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Generation of ultrashort electron bunches by laser-triggered trapping of electrons in plasma-based
accelerators is considered. Ultrashort, high-quality electron bunches can be produced in a controlled
manner by the collision of laser pulses in an excited plasma wave. The basic theory of the colliding
pulse injection mechanism is reviewed. Experimental progress towards electron beam production
through colliding pulse injection is presented.

I. INTRODUCTION

Perhaps the most basic and simplest form of a laser-
plasma injector is the self-modulated regime of the laser
wakefield accelerator (LWFA) [1, 2], in which a sin-
gle laser pulse results in self-trapping and generation
of a sub-ps electron bunch, however, with a large en-
ergy spread. Typically the self-trapped bunch is of high
charge (up to 10nC), with an energy distribution char-
acterized by a Boltzmann distribution with temperature
in the few MeV range. One possible mechanism for
self-trapping is the direct wavebreaking of the plasma
wakefield [3]. Since the phase velocity of the wake-
field is near the speed of light, it is difficult to trap
the background fluid electrons, which are undergoing the
fluid oscillation that sustains the wakefield. The wake
will trap the background electrons when the separatrix
of the wake overlaps the plasma fluid orbit, which is
the definition of wavebreaking. Wavebreaking of a cold
one-dimensional (1D) plasma wave occurs at EWB =
[2(γp − 1)]1/2E0 � E0, where vp = cβp = c(1 − γ−2

p )1/2

is the phase velocity of the plasma wave and E0 =

cmeωp/e ' 96
(

n0[cm
−3]

)1/2
V/m is the cold 1D nonrel-

ativistic wavebreaking field, with ωp = (4πn0e
2/me)

1/2

the electron plasma frequency, n0 the ambient electron
density, me and e the electron rest mass and charge, re-
spectively, and c the speed of light in vacuum. Thermal
and three-dimensional (3D) effects can lower this value,
but typically wavebreaking requires nonlinear plasma
waves with Ez > E0. The observed wakefield ampli-
tude, however, as measured in several experiments [4],
appears to be in the range Ez/E0 ∼10–30%, well below
wavebreaking. This suggests that additional laser-plasma
instabilities may play a role in lowering the effective wave
breaking amplitude.

Alternatively, self-trapping and acceleration can result
from the coupling of Raman backscatter (RBS) and Ra-
man sidescatter (RSS) to the wakefield [5]. As the pump
laser self-modulates, it also undergoes RBS, which is the
fastest growing laser-plasma instability. RBS is observed
in intense short pulse experiments, with reflectivities as
high as 10–30% [4]. RBS generates red-shifted backward
light of frequency ω0 − ωp and wavenumber −k0, which
beats with the pump laser (ω0, k0) to drive a ponderomo-
tive wave (ωp, 2k0). As the instability grows, the Raman
backscatter beat wave, which has a slow phase velocity

vp ' ωp/2k0 � c, can trap and heat background plasma
electrons [6]. These electrons can gain sufficient energy
and/or be displaced in phase by the beat wave such that
they are trapped and accelerated to high energies in the
wakefield. Simulations [5] indicate that coupling to RBS
can lead to self-trapping at modest wakefield amplitudes,
Ez/E0 ' 25%, much lower than the cold 1D threshold for
direct wavebreaking. In 3D, this process can be enhanced
by coupling to RSS.

When electrons become trapped in the fast wakefield,
they become accelerated to high energies as they circu-
late inside the separatrix of the wake. A large energy
spread for the trapped electrons results because (i) some
fraction of the background electrons are continually being
swept up and trapped in the wakefield as the laser pulse
propagates into fresh plasma, and (ii) typically the self-
guided propagation distance of the laser pulse is much
greater than the detuning length for trapped electrons.
This implies that deeply trapped electrons will circulate
many revolutions within the separatrix, again resulting
in a large energy spread.

