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Abstract. Iterative image estimation methods have been widely used in emission
tomography. Accurate estimation of the uncertainty of the reconstructed images
is essential for quantitative applications. While a theoretical approach has been
developed to analyze the noise propagation from iteration to iteration, the current
results are limited to only a few iterative algorithms that have an explicit multiplicative
update equation. This paper presents a theoretical noise analysis that is applicable
to a wide range of preconditioned gradient-type algorithms. One advantage is that
the proposed method does not require an explicit expression of the preconditioner and
hence it is applicable to algorithms that involve line searches. By deriving a fixed-point
expression from the iteration-based results, we show that the iteration-based noise
analysis is consistent with fixed-point analysis. Examples in emission tomography and
transmission tomography are shown. The results are validated using Monte Carlo
simulations.

1. Introduction

In emission tomography (e.g., positron emission tomography [PET] and single

photon emission computed tomography [SPECT]) data are not exactly line-

integrals of the tracer distribution. Hence the images obtained by the filtered

backprojection method have limited resolution and may contain artifacts (e.g., radial

elongation in PET). Iterative image estimation methods have been developed to

improve the image quality by accurately modeling the system response and noise

distribution. It is essential to estimate the uncertainty of the reconstructed images

for quantitative applications [Huesman, 1984, Mazoyer et al, 1986, Carson et al, 1993,

Llacer et al, 1993, Maitra and O’Sullivan, 1998]. For the linear Landweber algorithm,

Abbey and Barrett [Abbey and Barrett, 1995] presented exact expressions of the

expectation and covariance. However, theoretical analysis of nonlinear iterative methods

has been difficult. Below we briefly review some progress that has been made in this

direction.

Barrett et al. [Barrett et al, 1994] derived approximate formulae for the mean

and covariance of the maximum likelihood (ML) expectation maximization (EM)
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reconstruction [Shepp and Vardi, 1982, Lange and Carson, 1984] as a function of the

iteration number. The same approach was extended to one-step-late maximum a

posteriori (OSL-MAP) EM algorithm [Green, 1990] with gamma and Gaussian priors

by Wang and Gindi [Wang and Gindi, 1997] and more recently to unregularized block

iterative algorithms by Soares et al. [Soares et al, 2000]. This iteration-based approach is

attractive for algorithms that are terminated before convergence, as is common practice

for the EM algorithm and its ordered-subsets variants [Hudson and Larkin, 1994].

However, the current results are limited to a few iterative algorithms with explicit

multiplicative update equations, and the whole analysis in [Barrett et al, 1994] must

be repeated for a slightly changed algorithm. In addition, the current method is not

applicable to gradient-type algorithms that involve line searches.

An alternative approach was proposed by Fessler and Rogers [Fessler, 1996,

Fessler and Rogers, 1996], who analyzed the mean, variance, and spatial resolution at

the fixed-point of the objective function. The resolution and noise properties are com-

puted at the fixed-point using partial derivatives and truncated Taylor series approxima-

tions. Qi and Leahy [Qi and Leahy, 1999, Qi and Leahy, 2000] extended this approach

by deriving simplified expressions for the local impulse response function and covariance

using Fourier transform. Stayman and Fessler [Stayman and Fessler, 2000] used a sim-

ilar approximation in designing penalty functions for uniform resolution. Other exten-

sions of the fixed-point analysis include [Hsiao and Gindi, 2000, Qi and Huesman, 2001,

Fessler and Yendiki, 2002, Xing and Gindi, 2002]. While these results are independent

of the particular optimizing algorithm used, they require that the algorithm be iterated

to effective convergence. Hence, they are not applicable to the images obtained at early

iterations.

The above two approaches are complementary. We would expect that if we iterate

the algorithm until it converges, the iteration-based results in [Barrett et al, 1994,

Wang and Gindi, 1997] should match with the fixed-point results in [Fessler, 1996]. This

was shown in [Barrett et al, 1994] for the ML case. However, for MAP reconstruction

considered in [Wang and Gindi, 1997] and [Fessler, 1996], some discrepancy exists (see

Section 4.2).

Building on existing work, here we derive unified formulae for calculating the

mean and variance of the image estimated using iterative algorithms. The iteration-

based results are applicable to a wide range of preconditioned gradient-type algorithms,

which includes ML-EM and MAP-EM as special cases. They are extendible to ordered

subsets methods [Hudson and Larkin, 1994, Browne and De Pierro, 1996]. In addition

to emission tomography, the proposed method is also applicable to iterative transmission

reconstruction and image restoration.

