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Summary 
 
Full waveform inversion of seismic data is a challenging 
subject partly because of the lack of precise knowledge of 
the source.  Since currently available approaches involve 
some form of approximations to the source, inversion 
results are subject to the quality and the choice of the 
source information used.  A new full waveform inversion 
scheme has been introduced (Lee and Kim, 2003) using 
normalized wavefield for simple two-dimensional (2-D) 
scalar problems.  The method does not require source 
information, so potential inversion errors due to source 
estimation may be eliminated.  A gather of seismic traces is 
first Fourier-transformed into the frequency domain and a 
normalized wavefield is obtained for each trace in the 
frequency domain.  Normalization is done with respect to 
the frequency response of a reference trace selected from 
the gather, so the complex-valued normalized wavefield is 
source-independent and dimensionless. The inversion 
algorithm minimizes misfits between measured normalized 
wavefield and numerically computed normalized 
wavefield.  In this paper the full waveform inversion is 
extended to three-dimensional (3-D) problems.    
 
Introduction 
 
It is a common practice in seismic industry to estimate 
subsurface velocity structure by analyzing the traveltimes 
of the seismic signals.  In crosshole and surface-to-borehole 
applications, typical approaches involve ray tomography 
(e.g., Peterson et al., 1985; Nolet, 1985, Humphreys and 
Clayton, 1988; Scales et al., 1988; Vasco, 1991) and more 
recently Fresnel volume tomography (e.g., Cerveny and 
Soares, 1992; Vasco et al., 1995). Traveltime tomographies 
using ray tracing require high-frequency approximation, 
with maximum resolution on the order of a wavelength 
(Sheng and Schuster, 2000), or a fraction (5 %) of the well 
separation in some practical cases.  Due to lack of 
resolution, however, usefulness of ray tomography may be 
limited if the objective is to better understand the 
petrophysical and hydrological properties of soils and 
rocks. Such understanding is important in characterizing 
petroleum and geothermal reservoirs and in environmental 
applications of various scales. 
 
An alternative to traveltime tomography is full waveform 
inversion. Recent studies (e.g., Sen and Stoffa, 1991; 
Kormendi and Dietrich, 1991; Minkoff and Symes, 1997; 
Zhou et al., 1997; Plessix and Bork, 1998; Pratt, 1999a, 
1999b) suggest that full waveform inversion can provide 
improved resolution of the velocity and density structures. 

Amplitudes and phases of waveforms are sensitive to the 
petrophysical property of the materials through which the 
wave propagates.  Therefore, full waveform analyses may 
be used as tools in investigating hydrological and 
petrophysical properties of the medium.  There is, however, 
one major difficulty to overcome in full waveform 
inversion.  In all field applications, the effective source 
waveform, the coupling between the source and the 
medium, and the coupling between the receivers and the 
medium, are not very well understood.  The problem can be 
alleviated to some extent with a good velocity 
approximation (Pratt, 1999a), but the measured signals 
cannot be properly calibrated in general, rendering full 
waveform inversion technically difficult to apply. 
 
To overcome the above difficulty a simple inversion 
scheme has been proposed and tested using the normalized 
wavefield (Lee and Kim, 2003). The approach first 
transforms seismic data into the frequency domain and a set 
of normalized wavefield is constructed.  The normalized 
wavefield is independent of the spectrum of the source, so 
the method allows full waveform inversion without 
requiring the knowledge of the source signature. 
 
Normalized wavefield 
 
Let us assume a field survey involving NS source positions 
and NG receiver positions.  For general 3-D problems let us 
consider three component measurements at each receiver 
position and three source functions at each source position.  
It is assumed that measurements are in x, y, and z, and that 
the vector composition of each of three source functions is 
unknown.  The measurements may be in the form of 
pressure, displacement, velocity or acceleration, and are 
described in general as 
 

( ) ( ) ( ) ( )d d
ji j ji it t t= ⊗ ⊗D R P S t , 

j = 1, 2,…, NG,  i = 1, 2,…, NS,           (1) 
 
where the superscript d indicates data and ⊗ signifies 
convolution in time.  Here D  is the trace recorded at 
the j-th receiver position due to the i-th source. The source 
function S

