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Abstract--Dynamic cardiac SPECT imaging can provide 

quantitative and possibly even absolute measures of 
physiological parameters. However, a dynamic cardiac SPECT 
study involves a number of steps to obtain estimates of 
physiological parameters of interest. One of the key steps 
involves the selection of regions of interest. In the past, this has 
been done manually or by using a semi-automatic method. We 
propose to use cluster analysis to segment the data to obtain 
improved parameter estimates. The algorithm consists of using 
a standard k-means clustering followed by a blood input fine-
tuning procedure using fuzzy k-means performed to obtain a 
more accurate blood input function. Computer simulations were 
used to test the algorithm and to compute bias in kinetic rate 
parameters with and without the use of blood input fine-tuning. 
This was followed by performing eight studies in three canines 
and three studies in two patients with a dynamic cardiac 
perfusion SPECT protocol. The short-axis slice image data were 
used as input for the cluster analysis program as well as for a 
previously validated semi-automatic method. All of the time 
activity curves were fit to a two-compartment model. 
Parametric images of the wash-in rate parameter were obtained 
after cluster analysis. The wash-in rate estimates from the 
selected regions of interest with both of the methods were 
compared using microsphere derived flows as a gold standard in 
the case of canine studies. Our results suggest that in regions 
with low noise, cluster analysis provides parameter estimates 
comparable to the semi-automatic method in addition to 
providing improved visual defect localization and contrast. 
Moreover, the clustered curves have less noise and yield 
reasonable fits where with the semi-automatic method the fitting 
routine sometimes failed to converge. The use of clustering also 
required less manual intervention than the semi-automatic 
method. These results indicate that use of clustering may bring 
dynamic cardiac SPECT closer to clinical feasibility. 

I. INTRODUCTION 

W ORK done by several investigators has shown the 
potential of dynamic cardiac SPECT to provide 

quantitative measures of myocardial physiological parameters 
[1]-[4]. Our group has shown that the use of tracers such as 

99mTc-labelled teboroxime (teboroxime) and Thallium-201 
(201Tl) with dynamic cardiac SPECT yields parameters that 
correlate with myocardial blood flow in addition to providing 
improved defect contrast [2]-[4].  

The processing of dynamic data consists of reconstructing 
the projection data and selecting regions of interest to obtain 
time-activity curves that are then fit to appropriate models 
representing the tracer kinetics. In the case of some dynamic 
PET as well as SPECT studies, pixel-wise fitting of the time-
activity curves has been used [5], [6]. The presence of high 
statistical noise in dynamic cardiac SPECT however, has led 
to using regions of interest (ROIs) that are typically about 
1.5-2.5 cm3. This selection of ROIs is done either manually 
or by using a semi-automatic method. The semi-automatic 
method selects myocardial regions from the short-axis slices 
based on a histogram specification technique [7], while the 
blood input function is obtained by manual region selection. 
This can result in high statistical noise in the resulting time-
activity curves due to non-optimal region selection causing 
occasional failure of the fitting routine to converge. 

In this work, we develop a clustering technique to segment 
dynamic cardiac SPECT data and then form parametric 
images by fitting the resulting clusters to a two-compartment 
model. Different approaches to cluster analysis have been 
used previously by others with dynamic FDG PET studies to 
segment the data [8], [9].  

Our main aim is to develop an automated method for 
segmenting dynamic cardiac SPECT data using clustering 
and also obtain parametric maps with improved estimates 
reflecting blood flow. The two tracers used for this 
investigation are teboroxime and 201Tl. The method is 
validated with the use of simulations and real studies 
employing canines and patients and the rate estimates are 
compared to that obtained with the present semi-automatic 
technique. Microsphere derived flows are used as a gold 
standard for comparison in the case of canine studies. 

II. METHODS 
                                                           

A.  Algorithm Manuscript received December 2, 2002. This work was supported by NIH 
under Grant R01 HL50663 and by U.S. Department of Energy contract DE-
AC03-76SF00098. 