This paper is organized as follows. Section 2 presents the theoretical analysis

of noise propagation for the preconditioned gradient algorithms. The relation with

fixed-point analysis is discussed in Section 3. In Section 4 we show some examples of

the application of the theoretical analysis to the emission tomography problem with

comparisons to previous results. The cause of the discrepancy between the results in
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[Wang and Gindi, 1997] and [Fessler, 1996] is examined. An application to transmission

tomography is shown in Section 5. In Section 6 we compare the theoretical results with

Monte Carlo simulation results. Finally, the conclusions are presented in Section 7.

2. A Unified Approach to Noise Analysis

In image estimation problems, the image is often estimated through maximizing an

objective function

x̂ = arg max
x≥0

[L(y|x) − U(x)] , (1)

where x is the tracer distribution, y is the noisy data, L(y|x) is the log likelihood

function (or data match term), and U(x) is the prior function (or penalty term). When

U(x) = 0, (1) reduces to the ML estimate.

A preconditioned gradient ascent algorithm that solves (1) can be written as

x̂k+1 = x̂k + αCk(x̂k) [∇xL(y|x) −∇xU(x)]x=x̂k , (2)

where α > 0 is a fixed step size, Ck(x̂k) is a positive definite matrix (preconditioner), and

∇x denotes gradient operation with respect to x. Note that the preconditioner Ck(x̂k)

can be a function of current image estimate. Both the ML-EM and MAP-EM in emission

tomography are special cases of (2). For simplicity, we will write ∇xL(y|x)|x=x̂k as

∇xL(y|x̂k), and ∇xU(x)|x=x̂k as ∇xU(x̂k) in the rest of the paper.

To analyze the noise, we write

x̂k = ¯̂x
k
+ εk (3)

y = ȳ + n (4)

where ¯̂x
k

and ȳ are the expectations of the image estimate x̂k and data y,

respectively, and εk and n are zero-mean noise vectors. Similar to [Barrett et al, 1994,

Wang and Gindi, 1997, Fessler, 1996, Soares et al, 2000], we assume that the noise level

in x̂k is low and hence the first-order Taylor series approximation can be used. Thus,

we have

∇xL(y|x̂k) ≈ ∇xL(ȳ| ¯̂xk
) + ∇xyL(ȳ| ¯̂xk

)n + ∇xxL(ȳ| ¯̂xk
)εk, (5)

∇xU(x̂k) ≈ ∇xU(¯̂x
k
) + ∇xxU(¯̂x

k
)εk, (6)

Ck(x̂k) ≈ Ck(¯̂x
k
) + Ck

x(ε
k; ¯̂x

k
), (7)

where the (j, l)th element of the operator ∇xx is ∂2

∂xj∂xl
, the (j, l)th element of the

operator ∇xy is ∂2

∂xj∂yl
, and the (j, l)th element of Ck

x(ε
k; x) is

∑
m εk

m
∂

∂xm
Ck

j,l(x). Note

that (5) may require n to be small if ∇xL(y|x) is not a linear function of y. Fortunately,

for Poisson and Gaussian distributions, which are commonly used in image estimation,

∇xL(y|x) is linear with respect to y. Hence the following results are applicable to

low-count situations in emission tomography with proper regularization.
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Substituting (5)-(7) into (2) and dropping all second-order noise terms results in

¯̂x
k+1

+ εk+1 ≈ ¯̂x
k
+ αCk(¯̂x

k
)
[
∇xL(ȳ| ¯̂xk

) −∇xU(¯̂x
k
)
]

+ εk + αCk(¯̂x
k
)
[
∇xyL(ȳ| ¯̂xk

)n + ∇xxL(ȳ| ¯̂xk
)εk −∇xxU(¯̂x

k
)εk

]
+ αCk

x(ε
k; ¯̂x

k
)
[
∇xL(ȳ| ¯̂xk

) −∇xU(¯̂x
k
)
]
. (8)

Separating the signal from the noise, we have

¯̂x
k+1 ≈ ¯̂x

k
+ αCk(¯̂x

k
)
[
∇xL(ȳ| ¯̂xk

) −∇xU(¯̂x
k
)
]

(9)

εk+1 ≈ εk + αCk(¯̂x
k
)
[
∇xxL(ȳ| ¯̂xk

) −∇xxU(¯̂x
k
)
]
εk

+ αM
[
∇xL(ȳ| ¯̂xk

) −∇xU(¯̂x
k
); ¯̂x

k
]
εk

+ αCk(¯̂x
k
)∇xyL(ȳ| ¯̂xk

)n, (10)

where the (j, l)th element of M [g; x] is
∑

m gm∂Ck
j,m(x)/∂xl.