( )d
ji t

i(t) includes source system function and the 
radiation pattern caused by source-medium coupling, and 
therefore is an effective source.  is the impulse 
response of the medium at the j-th receiver position due to 
the i-th source. The receiver function R

( )d
ji tP

j(t) includes the 
effects of the receiver system function and the medium-
receiver coupling.  In the following analysis Rj(t) will be 
ignored by assuming that receiver (geophone) calibration is 
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known and that the effect of medium-receiver coupling to 
data can be ignored in comparison with that corresponding 
to the source. The impulse response  is the 
generalized Green’s function solution to the wave equation 
with an impulse source in time at the i-th position. 
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Fourier transforming equation (1), FT{(D,P,S)(t)} → 
(D,P,S)(ω), ignoring Rj(t) factor, we get 
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where the convention of the subscripts for the normalized 
wavefield is the same as that used for the impulse response.  
In equation (6) the source function cancels out itself, so the 
normalized wavefield is defined as the normalized impulse 
response of the medium; hence the uniqueness of the 
normalized wavefield. The necessary condition for the 
source function to cancel out is that the determinant of the 
source matrix is non-zero.  In other words, three source 
functions need to be linearly independent.  Each element of 
the normalized wavefield is described in terms of 
individual elementary impulse responses in Appendix A. 

 
The data at the j-th receiver position in equation (2) may be 
written in tensor form: 
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Full waveform inversion  
 Here, multiple subscripts ‘lkji’ are used to describe data 

elements. The last two subscripts ‘ji’ indicate receiver (j = 
1, 2,…, NG) and source (i = 1, 2,…, NS) positions, and the 
first two subscripts ‘lk’ are used to describe Cartesian field 
components l = (1, 2, 3) generated by three source 
functions k = (a, b, c).  The three source functions are 
unknown and each source function may in turn be 
composed of three Cartesian components; i.e., 

.  So, the vector source function at the 
i-th position may be described by 

( 1 2 3, , T
ai ai ai ais s s=s

To obtain the numerical solution for the impulse response 
for wave equations one needs to spatially discretize the 
constitutive parameters, and apply finite difference, finite 
element, or integral equation technique to solve the 
discretized system.  Using the finite difference or finite 
element method, the assembled system of equations, 
including the damping, takes a general form (Marfurt, 
1984) 

 
 ( ) ( ) ( ) (t t t δ+ + =Cp Kp g )tMp ,            (7) 
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where the field vector p(t) is the discretized wavefield in 
the time domain, M is the mass matrix, K is the stiffness 
matrix, and C is the damping matrix.  If there is a total of N 
unknowns in the distretization, all M, C, and K are N × N 
square matrices, the field vector p is N × 1, and the load 
vector g is also N × 1 whose entries are all zero except a 1 
at the node where the source is located.  is the Dirac 
delta function in time, so the wavefield p(t) is the impulse 
response.  Boundary conditions between adjoining 
elements are implicitly included (Marfurt, 1984). 

( )tδ

 
The impulse response, or the Green’s function, of the 
medium relating the diagonal impulse sources at the i-th 
transmitter position to the measurements at the j-th receiver 
position may be written as  
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The reduced system of equations may be solved in the time 
domain, typically using the coupled first-order differential 
equations on a staggered grid (Virieux, 1984 and 1986; 
Levander, 1988; Randall, 1989; Graves, 1996), or in the 
frequency domain (Pratt, 1990; Pratt and Worthington; 
1990; Song and Williamson, 1995; Song et al., 1995; Pratt 
et al., 1998) after Fourier transforming equation (7), 
FT{p(t)} → p(ω), into 

