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Abstract 

It has been recognized that matrix diffusion is an important process for retarding solute 

transport in fractured rock. Based on analyses of tracer transport data from a number of 

field tests, we demonstrate that the effective matrix-diffusion coefficient may be scale-

dependent and generally increases with test scale. A preliminary theoretical explanation 

of this scale dependency is also presented, based on the hypothesis that solute travel paths 

within a fracture network are fractals.  
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1. Introduction  
 
The exchange of solute mass between fluid in the fractures and fluid in the rock matrix is 

called matrix diffusion. Owing to the order-of-magnitude slower flow velocity in the 

matrix compared to fractures, matrix diffusion can significantly retard solute transport in 

fractured rock, and therefore is an important process for a variety of problems including 

remediation of subsurface contamination and geological disposal of nuclear waste [e.g., 

Neretnieks, 2002; Jardine et al., 1999; Bodvarsson et al., 2000].  

 

The effective matrix diffusion coefficient is an important parameter for describing matrix 

diffusion, and in many cases largely determines overall solute transport behavior. For 

example, Figure 1 shows simulated breakthrough curves for a radionuclide moving from 

a repository to the water table within the unsaturated zone of Yucca Mountain, Nevada, 

the proposed site for a high level nuclear waste repository. These simulated curves were 

generated with the site-scale model of Yucca Mountain [Wu et al., 2002; Moridis et al., 

2003]. The distance between the repository horizon and the water table is about 300 m. 

As shown in Figure 1, the performance of the proposed repository (or travel time of a 

radionuclide within the unsaturated zone) is largely determined by the effective matrix-

diffusion coefficient. A larger coefficient corresponds to a better performance.  
 
Matrix diffusion coefficient values measured from small rock samples in the laboratory 

are generally used for modeling field-scale solute transport in fractured rock [Boving and 

Grathwohl, 2001; Moridis et al., 2003]. Recently, several research groups have 

independently found that effective matrix-diffusion coefficients much larger than 

laboratory measurements are needed to match field-scale tracer-test data [Shaprio, 2001; 

Neretnieks, 2002; Liu et al., 2003 a, b]. These authors have also offered several different 

explanations for the need to increase coefficient values at test sites under consideration. 

However, the fundamental question of whether a systematic relation exists between 

effective matrix diffusion coefficient and test scale remains unanswered.  

 

The major objective of this note is to demonstrate, based on data published in the 

literature, that the effective matrix-diffusion coefficient is scale dependent and generally 
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increases with scale. A preliminary explanation, based on a hypothesis of fractal paths for 

solute transport in fractures, is presented for this possible scale-dependent behavior.  

 

2. Data from literature 

Effective matrix-diffusion-coefficient values have been estimated from a number of field 

test sites characterized by different rock types. To compile these values (corresponding to 

different tracers) as a function of test scale, we define a matrix-diffusion-coefficient ratio, 

RD, as an effective coefficient value (estimated from field data) divided by a local value. 

It is an indicator of scale dependency that is expected to exist when RD is always larger 

than one at field scale and is a function of the test scale. 

  

The local matrix-diffusion-coefficient values, De, refer to laboratory measurements for 

small rock samples, or estimated from the following relationship (when laboratory 

measurements are not available): 

0DDe τ=                                                                                     (1) 

where D0 is the molecular diffusion coefficient in free water, and τ is the tortuosity factor 

determined here with Archie’s law [Boving and Grathwohl, 2001]: 

1−= mφτ                                                                                          (2) 

Here, φ is the matrix porosity, and m is an empirical parameter. Boving and Grathwohl 

[2001] compiled m values for different types of rocks and found that m is generally larger 

than 2 in materials of low porosity (≤ 0.2).  By comparing measured local-scale matrix 

diffusion coefficients and the corresponding molecular-diffusion-coefficient values in 

free water, Moridis and Hu [2000] concluded that m=2 is a good approximation for the 

rock matrix in the unsaturated zone of Yucca Mountain. The laboratory data cited by 

Becker and Shapiro [2000] suggest that m=2.93 (obtained using measured φ = 1.5%) is 

valid for the crystalline rock matrix under consideration. Therefore, it is very likely that 

m=2 corresponds to the upper limit for the tortuosity factor for a rock matrix with 

porosity less than 0.2. To avoid potential exaggeration of scale effects (or an artificial 

increase in estimated RD values), we use m = 2 here. Note that some researchers 

[Maloszewski and Zuber, 1993; Jardine et al. 1999] also used effective diffusion 
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coefficients estimated from Equation (1) to match field observations. In this case, the 

corresponding RD values are simply determined as the ratio of their selected values for 

tortuosity factor to the corresponding rock matrix porosity (≤ 0.2).   

 

Figure 2 shows the relationship between effective matrix diffusion coefficients, 

determined from a number of sites by different research groups [Maloszewski and Zuber, 

1993; Jardine et al. 1999; Becker and Shapiro, 2000; Callahan, 2000; Shapiro, 2001; 

Neretnieks, 2002; Liu et al., 2003a,b], and the corresponding test scales. Jardine et al. 