Equation (9) shows that under the low-noise assumption, the expectation of the

reconstructed image is equal to the reconstruction of the expectation of the data.

Equation (10) is a linear update equation for the noise vector, which can be written

in the form of

εk+1 ≈ [I − Ak]εk + Bkn ≡ V k+1n, (11)

where

Ak = − αCk(¯̂x
k
)
[
∇xxL(ȳ| ¯̂xk

) −∇xxU(¯̂x
k
)
]
− αM

[
∇xL(ȳ| ¯̂xk

) −∇xU(¯̂x
k
); ¯̂x

k
]
, (12)

Bk = αCk(¯̂x
k
)∇xyL(ȳ| ¯̂xk

), (13)

and

V k+1 = [I − Ak]V k + Bk. (14)

The covariance of the reconstructed image is then

Σx̂k = V kΣy

[
V k

]′
, (15)

where Σy is the covariance matrix of the data.

The evaluation of (12) depends on the log likelihood function, the prior term, as

well as the structure of the preconditioner. In the following sections, we will study

(12) for linear preconditioners and derive a simplified expression for other complicated

preconditioners.

2.1. Algorithms with Linear Preconditioners

For the algorithms of which

Ck(x̂k) = diag
[
x̂k

]
Dk, (16)

where diag [x] denotes a diagonal matrix with the (j, j)th element being xj and Dk is

a positive definite matrix, M [g; x̂k] reduces to

M [g; x̂k] = diag
[
Dkg

]
.
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The ML-EM algorithm and the MAP-EM algorithm with an independent gamma prior

[Lange et al, 1987] are examples of this type of algorithm.

Using (2.1), equation (12) can be simplified to

Ak = − α
{
diag

[
¯̂x

k
]
Dk

[
∇xxL(ȳ| ¯̂xk

) −∇xxU(¯̂x
k
)
]

+ diag
(
Dk

[
∇xL(ȳ| ¯̂xk

) −∇xU(¯̂x
k
)
])}

. (17)

2.2. Simplification for Other Preconditioners

For a preconditioner that does not have the form of (16), the computation of M [g; x̂k]

can be difficult. To simplify calculation, we note that the overall contribution of

M
[
∇xL(ȳ| ¯̂xk

) −∇xU(¯̂x
k
); ¯̂x

k
]
εk

is quite small. At initial iterations εk is very small (when starting from a uniform

image), so εk+1 is dominated by Bkn; and at later iterations ∇xL(ȳ| ¯̂xk
) − ∇xU(¯̂x

k
)

approaches zero (if the algorithm increases the objective function). Therefore, we will

use the following approximation

M
[
∇xL(ȳ| ¯̂xk

) −∇xU(¯̂x
k
); ¯̂x

k
]
εk ≈ 0. (18)

Equation (18) is satisfied when Ck(x̂k) is independent of x̂k, or ∇xL(ȳ| ¯̂xk
)−∇xU(¯̂x

k
) ≈

0. For the ML-EM algorithm the latter is equivalent to “approximation 2” used

in [Barrett et al, 1994] that assumes the projection of the reconstructed image is

equal to the noise-free projection. For regularized algorithms it takes into account

the effect of the prior function. As demonstrated in the Monte Carlo simulations

[Wilson et al, 1994, Wang and Gindi, 1997], this approximation is accurate enough for

most situations, especially for regularized image reconstruction where the objective

function is better conditioned and hence gradient-type algorithms converge faster.

With (18), equation (12) reduces to

Ak = −αCk(¯̂x
k
)
[
∇xxL(ȳ| ¯̂xk

) −∇xxU(¯̂x
k
)
]
. (19)

2.3. Generalization to Data-Dependent Preconditioners

The above analysis has assumed that the preconditioner is conditionally independent

of data y given the current estimate xk. Here we extend the noise analysis to

preconditioners that are explicitly dependent on data. We rewrite the update equation

in (2) as

x̂k+1 = x̂k + Ck(x̂k,y)
[
∇xL(y|x̂k) −∇xU(x̂k)

]
. (20)

Equation (20) includes the gradient-type algorithms that use data-dependent

preconditioners [Lange et al, 1987] and/or determine the step sizes using line searches

[Lange, 1990]. Note that the variable step size has been lumped into Ck(x̂k,y).