The process of segmenting the time-activity curve data 
from dynamic SPECT studies was done using a clustering 
technique. First, a standard k-means procedure [11] was used 
to segment the time-activity curves based on minimizing the 
least-squares distance between the curves. The standard k-
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the time-activity curve for spatial location n and µp is the 
average curve of the members of the pth cluster Cp [10]. The 
algorithm first selects an initial set of cluster centers based on 
maximizing the least-squares distance. The time-activity 
curve from each pixel, represented by the an vector, is then 
compared to each cluster and assimilated with the cluster 
having minimum least-square distance. The cluster centroid 
is then recomputed as the mean of the curves constituting the 
given cluster. This process is repeated with the new updated 
cluster centroids till the time-activity curves stop changing 
clusters. 

The second step consists of employing a fuzzy k-means 
procedure aimed at obtaining a more accurate blood input 
function. We refer to this as the blood input fine-tuning. In 
this method, the clusters obtained from the standard k-means 
process were used to obtain graded membership of each pixel 
with the cluster means expressed below: [11] 
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Here, d is the distance measure similar to that used in the 
standard k-means case above and b is the fuzzification 
parameter that has been set to 1.1. The value of b is 
dependent on the noise level but changes in this parameter 
were not found to affect the results for our studies. 

The use of the left ventricular blood cluster from the 
standard k-means clustering may result in an input function 
being contaminated by the surrounding myocardial tissue 
uptake, particularly when few clusters are used. The use of 
the fuzzy k-means gave a membership function for each pixel 
along with the cluster means that was in turn used to select 
the most likely blood pixels from the blood cluster. The 
selection of blood pixels was performed by using a 
probability threshold. 

An example of the application of the algorithm consisting 
of the two steps as explained earlier with dynamic 
teboroxime canine data is shown in Fig. 1. Thirty clusters 
were used to segment the 4D short-axis data and the resulting 
clusters fit to a two-compartment model to obtain the kinetic 
rate parameters. The figure shows the summed static short-
axis images as well as the corresponding wash-in parametric 
image with clustering. Outliers consisting of blood regions 
were set to zero in the case of the wash-in parametric image. 

B. Simulations 
Computer simulations modeling the myocardial uptake of 

teboroxime were performed to test whether the blood input 
function from using only standard k-means clustering results 
in bias in the parameter estimates. The blood input function 

from a patient study with a bolus infusion was used as a 
reference to obtain a functional form of the blood input 
function. The blood input function used was: 
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The four sets of parameters listed in Table I were obtained 
from real studies and used to simulate the myocardial tissue 
uptake using a two-compartmen  model: t
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Here c(t) is the measured uptake, fv is the vascular fraction of 
blood present in tissue, k21 is the wash-in parameter and k12 is 
the wash-out parameter. 

Noise-free simulations were performed for every 
parameter set in Table I. For each set, fv was changed from 0 
to 0.9 in steps of 0.1 and the time-activity curves were 
simulated using a two-compartment model. For each set, 50 
identical curves representing myocardial uptake for each step 
of fv along with 200 identical curves representing the blood 
input function were obtained. Hence, a total of 700 curves 
were segmented with cluster analysis. A total of five clusters 
were obtained for each set of 700 curves from which the 
blood input function was selected as the cluster 
encompassing the blood region while the remaining clusters 
were fit to the two-compartment model. The clusters obtained 
were then passed on to the fuzzy k-means procedure to obtain 
a graded membership with each pixel. The pixels in the blood 
cluster were labelled as blood if they had a probability over a 
certain threshold; if not, they were assigned to the cluster 
with the next highest membership. An average of the 
probabilities of the most likely blood pixels selected 
manually was used as the threshold for the blood input fine-
tuning procedure. This helped to remove non-blood pixels 
labelled as blood. The bias in the fits for both methods was 
calculated as the difference between the estimate and the 
truth divided by the truth. 

The above simulations were also repeated after adding 
zero-mean Gaussian noise with intensity dependent variance 
to all the time-activity curves and computing the clusters with 
and without the use of blood input fine-tuning. The bias in 
the parameter estimates was also computed similar to that in 
the noise-free case. For all the sets, the mean and the standard 
deviation in the bias in the rate estimates for all the cluster 
fits (number of trials = 16) was also computed. 