For many applications, a small energy spread is de-
sired. This can be achieved by using a standard LWFA
(with L ∼ λp, where L is the laser pulse length and
λp = 2πc/ωp is the plasma wavelength), in which the
wakefield is produced in a controlled manner at an am-
plitude below the wavebreaking or self-trapping thresh-
old [1]. In principle, if a small energy spread electron
bunch of duration small compared to λp is injected into
the wakefield at the proper phase, then the bunch can
be accelerated while maintaining a small energy spread.
This becomes problematic in the LWFA, since the wave-
length of the accelerating field is small, e.g., λp ' 30µm
for n0 ' 1018 cm−3. Hence, a low energy spread requires
an ultrashort bunch duration τb < λp/c that is injected at
the optimal plasma wave phase with femtosecond timing
accuracy. These requirements are beyond that of con-
ventional electron beam injector technology (e.g., photo-
injectors). On the other hand, the production of ultra-
short laser pulses and the fs timing of multiple pulses is
routine with compact chirped-pulse amplification (CPA)
laser technology. As discussed in this section, ultrashort,
high intensity laser pulses can be used to inject electrons
into a single bucket (plasma wave period) of a standard
LWFA [7–11].

Umstadter et al. [7] first proposed using an additional
laser pulse to inject background plasma electrons into the
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wake for acceleration to high energies. To generate ul-
trashort electron bunches with low energy spreads, the
original laser injection method proposed by Umstadter
et al. [7] utilizes two laser pulses which propagate per-
pendicular to one another. The first pulse (pump pulse)
generates the wakefield via the standard LWFA mech-
anism, and the second pulse (injection pulse) intersects
the wakefield some distance behind the pump pulse. The

ponderomotive force ~F ' (mec
2/γ)∇a2/2 of the injec-

tion pulse can accelerate a fraction of the plasma elec-
trons such that they become trapped in the wakefield.
Here a2

0 ' 3.6 × 10−19(λ[µm])2I [W/cm2], for a circu-
larly polarized laser field, with λ the laser wavelength
and I the laser intensity. Specifically, the axial (direc-
tion of propagation of the pump pulse along the z-axis)
ponderomotive force of the injection pulse (propagating
along the x-axis) scales as

Fz =
(

mec
2/γ

)

(∂/∂z)(a2
1/2) ∼ (mec

2/γ)a2
1/r1 , (1)

where a2
1 and r1 are the normalized intensity and spot size

of the injection pulse, respectively. A simple estimate for
the change of momentum that an electron will experience
due to the ponderomotive force of the injection pulse is
∆pz ' Fzτ1 ∼ (mc2/γ)a2

1τ1/r1, where τ1 is the injection
pulse duration. It is possible for ∆pz to be sufficiently
large that electrons are injected into the separatrix of
the wakefield such that they become trapped and accel-
erated to high energies. To inject into a single plasma
wake bucket, it is necessary for both the injection pulse
spot size and pulse length to be small compared to the
plasma wavelength, i.e., r21 � λ2

p and c2τ2
1 � λ2

p. Sim-
ulations [7], which were performed for ultrashort pulses
at high densities (λp/λ = 10 and Ez/E0 = 0.7), indi-
cated the production of a 10 fs, 21MeV electron bunch
with a 6% energy spread. However, high intensities
(I > 1018 W/cm2) are required in both the pump and
injection pulses (a0 ' a1 ' 2).

Simulations by Hemker et al. [9] point out that addi-
tional electron injection into one or more wake buckets
can result due to influence of the wake associated with the
injection pulse, which can be significant due to the high
intensity of the injection pulse (a1 & 1). Umstadter et

al. [7] also discuss the possibility of injection using an in-
jection pulse that propagates parallel, but some distance
behind, the pump pulse. The injection pulse would have
a tighter focus (and hence smaller Rayleigh length) than
the pump pulse, and would be phased appropriately such
that it locally drives the wakefield to an amplitude that
exceeds wavebreaking, thus resulting in local trapping of
electrons.