[1999] performed and analyzed a carefully designed tracer test in fractured shale bedrock. 

They were able to obtain breakthrough curves from wells with different distances to the 

source. However, the same parameters were used to match all the breakthrough curves 

for a given tracer. As indicated in their Figure 9, the breakthrough curves from wells 

about 6 m from the source are reasonably matched, but the curve from the well 17 m 

from the source is not.  A larger effective matrix-diffusion-coefficient value seems to be 

needed to match the data from the latter well, an indication of a possible increase in the 

coefficient with scale. Therefore, in Figure 2, the fitted effective matrix diffusion is 

considered to correspond to a test scale of 6 m only. Note that, as indicated by Jardine et 

al. [1999], their intentions were not to rigorously model all of the processes contributing 

to solute transport in the system, but rather to test the importance of matrix diffusion. 

 

Neretnieks [2002] reported matches to tracer test data collected from the Äspö site with a 

test scale of 5 m and found a need for a factor 30 times larger for the fracture-matrix 

interface area (or effective matrix-diffusion coefficient) than expected. Note that the 

increase in fracture-matrix interface area is equivalent to the increase in effective 

diffusion coefficient (for a given interface area in a model). Interestingly, he also 

indicated that nine other research groups had also independently evaluated the tracer test 

data from the site using different modeling approaches. Nearly all the groups found the 

need for a factor 30-50 times larger effective fracture-matrix interface area (or effective 

matrix-diffusion coefficient) than expected. In Figure 2, a representative RD value of 40 

is used for the Äspö test site.  
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Liu et al. [2003 a,b] presented model analyses of two different field test data, collected in 

the unsaturated zone of Yucca Mountain by scientists from the U. S. Geologic Survey 

and Lawrence Berkeley National Laboratory. Unlike studies reported by other 

researchers mentioned in this note, Liu et al. [2003 a,b]  matched both the flow field 

(characterized by water travel time and/or seepage into subsurface openings) and tracer 

breakthrough curves. They reported that increased fracture-matrix interface areas (or 

effective matrix diffusion coefficients) were needed for both tests. Note that the data of 

Callahan et al. [2000] were also collected for the rock matrix in the unsaturated zone of 

Yucca Mountain. 

 

Becker and Shapiro [2000] and  Shapiro [2001] reported analyses of tracer test data from 

fractured crystalline rock at Mirror Lake site. Becker and Shapiro [2000] showed that 

laboratory measurement of the effective diffusion coefficient should be replaced by the 

coefficient in free water (corresponding to RD = 3,333) to match the bromide data in their 

Test C with a test scale of about 36 m.  However, they were not able to match all the 

breakthrough curves for different tracers, and argued that advective transport processes 

contribute to this discrepancy. An alternative explanation may be that a simple model 

used by those authors cannot capture all the importance processes (such as effects of 

subsurface heterogeneity), even when matrix diffusion is a dominant process. 

Nevertheless, the value of RD = 3,333 is included in Figure 2.  Shapiro [2001] found that 

3-5 orders of magnitude greater than the estimates of the matrix-diffusion coefficient 

from laboratory experiments were needed to match the tracer data observed at a kilometer 

scale. His analysis probably provides the first estimate for kilometer-scale effective 

diffusion coefficient. A representative value of Shapiro [2001] for RD (1.0E+4) is used in 

Figure 2. 

 

Figure 2 also includes analyses results of Maloszewski and Zuber [1993] for three 

different sites. Note that a recent analysis result of a tracer test by McKenna et al. [2001] 

is not included in Figure 2, because the analysis does not provide an independent estimate 

of the effective diffusion coefficient, but rather a lump parameter that includes effective 

diffusion coefficient, fracture spacing, and other properties.            
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3. A fractal-based explanation 

Although some uncertainties exist, the data shown in Figure 2 seem to strongly suggest 

that the effective matrix diffusion coefficient, like permeability and dispersivity, 

increases with test scale. A number of researchers have attempted to explain why the 

effective coefficient determined from field data is larger than the corresponding 

laboratory value [Shaprio, 2001; Neretnieks, 2002; Liu et al., 2003 a, b]. 

 

Shaprio [2001] suggested that kilometer-scale “effective matrix diffusion” is not a 

diffusive process, but actually an advective process between high and low permeability 

zones, resulting in a significantly large “effective diffusion coefficient.” While this may 

be a plausible explanation, further confirmation is still needed. For example, Liu et al. 

[2003 a,b] used a dual-permeability model involving both fast flow in fractures and slow 

flow in the matrix (as well as the advective transport between the two) and still found the 

need to use increased effective diffusion coefficients for matching the tracer test data. 