 
To define the normalized wavefield, a reference point is 
first selected, say j = 1.  The normalized wavefield  is 

defined in such a way that , j = 2,…, NG.  It 
has a property of producing data at the j-th receiver position 
when it is post-multiplied by the data at the reference point.  
Explicitly, 

d
jiT

1
d d
ji ji i=D T D  

( ) ( ) ( )2- iω ω ω ω ω+ + =Mp Cp Kp g .            (8) 
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Next, I will show that the normalized wavefield defined by 
equation (6) is all that’s needed for the full waveform 
inversion.  In the inversion the objective functional consists 
of data misfit, and the misfit in normalized wavefield can 
be used just for that purpose.  For a given model one can 
generate synthetic data using equation (8), and then obtain 
the normalized wavefield for the model similar to the 
normalized wavefield for the data described by equation 
(6).  Formally, the frequency-domain synthetic impulse 
response at the j-th receiver position due to the impulse 
sources at the i-th source position may be obtained and 
designated as ( )m

ji ωP , 

{ 3

( )

    ( ) 0.5 ( )T T
m m O }

φ δ

φ δ δ δ δ

+ =

+ + +

m m

m γ m m H m m
.          (12) 

 
Here,  is a perturbation to the model parameter , 

 is an 
md m

mγ 1M ×  column matrix consisting of elements 

, 1, 2q , ...,
qm
φ M

 ∂ = 
∂  

 with M being the total number 

of parameters to be determined, and is compactly written as 
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P .            (9) where J is the Jacobian (sensitivity) matrix.  is an M × 
M square (Hessian) matrix consisting of elements 
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 written as  
where the superscript m indicates model.  Accordingly, the 
model normalized wavefield is obtained from the numerical 
solution for the given velocity model 
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The last term is small if either the residuals are small, or the 
forward differential equation is quasi linear (Tarantola, 
1987). The term is usually difficult to compute and is 
generally ignored.   
  The functional that will be minimized consists of the misfit, 
equation (12), and a constraint that will have a smoothing 
effect on the variation of the model in the updating process.  
Specifically, it may be written 

The inversion procedure starts with the misfit, with the 
subscripts to the normalized wavefields dropped  
 

2
( ) ( )m d

d= −m W T Tf ,            (11)  
( ) ( ) 2

mΦ δ φ δ λ δ+ = + +m m m m W m ,          (15)  
where ||•||2 denotes the Euclidean norm and Wd is used to 
account for the correlated measurement errors in the data.  
For data with uncorrelated errors Wd is diagonal with the 
inverse of measurement errors, usually the standard 
deviation, on its diagonal. The misfit between data and 
model normalized wavefields at the reference point is 

always zero ( )1 1 0.0m d
lk i lk it t- =

( m −T T

.  In setting up the data 

misfit, real and imaginary parts are separated, so the actual 
number of data used for the inversion is NEQ = 2 × NFREQ 
× NS × (NG-1) × 9, and the computation is done in real 
arithmetic.  The variable NFREQ is the number of 
frequencies used for the inversion.  The number of data 
includes nine normalized wavefield elements for each 
source-receiver pair.  Wd is an  square matrix, 

and the data misfit  is an  column 
matrix. 

×NEQ NEQ
)d NEQ 1×

 
where λ  is the Lagrange multiplier that controls relative 
importance of data misfit and model roughness, and Wm is 
an M × M weighting matrix of the model parameters.  
Minimization of functional (15) with respect to 
perturbation in model parameter results in a system of 
normal equations 
 

( )
( )                     

T TT
d d m m

TT m
d d

mλ δ+

= − −

J W W J W W

J W W T Td
,                         (16) 

 
from which the model parameter at the (k+1)-th iteration is 
updated to 
 

1 ,     1,2,...,k k k
q q qm m m q Mδ+ = + = .  

  
For inversion one may consider the Gauss-Newton method 
by first expanding the objective functional, equation (11), 
into a Taylor series (e.g., Bertsekas, 1982; Tarantola, 1987; 
Oldenburg et al., 1993) 

The iteration stops when the change in model parameters is 
below a preset tolerance, typically given in terms of root-
mean-square (rms) misfit. 
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Conclusions 
 
Normalized wavefield depends only on the subsurface 
model and the position of the source, and is independent of 
the source spectrum by construction.  The highlight of this 
paper is that 3-D full waveform inversion of seismic data 
can be achieved using the normalized wavefield, and that 
with the proposed method potential inversion errors due to 
source estimation required by conventional full waveform 
inversion methods can be eliminated. 
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