Using the first-order Taylor series approximation, the data-dependent precondi-

tioner can be approximated by

Ck(x̂k,y) ≈ Ck(¯̂x
k
, ȳ) + Ck

x(ε
k; ¯̂x

k
, ȳ) + Ck

y(n; ¯̂x
k
, ȳ), (21)
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where the (j, l)th element of Ck
x(ε

k; x,y) is
∑

m εk
m∂Ck

j,l(x,y)/∂xm and the (j, l)th

element of Ck
y(n; x,y) is

∑
m nm∂Ck

j,l(x,y)/∂ym. Note this approximation requires that

εk and n are within the linear range of Ck(x̂k,y).

With this result, the new noise propagation equation becomes

εk+1 ≈ εk + C(¯̂x
k
, ȳ)

[
∇xxL(ȳ| ¯̂xk

) −∇xxU(¯̂x
k
)
]
εk

+ Ck
x(ε

k; ¯̂x
k
, ȳ)

[
∇xL(ȳ| ¯̂xk

) −∇xU(¯̂x
k
)
]

+ C(¯̂x
k
, ȳ)∇xyL(ȳ| ¯̂xk

)n

+ Ck
y(n; ¯̂x

k
, ȳ)

[
∇xL(ȳ| ¯̂xk

) −∇xU(¯̂x
k
)
]
. (22)

For data-dependent preconditioners, the computation of Ck
x(ε

k; ¯̂x
k
, ȳ) and

Ck
y(n; ¯̂x

k
, ȳ) can be very difficult. If the algorithm involves line searches, explicit

expressions may not even exist. To simplify the result, we assume

Ck
x(ε

k; ¯̂x
k
, ȳ)

[
∇xL(ȳ| ¯̂xk

) −∇xU(¯̂x
k
)
]
≈ 0, (23)

Ck
y(n; ¯̂x

k
, ȳ)

[
∇xL(ȳ| ¯̂xk

) −∇xU(¯̂x
k
)
]
≈ 0. (24)

Both assumptions are satisfied when ∇xL(ȳ| ¯̂xk
) − ∇xU(¯̂x

k
) ≈ 0 (equivalent to

approximation 2 in [Barrett et al, 1994]).

With the above approximations, (22) reduces to

εk+1 ≈ εk + C(¯̂x
k
, ȳ)

[
∇xxL(ȳ| ¯̂xk

) −∇xxU(¯̂x
k
)
]
εk

+ C(¯̂x
k
, ȳ)∇xyL(ȳ| ¯̂xk

)n, (25)

and we get

Ak = − C(¯̂x
k
, ȳ)

[
∇xxL(ȳ| ¯̂xk

) −∇xxU(¯̂x
k
)
]
, (26)

Bk = C(¯̂x
k
, ȳ)∇xyL(ȳ| ¯̂xk

), (27)

which are essentially the same as (19) and (13).

2.4. Remarks

Equations (11)-(14) [also (26) and (27)] are the main results in this paper. They are valid

for a wide range of preconditioned gradient-type algorithms. Using the proper likelihood

and prior functions, most results in [Barrett et al, 1994, Wang and Gindi, 1997,

Soares et al, 2000] can be directly obtained from these expressions (see Section 4). One

advantage of our method is that the theoretical analysis does not require an explicit

expression of the preconditioner and hence is applicable to algorithms that use line

searches.

Moreover, the theoretical analysis is also applicable to the algorithms that use

a different objective function at each iteration, such as the ordered subsets gradient

methods [Hudson and Larkin, 1994, Byrne, 1997]. While such algorithms may not

converge, the iteration-based noise analysis is valid as long as the noise in the

reconstruction is small.
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The fundamental assumption of the above analysis is that the noise in the image is

within the linear range of the gradient of the objective function and the preconditioner

so that the first-order Taylor series expansion can be used. As a result, the accuracy of

these expressions depends on the objective function and the algorithm. For algorithms

optimizing a quadratic objective function using a linear preconditioner, the above

assumption is always satisfied if there is no nonnegativity constraint, in which case the

theoretical results are exact. As the objective function deviates from quadratic form

and the preconditioner becomes nonlinear, the accuracy of the theoretical prediction

drops. In emission tomography with Poisson likelihood function we found that the

above assumption is often satisfied as long as the noise is small compared to the expected

image.