Neretnieks [2002] argued that existence of fracture in-filling creates relatively large areas 

for solute to diffuse into rock matrix, which, together with the process of diffusion into 

stagnant water, contributes to the need for increasing the effective diffusion coefficient to 

match the data. Liu et al. [2002; 2003a,b] and Wu et al. [2003] indicated that the 

existence of many small-scale fractures (which considerably increase the fracture-matrix 

interface area, but are not considered in numerical models) may be the major reason for 

the relatively large effective diffusion coefficient calculated from field data. While these 

suggested mechanisms seem to be reasonable for field-scale solute transport in fracture 

rock, they cannot be directly used to explain why the effective diffusion coefficient 

increases with test scale.   

 

In this study, we propose a fractal-based explanation for the scale-dependent behavior of 

the effective diffusion coefficient.  The fractal concept has been found to be useful for 

describing both subsurface heterogeneity and many flow and transport processes [e.g., 

Wheatcraft and Tyler, 1988; Molz and Boman, 1993].  In commonly used numerical and 

analytical models of solute transport including matrix diffusion [e.g., Sudicky and Frind, 

1982; Wu et al., 2003], an actual fracture network is generally conceptualized as parallel 
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vertical or horizontal fractures. A fracture wall is approximated as a flat wall. In this case, 

solute particle travel paths within fractures are generally straight lines. However, the 

actual solute particle travel path is much more intricate and tortuous for the following 

reasons. First, fracture walls are not flat but rough. The rough surface generates a much 

larger fracture-matrix interface area than a flat fracture wall, and the fracture roughness is 

characterized by fractals [National Research Council, 1996]. Second, fractures exist at 

different scales, with small-scale fractures generally excluded from modeling studies [Wu 

et al., 2003]. However, these small-scale fractures can make flow and transport paths 

much more tortuous than straight lines, as demonstrated by Liu et al. [2002]. Considering 

that both fracture roughness and fracture-network geometry can be characterized by 

fractals [e.g., Barton and Larsen, 1985], it is reasonable to hypothesize that a solute 

travel path within a fracture network is fractal, rather than a straight line (as assumed in 

many numerical or analytic models).  

 

The length of the fractal solute travel path (L) between tracer release and monitoring 

points depends on the spatial scale (or length of a ruler, δ) used to measure it. We denote 

the straight-line distance between the release and monitoring points as L*.  Considering 

that matrix diffusive flux is proportional to the fracture-matrix interface area (or the 

length of solute travel path), and assuming the local matrix-diffusion coefficient to be 

precise, we can approximate RD as a ratio of actual fracture-matrix interface area to the 

area used in numerical or analytical models: 

 

*
)(

L
LRD δ

=                                                                                    (3) 

Following the procedure of Feder [1988] to determine the length of the coast of Norway, 

L can be determined by  

 

δ
δ

δδδ DLNL )*()()( =∗=                                                        (4) 

where N is the number of rulers with length  δ (needed to measure the length of fractal 

solute travel path between tracer release and monitoring points), and D >1 is the fractal 

 8 



dimension of a solute travel path. Assuming that a solute travel path within a small 

interval δ can be approximated as a straight line, we obtain the following relationship 

based on Equations (3) and (4): 

 
111 *)(*)( −−− ∝= DDD LLRD δ                                                    (5)  

The above equation indicates that RD is a power function of test scale L*.  Because D >1,  

RD increases with L*, consistent with results showed in Figure 2. The power value, D-1, 

in Equation (5) is expected to be site specific.  Fitting Equation (5) to data points (Figure 

2) for the Yucca Mountain site [Callahan, 2000; Liu et al., 2003a,b] and Mirror Lake site 

[Becker and Shapiro, 2000; Shapiro, 2001] results in D = 1.7 and 1.3, respectively.  

 

4. Concluding remarks 

While the scale dependency of permeability and dispersivity has been a popular research 

topic for many years in the subsurface hydrology community, we demonstrate in this note 

that the effective matrix-diffusion coefficient may also be scale-dependent and increases 

with test scale. This finding has many important implications for problems involving 

matrix diffusion. As clearly demonstrated in Figure 1, the simulated radionuclide travel 

time within the unsaturated zone of Yucca Mountain may be significantly underestimated 

when this scale-dependent behavior is not considered.  

 

We also presented a fractal-based explanation for the possible scale-dependent behavior 

of the effective matrix-diffusion coefficient. However, note that uncertainties exist in the 

estimated effective diffusion coefficients given in Figure 2, because these coefficients 

have been obtained from inverse modeling, which cannot give unique parameter values. 

Therefore, more carefully designed field tests and numerical experiments using realistic 

fracture networks are still needed to confirm this scale-dependent behavior and to 

develop more rigorous theoretical explanations.     
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Figure 1. Breakthrough curves at the water table of the Yucca Mountain site for a tracer 
from the repository level. The normalized mass fraction refers to the ratio of 
accumulative tracer mass transporting to the water table to the initial mass at the 
repository level.          
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Figure 2. Effective matrix diffusion coefficient as a function of test scale. RD refers to 
the effective coefficient value (estimated from field data) divided by the corresponding 
local value. 
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