Esarey et al. [8] proposed and analyzed the colliding
pulse injection method that relies on the beat wave pro-
duced by the collision of two counterpropagating laser
pulses. Beat wave injection differs intrinsically from the
method of ponderomotive injection discussed above in
that the source and form of the ponderomotive force dif-
fers in these two methods. In ponderomotive injection,
injection is the result of the ponderomotive force associ-
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FIG. 1: Profiles of the pump laser pulse a0, the wake φ (dashed
line), and the forward a1 injection pulse, all of which are
stationary in the ψ = kp(z − vpt) frame, and the backward
injection pulse a2, which moves to the left at ' 2c.

ated with the envelope (time-averaged intensity profile)
of a single pulse. In beat wave injection, injection is
the result of the ponderomotive force associated with the
slow beat wave of two intersecting pulses.

II. COLLIDING PULSE INJECTION

Colliding pulse injection [8, 10, 11] uses three short
laser pulses: an intense (a2

0 ' 1) pump pulse (denoted
by subscript 0) for plasma wake generation, a forward
going injection pulse (subscript 1), and a backward go-
ing injection pulse (subscript 2), as shown in Fig. 1. The
frequency, wavenumber, and normalized intensity are de-
noted by ωi, ki, and ai (i = 0, 1, 2). Furthermore, it is as-
sumed that k1 ' k0, k2 ' −k0, and ω1−ω2 = ∆ω � ωp.
The pump pulse generates a plasma wake with phase ve-
locity near the speed of light (vp0 ' c). The forward in-
jection pulse travels at a fixed distance behind the pump
pulse, which determines the position (i.e., phase) of the
injected electrons. The injection pulses are orthogonally
polarized to the pump laser pulse, such that the pump
pulse and backward going injection pulse do not beat.
When the injection pulses collide some distance behind
the pump, they generate a slow ponderomotive beat wave
of the form a1a2 cos(∆kz −∆ωt) (here ∆k = k1 − k2 '
2k0) with a phase velocity vpb ' |∆ω|/2k0 � c. The
axial force associated with this beat wave scales as

Fz = (mec
2/γ)(∂/∂z)a1a2 cos(2k0z −∆ωt)

∼ (mec
2/γ)2k0a1a2 .

(2)

During the time in which the two injection pulses overlap,
a two-stage acceleration process can occur, i.e., the slow
beat traps and heats background plasma electrons which,
as a result of shifts in their momentum and phase, can
be injected into the fast wakefield for acceleration to high
energies. The ratio of the axial force of the beat wave
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to that of a single pulse in the ponderomotive injection
scheme scales as

Fz,beat

Fz,pond

∼ 2k0a1a2

a2
p/rp

, (3)

where the subscript p refers to the single ponderomotive
injection pulse and the contribution of the relativistic fac-
tor γ (which is different for the two cases) is neglected.
For comparable injection pulse intensities (a1 ' a2 ' ap),
the ratio scales as 4πrp/λ0 � 1, i.e., the axial force of
the beat wave is much greater than the ponderomotive
force of a single pulse. Consequently, colliding pulses can
result in electron injection at relatively low intensities
(a1 ∼ a2 ∼ 0.2), as well as at relatively low densities
(λp/λ ∼ 100), thus allowing for high single-stage energy
gains. Furthermore, the colliding pulse concept offers de-
tailed control of the injection process: the injection phase
can be controlled via the position of the forward injec-
tion pulse, the beat phase velocity via ∆ω, the injection
energy via the pulse amplitudes, and the injection time
(number of trapped electrons) via the backward pulse
duration.

To help understand the injection mechanism, it is in-
sightful to consider the electron motion in the wake-
field and in the colliding laser fields individually. In
the absence of the injection pulses, electron motion in
a 1D wakefield is described by the Hamiltonian Hw =
γ−βp(γ

2− 1)1/2−φ(ψ), where φ = φ0 cosψ, vp = cβp is

the phase velocity of the plasma wave, γp = (1−β2
p)−1/2,

and ψ = kp(z − vpt). The electron orbits in phase space
(uz, ψ) are given by Hw(uz, ψ) = H0, where H0 is a con-
stant, γ2 = 1 + u2

z, and uz = γβz is the normalized axial
momentum, which is given by

uz = βpγ
2
p [H0 + φ(ψ)] ± γp

{

[γ2
p [H0 + φ(ψ)]

2 − 1
}1/2

.