C. Canine and patient studies 
Eight studies (four teboroxime and four 201Tl) were 

performed in three canines. Among these, four studies (two 
teboroxime and two 201Tl) were performed at rest and four 
(two teboroxime and two 201Tl) with the adenosine stress 
protocol. In addition, three studies (one teboroxime rest, one 
teboroxime stress and one 201Tl stress) were performed in two 
patients with dynamic cardiac SPECT.  
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In two canine studies, an occlusion was placed on the left 
anterior descending artery while the third canine study was 
performed under normal physiological conditions. 
Radioactive microspheres (Sn-113, Ru-103) were used to 
obtain blood flows used as a gold standard. The tracer was 
injected over 5-10 sec (about 3 mCi for 201Tl and about 30 
mCi for teboroxime) intravenously and the scan began 10 sec 
before the tracer injection. In the case of stress studies, 
adenosine was infused over six minutes starting three minutes 
prior to the start of imaging. Complete sets of projection data 
(64 bins × 64 slices × 120 angles) were obtained with a 
dynamic sequence. For the teboroxime study, 180 frames of 
projection data were obtained with an acquisition time of 5.6 
sec each. The 201Tl study was performed in two stages with 
the first stage consisting of 60 frames each with an 
acquisition time of 10 sec and the second stage with 30 
frames each with an acquisition interval of 60 sec. The 
projection data for each study were reconstructed using the 
Ordered Subsets Expectation Maximization (OS-EM) 
algorithm with compensation for attenuation and detector 
response and reoriented into short-axis slices. 

The dynamic cardiac SPECT protocol for patient studies 
was similar to the canine studies. The dynamic 201Tl data 
were obtained in two stages with the first stage consisting of 
60 frames of 10 sec each and the second stage consisting of 
60 frames of 60 sec each. The dynamic teboroxime data on 
the other hand consisted of 90 frames with an acquisition 
time of 10 sec each. All the dynamic frames were 
reconstructed and reoriented into short-axis slices. 

The summed static data for the canine as well as patient 
studies were obtained by skipping the first 600 sec (for 201Tl) 
or 100 sec (for teboroxime) and summing the next 20 min 
(for 201Tl) or 10 min (for teboroxime) dynamic data. The 
summed static data were reconstructed and reoriented into 
short-axis slices and used with the semi-automatic method to 
obtain the regions of interest [7]. The semi-automatic method 
required the summed static short-axis slice data as input and 
found regions of interest based on a histogram specification 
technique. In this method, it is assumed that the short-axis 
slices are fairly circular and the regions of interest are found 
by selecting radii that have a specified Gaussian distribution. 
Moreover, the regions of interest on each slice are selected 
independently. More details regarding this method can be 
found in [7].  

The short-axis dynamic frames were used for cluster 
analysis. The number of clusters chosen for each study was 
based on the noise present in the time-activity curve data. For 
example, in the case of teboroxime studies with relatively 
little noise, more clusters were chosen while for the 201Tl 
studies, fewer clusters were selected. Based on this, 30 
clusters were used for segmenting the 4D short-axis dynamic 
teboroxime canine data while 25 clusters were chosen for 
dynamic 201Tl canine studies. The patient data for both 
dynamic teboroxime as well as dynamic 201Tl were equally 
noisy and hence only 25 clusters were chosen. The threshold 
for the blood input fine-tuning process was selected by 

averaging the probabilities of the most likely blood pixels 
chosen manually. A two-compartment model was used to fit 
all the time activity curves using the blood input function 
obtained. The blood regions and regions that were not able to 
be fit, were set to zero by placing constraints on the kinetic 
rate parameters. This was done by removing clusters that had 
fv greater than 0.7 and also removing regions with negative or 
insensitive k21 or k12. The spatial locations of the remaining 
clusters were assigned the rate parameter estimates and hence 
parametric images were obtained. 

In order to compare the rate parameter estimates obtained 
by cluster analysis and with the semi-automatic method, the 
regions obtained by semi-automatic analysis were used to 
obtain average kinetic rate parameter estimates from the 
corresponding regions in the clustered parametric images. 
The wash-in rate parameters were used to reflect flow. The 
flow data from the microspheres were obtained by well 
counting the tissue samples and visually registering the 
photographs of the myocardial slices with the summed static 
short-axis data for use as a gold standard [4]. The patient data 
were analyzed by comparing the wash-in rate parameters 
from the cluster analysis and the semi-automatic method to 
the summed intensities obtained from the summed static data. 

