference between solutions that contain a univalent or a divalent cation.  The horizontal axis also 
shows the product of the net charges, q (lysozyme) and q (ovalbumin) because that product gives a 
rough measure of electrostatic forces (see Table 1).  If the product is positive, the two proteins carry 
either both positive or both negative charges indicating repulsion and indeed, at the left side, k  is 
close to zero because in the absence of attraction, the retention time t

ι

r of the flowing protein 
(ovalbumin) is nearly the same as t  where the column does not contain protein 2.  As the product q 
(lysozyme) q (ovalbumin) becomes increasingly negative, attraction increases and 

ro

12

• kι

)

  rises.  As the 
product becomes less negative, we expect  to decline.   kι

 
A liquid-liquid phase diagram for the aqueous two-protein system ovalbumin (1)-lysozyme (2) can 
be constructed when potentials of mean force W r  andW  are known, using a two-
component form of the RPAtheory that gives chemical potentials  and µ  as functions of 
temperature and both protein number densities (concentrations) in the aqueous system. 

11 22( ), ( )W r 12 ( )r

1µ 2

 
Each of the three potentials of mean force is set equal to the sum of the appropriate DLVO terms 
plus an additional square-well potential whose well depth is ε = .  As a rough 
approximation, we may expect ε  to be the geometric mean of ε  and ε  but this approximation 
requires a correction that is conventionally written 

( 1,2; 1,2ij i j =

11 22

 
            (12 11 22 121 kε ε ε= − ) .      (12) 
 
where k12 is a binary parameter obtained from W , W  and W  12 ( )r 11( )r 22 ( ).r

 
Figure 13 (27) shows the (solvent-free) mole fractions  and , of the two fluid phases for the 
aqueous ovalbumin (1) –lysozyme (2) system at 25

,x′ x′′
oC and pH7 and a high ionic strength as often 

used in industrial separations (28):  9 m ammonium sulfate.  Figure 12 is analogous to the well-
known y-x diagrams used for vapor-liquid equilibria required for design of distillation columns 
where y is the mole fraction in the vapor phase.  Figure 12 provides the phase equilibria for design 
of an extraction process to separate an aqueous mixture of ovalbumin and lysozyme.  Although 
Figure 12 shows chromatographic results for sodium chloride and magnesium chloride rather than 
ammonium sulfate and, although the salt concentrations in Figure 11 are much lower than those of 
Figure 13, Figure 12 suggests that easier separation may be achieved at pH4 rather than pH7 because 
at the lower pH, lysozyme and ovalbumin show much lower mutual attraction. 
 
Conclusion 
 
The discussion presented here shows that well-known methods of molecular thermodynamics can be 
extended to provide useful results for aqueous systems that contain one or more proteins.  The key to 
obtaining such results lies in the potential of mean force.  While the potentials of mean force shown 
here are only rough approximations of the “true” potential of mean force, they enable us to 
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understand the main features of phase behavior in protein systems where detailed molecular 
information would require a large experimental effort.  The models and methods introduced here can 
surely be much refined and there is good reason to believe that such refinements will be forthcoming 
as more fundamental knowledge concerning proteins becomes available.  However, even now, when 
our fundamental knowledge is far from complete, we can begin to understand some of the essential 
features of protein phase behavior.  The discussion presented here once again shows the wisdom of 
the preface of the classic book on chemical thermodynamics by Lewis and Randall published about 
80 years ago:  
 
“The fascination of any growing science lies in the work of the pioneers at the very borderland of the 
unknown.  But to reach that frontier one must pass over well-traveled roads.  One of the safest and 
surest is the broad highway of thermodynamics.” 
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Figure Captions 
 
 
1. Phase Transitions for Argon and for Protein Solutions 

 
2. Cataract Formation:  Liquid-Liquid Separation of -crystallin in the Eye γ

 
3. Simulated and Theoretical Potential of Mean Force:  Monovalent Cation 

 
4. Simulated and Theoretical Potential of Mean Force:  Divalent Cation 

 
5. Charge Distribution is represented by an Equivalent Dipole 

 
6. Simulated and Theoretical Potential of Mean Force for a Protein with a Charge and a 

Dipole 
 

7. Osmotic Second Virial Coefficient for Native Lysozyme and for a Lysozyme Mutant 
 

8. Cloud-Point Temperatures for Lysozyme 
 

9. Peptide Interactions from Fluorescence Anisotropy 
 

10. Protein Crystallization Window 
 

11. Quantitative Affinity Chromatography 
 

12. Ovalbumin – Lysozyme Interactions 
 

13. Liquid-Liquid Equilibria for Aqueous Ovalbumin (1) – Lysozyme (2). 
 
Table 1 
 
Net Charge q as a Function of pH for Ovalbumin and for Lysozyme 
 
pH    Ovalbumin    Lysozyme 
 
3    28     13 
4    12     10.5 
5    -1      9 
6    -8      8 
7    -12      7.5 
8    -14                 7 
9    -16      6 
10    -20      3.5 
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