(4)
The 1D separatrix (the boundary between trapped and
untrapped orbits) is given by Hw(βz , ψ) = Hw(βp, π),
i.e., H0 = H1D = 1/γp − φ(π). The maximum and mini-
mum electron momentum on the 1D separatrix occur at
ψ = 0 and are (in the limits 2φ0γp � 1 and γp � 1)
uw,max ' 4γ2

pφ0 and uw,min ' 1/4φ0 − φ0.
The 1D theory neglects the effects of transverse fo-

cusing. Associated with a 3D wake is a periodic radial
field which is π/2 out of phase with accelerating field,
i.e., there exists a phase region of λp/4 for which the
wake is both accelerating and focusing (as opposed to
the λp/2 accelerating region in 1D). If an electron is to
remain in this phase region, it must lie within the “3D
separatrix” defined by Hw(βz , ψ) = Hw(βp, π/2), i.e.,
Eq. (4) with H0 = H3D = 1/γp−φ(π/2). The extremum
on the 3D separatrix are given by uw,max ' 2γ2

pφ0 and

uw,min ' 1/2φ0 − φ0/2. This value of uw,max ' 2γ2
pφ0

gives the usual maximum energy gain due to linear de-
phasing in a 3D wake.

The background plasma electrons lie on an untrapped
orbit (below the separatrix) uzf given byHw(uzf , ψ) = 1,

zu
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FIG. 2: Longitudinal phase space (ψ, uz) showing beat wave
separatrices, an untrapped plasma wave orbit (solid line), a
trapped plasma wave orbit (dotted line), and a trapped and
focused plasma wave orbit (dashed line).

i.e., Eq. (4) with H0 = 1. At wavebreaking, the bottom
of the separatrix uw,min coalesces with the plasma fluid
orbit, uzf = uw,min. This occurs at the well-known wave-

breaking field of EWB/E0 = [2(γp − 1)]1/2.
Consider the motion of electrons in the colliding laser

fields in the absence of the wakefield. The beat wave
leads to formation of phase space buckets (separatri-
ces) of width 2π/∆k ' λ0/2, which are much shorter
than those of the wakefield (λp). In the colliding laser
fields, the electron motion is described by the Hamilto-
nian Hb = γ−βb[γ

2−γ2
⊥
(ψb)]

1/2, where the space charge
potential is neglected. Circular polarization is assumed
such that γ2

⊥
= 1 + a2

0 + a2
1 + 2a0a1 cosψb, where ψb =

(k1−k2)(z−vbt) and vb = cβb = ∆ω/(k1−k2) ' ∆ω/2k0

is the beat phase velocity, assuming ω2
p/ω

2
0 � 1. The

beat separatrix is given by Hb(βz, ψb) = Hb(βb, 0) with a
maximum and minimum axial momenta of

ub,m = γbβb

[

1 + (a0 + a1)
2
]1/2 ± 2γb(a0a1)

1/2 . (5)

An estimate for the threshold for injection into the
wakefield can be obtained by a simple phase-space is-
land overlap criteria. This is done by considering the ef-
fects of the wakefield and the beat wave individually, as
done above, and by requiring that the beat wave separa-
trix overlap both the wakefield separatrix and the plasma
fluid oscillation (illustrated in Fig. 2): (i) the maximum
momentum of the beat wave separatrix ub,max exceed the
minimum momentum of the wakefield separatrix uw,min,
i.e., ub,max ≥ uw,min, and (ii) the minimum momentum of
the beat wave separatrix ub,min be less than the plasma
electron fluid momentum uzf , i.e., ub,min ≤ uzf . Condi-
tions (i) and (ii) imply a beat wave threshold

(a1a2)
1/2

th =
(1−H0)