Another issue that requires the noise in reconstruction to be small is the

nonnegativity constraint. We can see that once we use the first order Taylor series

expansion and reach equation (8), the nonnegativity of ¯̂x
k+1

+ εk+1 is only satisfied

when the noise term in (10) is small compared to the mean reconstruction. Monte

Carlo simulations in [Wilson et al, 1994] show that this condition is almost always

true for clinically useful images. In practice one should check the above condition

by comparing the estimated variance with the reconstructed image. For the rare cases

where the condition is not met (this often occurs at regions that have extremely low

activity [Fessler, 1996, Qi and Leahy, 1999]), a method similar to that developed in

[Qi and Leahy, 2000] may be used to compensate for the nonnegativity constraint.

3. Relation to the Fixed-Point Analysis

We can obtain the fixed-point expression of the noise directly from the iteration-based

result. Let us assume that the step size and preconditioner are properly chosen so

that (2) converges [Luenberger, 1984]. Setting (10) to the fixed-point and using the

fixed-point condition ∇xL(ȳ| ¯̂x∞
) −∇xU(¯̂x

∞
) = 0, we get

ε∞ ≈ ε∞ + αCk(¯̂x
∞

)
[
∇xxL(ȳ| ¯̂x∞

) −∇xxU(¯̂x
∞

)
]
ε∞

+ αCk(¯̂x
∞

)∇xyL(ȳ| ¯̂x∞
)n, (28)

i.e.,

ε∞ ≈
[
−∇xxL(ȳ| ¯̂x∞

) + ∇xxU(¯̂x
∞

)
]−1 ∇xyL(ȳ| ¯̂x∞

)n, (29)

and the covariance of the reconstructed noise is

Σ∞ ≈
[
−∇xxL(ȳ| ¯̂x∞

) + ∇xxU(¯̂x
∞

)
]−1 ∇xyL(ȳ| ¯̂x∞

)

Σy[∇xyL(ȳ| ¯̂x∞
)]′

[
−∇xxL(ȳ| ¯̂x∞

) + ∇xxU(¯̂x
∞

)
]−1

. (30)

Equation (30) is exactly the same as the fixed-point result obtained in [Fessler, 1996].

Therefore, it shows that if the algorithm is iterated to convergence, the iteration-based

noise analysis and the fixed-point noise analysis are equivalent. While the fixed-point

expression (30) is obtained from the gradient algorithm of (2), (30) is valid for all
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convergent algorithms, provided that the solution of (1) is unique. This property is

partly demonstrated by the disappearance of the step size α and the preconditioner

Ck(x̂k).

4. Applications: Emission Tomography

In emission tomography, data are modeled as independent Poisson random variables

with the expectation ȳ related to the unknown tracer distribution x through an affine

transform

ȳ = Px + r, (31)

where P is the detection probability matrix with the (i, j)th element equal to the

probability of detecting an event from the jth voxel at the ith measurement, and r

accounts for the presence of scattered and random events in the data. To be consistent

with [Barrett et al, 1994, Wang and Gindi, 1997, Soares et al, 2000], we set r = 0.

The log likelihood function of the independent Poisson distribution is

L(y|x) =
∑

i

(yi log ȳi − ȳi − log yi!) , (32)

from which one can derive

∇xL(y|x) = P ′diag [Px]−1 y − s, (33)

∇xxL(y|x) = − P ′diag [Px]−2 diag [y] P , (34)

∇xyL(y|x) = P ′diag [Px]−1 , (35)

where s = P ′1 and 1 is a vector with all elements equal to unity.

4.1. ML-EM

For the ML-EM algorithm, we have αCk(xk) = diag
[
xk

]
diag [s−1] and U(x) = 0.

Substituting these expressions and (33)-(35) into (17) and (13), we get

Ak = diag
[
¯̂x

k
]
diag

[
s−1

]
P ′diag

[
P ¯̂x

k
]−2

diag [ȳ] P

− diag
[
¯̂x

k+1
]
diag

[
¯̂x

k
]−1

+ I, (36)

Bk = diag
[
¯̂x

k
]
diag

[
s−1

]
P ′diag

[
P ¯̂x

k
]−1

. (37)

These are exactly the same results as those derived in [Barrett et al, 1994] using

approximation 1 only, although the noise in [Barrett et al, 1994] is expressed in the

logarithm of the reconstructed image.