4γb(βp − βb)
, (6)

and an optimal wake phase for injection (location of the
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FIG. 3: Electron distribution in longitudinal (uz, ψ) phase
space (a) before injection pulse collision (ωp∆t = 0), (b) dur-
ing collision (ωp∆t = 3), (c) just after collision (ωp∆t = 14),
and (d) at ωp∆t = 114 (38 MeV electron bunch with 1 fs
duration, 0.2% energy spread, and 0.9 mm-mrad normalized
emittance). The separatrix between trapped and untrapped
wake orbits (solid line) is shown.

forward injection pulse)

cosψopt = φ−1
0 [(1− βbβp)γbγ⊥(0)− (1 +H0)/2] , (7)

where H0 = H1D = 1/γp + φ0 for the 1D wake separa-
trix and H0 = H3D = 1/γp for the 3D wake separatrix
(trapped and focused). In the limits γ2

p � 1, β2
b � 1,

and a2
i � 1, Eqs. (6) and (7) become 4(a1a2)

1/2

th '
(1−H0)(1 + βb) and 2φ0 cosψopt ' 1 − H0 − 2βb with
H1D ' φ0 and H3D ' 0. As an example, φ0 = 0.7, βb =

−0.02, and γp = 50 imply a threshold of (a1a2)
1/2

th ' 0.25
and an optimal injection phase of ψopt ' 0 for injection
onto a trapped and focused orbit.

To further evaluate the colliding laser injection
method, the motion of test particles in the combined
wake and laser fields was simulated in 3D [10]. In the
numerical studies, the laser pulse axial profiles were half-
period sine waves (linearly polarized with Gaussian radial

profiles) with peak amplitude
√

2ai, such that 〈a2〉 = a2
i ,

and length Li. The wakefield is assumed to be nonzero
for ψ ≤ 3π/4 (see Fig. 1) and the test particles are loaded
uniformly with ψ > 3π/4 (initially at rest).

An example of the injection process is given in Fig. 3,
which shows the evolution in longitudinal phase space
(uz, ψ) of the test electron distribution (a) before the
collision of the injection laser pulses (in the untrapped
fluid orbit of the wake) at ωpt = 36, (b) during the col-
lision (crossing the wake separatrix) at ωpt = 39, (c)
after the collision at ωpt = 50, and (d) the resulting
energetic electron bunch at ωpt = 150 (z = 0.7mm).
Also shown is the 1D wake separatrix. The parameters

FIG. 4: Electric field profiles and corresponding wakefields,
plotted during the collision of the drive pulse and colliding
pulse versus x and z − ct (where z is the drive pulse propa-
gation direction), for the two-pulse configuration with a 30◦

interaction geometry.

are a1 = a2 = 0.32, L0 = 4L1 = 4L2 = λp = 40µm,
φ0 = 0.7, λ0 = λ2 = 0.8µm, λ1 = 0.83µm, and
r0 = r1 = r2 = 15µm, with the position of the for-
ward injection pulse centered at ψinj = −12.6. Af-
ter z ' 0.7mm of propagation following the collision,
Fig. 3(d), the bunch length is 1 fs with a mean energy
of 38MeV, a fractional energy spread of 0.2%, and a
normalized transverse emittance of 0.9mm-mrad. The
trapping fraction ftrap is 3%, corresponding to 2.6× 106

bunch electrons. Here, ftrap is defined as the fraction
of electrons trapped that were initially loaded in a re-
gion of length λp/4 with r ≤ 2µm (simulations indicate
that electrons loaded outside this region are not trapped).
Note that the bunch number can be increased by increas-
ing the laser spot sizes (i.e., laser powers). For example,
when the laser spot sizes are doubled ri = 30µm in the
simulation of Fig. 3 (all other parameters as in Fig. 3),
the number of trapped electrons increases to 1.5×107 and
the normalized transverse emittance increases to 3.9mm-
mrad. Estimates indicate that space charge effects can
be neglected while the bunch remains inside the plasma
[10].