When approximation (18) is used, equation (36) reduces to

A = −diag
[
¯̂x

k
]
diag

[
s−1

]
P ′diag

[
P ¯̂x

k
]−1

P ,

which is the same as equation (28) in [Barrett et al, 1994] with some change of variables

(note that under approximation 2, ¯̂x
k

= ¯̂x
k+1

).
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4.2. One-Step-Late MAP-EM

For MAP-EM algorithms with a Gibbs prior that is defined on neighboring voxels,

the exact solution of the M-step in the EM algorithm is difficult to solve. Green

[Green, 1990] suggested a one-step-late (OSL) strategy to solve the problem. The OSL-

MAP-EM algorithm can be written in the form of (2) with

Ck(xk) = diag
[
xk

]
diag

[
s + ∇xU(x̂k)

]−1
(38)

and α = 1. The convergence of the algorithm can be achieved if the step size

is determined by a one-dimensional line search [Lange, 1990]. Wang and Gindi

[Wang and Gindi, 1997] studied the noise propagation of OSL-MAP-EM algorithm

(α = 1) with gamma and Gaussian priors. Here we derive more generalized results.

While (38) is not a linear preconditioner in the form of (16), an explicit expression

of M [g; x] can still be derived. After some calculation, we get

M [g; x̂k] = diag

[
g

s + ∇xU(x̂k)

] [
I − Ck(xk)∇xxU(¯̂x

k
)
]
. (39)

Here we use the component notation [Barrett et al, 1994] in which a/b denotes a vector

whose nth component is an/bn, where a and b are two vectors. Substituting these

expressions into (12) and (13), we obtain the following results for the OSL-MAP-EM

algorithm

Ak = diag


 ¯̂x

k

s + ∇xU(¯̂x
k
)


 P ′diag

[
P ¯̂x

k
]−2

diag [ȳ] P

+ diag


 ¯̂x

k+1

s + ∇xU(¯̂x
k
)


∇xxU(¯̂x

k
) − diag


 ¯̂x

k+1

¯̂x
k


 + I, (40)

Bk = diag


 ¯̂x

k

s + ∇xU(¯̂x
k
)


 P ′diag

[
P ¯̂x

k
]−1

. (41)

Equations (40) and (41) are independent of any particular form of prior. For a given

prior, we just need to substitute the corresponding ∇xU(¯̂x
k
) and ∇xxU(¯̂x

k
) into (40)

and (41).

To make a direct comparison with the results in [Wang and Gindi, 1997], we focus

on the Gaussian prior, of which U(x) can be written as

U(x) =
1

2
(x − m)′K−1(x − m), (42)

where m is the mean vector and K is the covariance matrix.

The corresponding expressions of Ak and Bk are

Ak = diag


 ¯̂x

k

s + K−1(¯̂x
k − m)


 P ′diag

[
P ¯̂x

k
]−2

diag [ȳ] P

+ diag


 ¯̂x

k+1

s + K−1(¯̂x
k − m)


 K−1 − diag


 ¯̂x

k+1

¯̂x
k


 + I (43)
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Bk = diag


 ¯̂x

k

s + K−1(¯̂x
k − m)


 P ′diag

[
P ¯̂x

k
]−1

. (44)

The above equations only depend on the first-order Taylor series approximation. Hence

they are more accurate than those in [Wang and Gindi, 1997] where ∇xL(ȳ| ¯̂xk
) ≈ 0

is assumed. Because ∇xL(ȳ| ¯̂xk
) ≈ 0 is the fixed-point condition of the ML estimate,

the approximation error can be quite large at early iterations or with strong priors. In

comparison, (43) and (44) do not have such problem (see simulation results in Section 6).

Another problem with using the fixed-point condition of the ML estimate is that

the result in [Wang and Gindi, 1997] is not consistent with the fixed-point analysis

in [Fessler, 1996]. One has to assume the gradient of the prior K−1(¯̂x
k − m) in

[Wang and Gindi, 1997] is zero in order to reach the correct fixed-point expression.

This can easily be understood: if the gradient of the likelihood term is assumed to be

zero, the gradient of the prior term will have to be zero as well to satisfy the fixed

point condition of the MAP estimation. Using approximation (18) can avoid such

inconsistency problems.

4.3. Ordered Subsets Algorithms

As we have pointed out in Section 2.4, the noise analysis in this paper is applicable to

ordered subsets gradient methods, such as the OSEM [Hudson and Larkin, 1994], RBI-

EM [Byrne, 1997, Byrne, 1998], RBI-MAP [Lalush and Tsui, 1998, Lalush et al, 2000],

and RAMLA [Browne and De Pierro, 1996] algorithms. For example, the rescaled

block-iterative (RBI) EM algorithm [Byrne, 1998, Soares et al, 2000] can be written

as

x̂k+1 = x̂k + Ck(x̂k)∇xL
k(y|x̂k), (45)

where Ck(x̂k) = diag
[
x̂k

]
diag [rms]−1, Lk(y|x̂k) is the likelihood function of the mth

subset of the data, m is the index of the subset used in the kth iteration, and rm is a

constant defined in [Soares et al, 2000] [equation (18)].

Using equations (13) and (17), we get

Ak = diag
[
¯̂x

k
]
diag [rms]−1 P ′

mdiag[P ¯̂x
k
]−2diag [ȳ] P

− diag [rms]−1 diag
[
P ′

mdiag
[
P ¯̂x

k
]−1

y
]

+ r−1
m I, (46)

Bk = diag
[
¯̂x

k
]
diag

[
s−1

]
P ′

mdiag
[
P ¯̂x

k
]−1

, (47)

which are the same as those in [Soares et al, 2000] [(45) and (46)] with changes of

variables. P m (= Hm in [Soares et al, 2000]) is the projection matrix for the mth

subset.

The RBI-MAP algorithm in [Lalush et al, 2000] can be written as

x̂k+1 = x̂k + Ck(x̂k)
[
∇xL

k(y|x̂k) −∇xU(x̂k)
]
,

where Ck(x̂k) = t−1
m diag

[
x̂k

]
diag

[
s + ∇xU(x̂k)

]−1
and t−1

m is defined in

[Lalush et al, 2000] [equation (8)].
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Since Ck(x̂k) cannot be written in the form of (16), we use (13) and (19). The final

results are

Ak = t−1
m diag


 ¯̂x

k

s + ∇xU(¯̂x
k
)


 {

P ′
mdiag

[
P ¯̂x

k
]−1

P + ∇xxU(¯̂x
k
)
}

(48)

Bk = t−1
m diag


 ¯̂x

k

s + ∇xU(¯̂x
k
)


 P ′

mdiag
[
P ¯̂x

k
]−1

. (49)

Similar results can also be derived for the RAMLA [Browne and De Pierro, 1996]

and BSREM algorithms [De Pierro and Yamagishi, 2001].

4.4. Algorithms with Inter-Update Linear Filtering

The noise analysis can also be extended to the algorithms with inter-update

linear filtering [Silverman et al, 1990, Jacobson et al, 2000]. Inter-update filtering was

introduced to reduce the noise in the ML-EM algorithm. With inter-update filtering,

the update equation becomes

x̂k+1 = F kx̂k + F kCk(x̂k)
[
∇xL

k(y|x̂k) −∇xU(x̂k)
]
, (50)

where F k denotes the convolution matrix of the linear filter at the kth iteration.

Applying the same approach as shown in Section 2, we can obtain the following

update equation for the noise vector

εk+1 ≈ F k[I − Ak]εk + F kBkn, (51)

where Ak and Bk are defined in (12) and (13), respectively.

5. Applications: Transmission Tomography

In transmission tomography the data can be modeled as independent Poisson random

variables with the mean equal to

ȳi = bie
−

∑
j

Pijxj ,

where bi denotes the rate of emissions from the transmission source to the ith

measurement and Pij denotes the intersection length of the ith ray passing though

the jth voxel.

For the Poisson likelihood function of transmission data, one can derive

∇xL(y|x) = P ′(q(x) − y) (52)

∇xxL(y|x) = − P ′diag [q(x)] P , (53)

∇xyL(y|x) = − P ′, (54)

where q(x) denotes a vector whose ith component is equal to bie
−

∑
j

Pijxj .

A gradient-type algorithm for transmission image reconstruction can be written as

[Lange et al, 1987]

x̂k+1 = x̂k + αkCk(x̂k,y)∇xL(y|x̂k),
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where Ck(x̂k,y) = diag
[
xk

]
diag [P ′y]

−1
and αk is a step size.

Substituting the above results into (26) and (27), we get

Ak = − αkdiag
[
¯̂x

k
]
diag [P ′ȳ]

−1
P ′diag

[
q(¯̂x

k
)
]
P , (55)

Bk = − αkdiag
[
¯̂x

k
]
diag [P ′ȳ]

−1
P ′. (56)

Using similar methods, it is also possible to derive the noise propagation

expressions for the SPS algorithms developed in [Erdogan and Fessler, 1999a,

Erdogan and Fessler, 1999b].