III. COLLIDING PULSE INJECTION

EXPERIMENTS

Experiments on laser injection methods are being pur-
sued at several laboratories world-wide. For example,
at Lawrence Berkeley National Laboratory (LBNL), ex-
periments are underway on the colliding pulse method.
The initial set of experiments uses only two pulses: a
pump pulse for wakefield generation and a single back-
ward propagating injection pulse (see Fig. 4). Here the
pump and injection pulses have the same polarization
such that injection results from the slow ponderomotive
beat wave that is produced when the injection pulse col-
lides with the tail of the pump pulse. Experimentally,
the use of collinear pulses is technically challenging as
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FIG. 5: Lay-out of experiment showing the drive and collid-
ing laser beams exiting the compressor. The drive (colliding)
beam is focused onto the off-axis parabola OAP1 (OAP2),
which focus the beams under a 30◦ angle onto the gas jet.
The resulting electron beam charge is measured using the in-
tegrating current transformer (ICT).

the counterpropagating pulse must be reflected by a mir-
ror through which the electron beam must propagate
and off which the high power drive pulse must be re-
flected. Ultra-thin, dielectrically coated substrates are
being developed, but substrates that can handle the high
fluence in these experiments are not presently commer-
cially available. Therefore the current experimental im-
plementation uses non-collinear injection of the the drive
and colliding beams. Non-collinear injection has been
explored theoretically and shown to provide nearly the
same beam quality as collinear injection [12].

In these experiments two intense short laser pulses
were produced by a 10Hz, Ti:Al2O3, CPA laser system
[13]. Low energy pulses (λ ' 0.8µm) from a laser oscil-
lator were first temporally stretched, amplified to 1mJ
using a regenerative amplifier, split into two pulses, and
then amplified to 1 J/pulse and 0.3 J/pulse, respectively.
Each pulse was then compressed using its own grating
based optical compressor (installed in a vacuum cham-
ber) to pulse widths as short as 45 fs with an overall
power transmission efficiency of about 50% onto a gas
jet target.

Following compression, the main drive laser beam was
focused to a 6µm spot size with a 30 cm focal length
(F/4) off-axis parabola (OAP) onto the pulsed gas jet.
With this single drive beam, electron bunches have been
produced through self-modulation containing up to 5nC
charge with electron energy in excess of 40MeV [2]. The
colliding beam was focused to a 8µm spot size with an
identical OAP onto the pulsed gas jet with a 30 degree
angle with respect to the drive beam. The lay-out of
the experiment is shown in Fig. 5. The intersection
of the beams was measured using a CCD camera look-
ing from above onto the plasma region and with side-on
imaging. The top-view CCD camera image is shown in
Fig. 6, indicating the spatial overlap of the colliding and
drive beams.

The total charge per bunch and spatial profile of the
electron beam were measured using an integrating cur-

���������
beam	�
� ���

beam

Ga � � et

FIG. 6: Top view CCD camera image of the plasmas produced
by two laser pulses propagating in a backfilled chamber indi-
cating the spatial overlap of the beams: drive beam (horizon-
tal) and colliding beam (30◦). The measured light emission
is from recombination in the Helium plasma, and the shape
follows the Gaussian iso-intensity contours of a focused laser
beam. The drive beam was focused at the upstream edge of
the gas jet with a smaller f-number lens than the colliding
beam and hence has a shorter Rayleigh length. Ring passing
through the intersection point is caused by laser light scatter-
ing off the gas jet edge.
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FIG. 7: Electron beam charge measured using the ICT ver-
sus clock time when a single drive beam is used (lower charge
level) and when both drive and colliding beams are used
(higher level).

rent transformer (ICT) and phosphor screen imaged onto
a 16 bit CCD camera, respectively. As shown in Fig. 7,
preliminary results have been obtained that indicate elec-
tron yields have been affected by the second laser beam
which intersected the forward going drive laser beam at
30 degrees. Note that the peak power in the drive beam
was lowered to reduce the charge production to about
0.1 nC. The charge enhancement resulting from the sec-
ond pulse could be due to several mechanisms, such as
generation of a beat wave (i.e., colliding pulse injection),
heating of the background electrons, or other stochastic
processes. Ongoing experiments at LBNL are in the pro-
cess of measuring the electron beam spectra and carrying
out various parametric studies to understand in detail the
underlying injection mechanisms.
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