6. Simulation Results

Using the OSL-MAP algorithms with and without line searches, we conducted computer-

based Monte Carlo simulations to validate some theoretical results. A phantom similar

to that in [Wang and Gindi, 1997] was used (Figure 1). The image has 32×32 pixels.

The sinogram has 32 projection angles covering 180◦ and 32 detector bins per angle with

a sampling distance of one pixel. The total number of expected events in the sinogram

is 80,000. Scattered and random events are not simulated. The OSL-MAP algorithms

use a Gaussian prior with smoothing parameters of 0.1 and 1. The initial image is a

constant uniform image.

Figure 1 shows the original phantom image, mean of 8,000 Monte Carlo

reconstructions, and reconstruction of the noise-free data. The smoothing parameter is

0.1. As we expected, the noise-free reconstruction resembles the expectation of Monte

Carlo reconstructions.

0
2
4
6
8

Figure 1. Phantom image (left), mean of 8,000 Monte Carlo reconstructions (middle),
and noise-free reconstruction (right).

Figure 2 shows the comparison of the variance estimates that are computed using

Monte Carlo reconstructions, our theoretical expression [(43) and (44)], and Wang and

Gindi’s result in [Wang and Gindi, 1997] for the OSL-MAP algorithm without a line

search. Monte Carlo results were calculated using 8,000 independent reconstructions.

The left column plots the variance as a function of iteration. The right column plots the

relative root mean squared errors (RMS) of our results and Wang and Gindi’s results,
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when using the Monte Carlo results as the ground truth. The relative RMS is defined

as

RMS =

√√√√ 1

P

∑
i∈Disk

[
varth

i − varMC
i

varMC
i

]2

, (57)

where P is the number of pixels in the disk region, varth
i is the theoretical variance at

pixel i, and varMC
i is the Monte Carlo variance.

Figure 2 shows that our theoretical results match very well with the Monte Carlo

results at all the iterations for both the smoothing parameters that were studied. In

comparison, Wang and Gindi’s results have relatively large RMS at initial iterations

and with a large smoothing parameter (β = 1).

Figure 3 compares the theoretical predicted noise variance with Monte Carlo results

for the OSL-MAP algorithm with line searches. The line search was restricted to

satisfy the nonnegativity constraint in the image domain. We found that the step sizes

obtained in a noise-free reconstruction are not good representations of those in noisy

reconstructions because the nonnegativity constraint is much less active in a noise-

free reconstruction since data are consistent. Therefore, step sizes and reconstructions

obtained from a noisy data set are used in the theoretical expressions. The results are

more relevant to the real situations where noise-free data are unavailable. The plots show

that the maximum RMS is less than 18% at all iterations for both smoothing parameters.

RMS drops below 10% after 5 iterations, indicating that the approximations (23) and

(24) are reasonable.

In the above simulations the theoretical expressions are evaluated using the matrix

form (14). Each iteration of (14) contains about 1024 forward projection and 2048

backprojection operations, where 1024 is the number of image pixels. Hence the

computation cost for estimating the covariance matrix of the whole image can be quite

high for three-dimensional images. Fortunately, in most quantitative applications we

are only interested in a few regions of interest, which contain far fewer pixels. The

computation cost for estimating the variance of one pixel and its correlations with all

other pixels is about three times that of the reconstruction algorithm itself. Therefore,

for a limited number of regions of interest, the computation time is manageable.

7. Conclusion

We have presented a unified approach to the theoretical analysis of noise propagation

in iterative methods. The noise can be studied at each iteration as well as at the fixed-

point. The results are applicable to a wide range of gradient-type algorithms, including

the ordered subsets variants. We have shown that the iteration-based results are

consistent with the fixed-point analysis if the algorithm converges. Examples in emission

tomography and transmission tomography were shown. Our theoretical analysis is

consistent with results of the existing literature. Using OSL-MAP algorithms as

examples, we conducted Monte Carlo simulations showing that the proposed method can
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Figure 2. Plots of variances of OSL-MAP without line searches as function of iteration
(left column) and the relative RMS of the theoretical predictions (right column). The
legends are Monte Carlo results (dotted lines), our theoretical results (solid lines), and
Wang and Gindi’s results (dashed lines). In the left column the Monte Carlo results
overlap with our theoretical results.

predict variance of the reconstruction with and without line searches and outperforms

the results in the existing literature.
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Figure 3. Plots of variances of OSL-MAP with line searches as function of iteration
(left column) and the relative RMS of the theoretical predictions (right column). The
legends are Monte Carlo results (dotted lines) and our theoretical results (solid lines).
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