The comparison of visual contrast of the flow data for all 
the methods was obtained from polar plots of the flow 
parameter. These polar plots were obtained by plotting either 
summed intensity or wash-in rate parameter obtained from 
myocardial regions of the short-axis data for all the slices 
from apex to the base, the apex being at the center. Five 
slices (1 cm thick) were used for each study. In the case of 
microsphere flows and wash-in data from semi-automatic and 
clustering method, 4 regions per slice were used while for the 
summed static data, 80 regions per slice were used to create 
the polar map display. 

III. RESULTS 

A. Simulations 
The true blood input function used for the simulations as 

well as those obtained using only standard k-means cluster 
analysis and the blood input fine-tuning procedure are shown 
in Fig. 2. It can be seen that the blood input function obtained 
with the fine-tuning procedure is closer to the true blood 
input function. 

The mean bias in the kinetic rate parameter estimates using 
cluster analysis with and without fine-tuning for noise-free 
and noisy data are shown in Fig. 3. It can be seen that the 
bias in the case of using clustered blood is larger than that 
obtained using the blood input fine-tuning procedure. It can 
also be observed that the bias is even higher in the case of 
noisy data. The larger bias particularly in the wash-in rate 
parameters is likely due to the use of a contaminated input 
function in the case of standard k-means cluster analysis. 
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B. Canine and Patient studies 
The correlation coefficients between the microsphere-

derived flow data and the wash-in parameters from clustering 
and from the semi-automatic method for all the canine studies 
are listed in Table II. It can be seen that the wash-in 
parametric data from the use of clustering gave better 
correlation with microspheres than did the semi-automatic 
technique. It was also observed that the use of the semi-
automatic technique resulted in the failure of fitting routine to 
converge for some of the regions with dynamic 201Tl data 
(hence the use of fewer regions for some studies). In 
particular, it can be observed that wash-in parameters with 
clustering for dynamic 201Tl studies gave better correlation 
with the microsphere data than the semi-automatic method. 

The scatter plots for the pooled canine data (no scaling 
performed) showing the relationship between the wash-in 
estimates and the microsphere flows are shown in Fig. 4. The 
wash-in estimates from using clustering were underestimated 
compared to using the semi-automatic method in the case of 
teboroxime studies, as evident from smaller slope in Fig. 4(b) 
as compared to that in Fig. 4(a). It can be also observed that 
the underestimation of flows in Fig. 4(b) occurs for flows 
greater than about 3 ml/min/g. On the other hand, it can be 
seen that the wash-in estimates from clustering gave better 
correlation with the microsphere flows compared to those 
from the semi-automatic method in the case of dynamic 201Tl 
data (Fig. 4(c) and 4(d)). 

The polar plots of the summed data, the wash-in 
parametric data with semi-automatic and the clustering 
method and the flow data from microspheres are shown in 
Fig. 5. The clustering method gave higher visual defect 
contrast compared to the semi-automatic method and the 
summed data. The summed data from the teboroxime studies 
gave lower defect contrast compared to the parametric plots. 
In the case of 201Tl studies, the semi-automatic method 
overestimated the defect size while summed and wash-in 
parametric plots from clustering gave defect sizes comparable 
to the microsphere data with the wash-ins from clustering 
giving higher visual defect contrast than the summed data. 

In the two patient studies performed, it was found that the 
semi-automatic method often failed to converge. On the other 
hand, the clustering method gave reasonable fits comparable 
to the summed static data in each case. Fig. 6 shows the polar 
plot of the summed and the wash-in parametric data from the 
use of clustering algorithm. It can be seen that the parametric 
data corresponds well with the summed data. In the 
teboroxime patient study, an X-ray angiography study 
suggested that the patient suffered from three-vessel disease.  
This was further validated by the low values of wash-in 
parameters obtained from fitting the time-activity curves of 
the ROIs. The summed and the parametric polar plots for the 
teboroxime study show a defect in the lateral wall indicating 
a possibility of a perfusion defect. The 201Tl patient study was 
a normal study, which can be seen from the uniform 
parametric distribution in the polar plots. The wash-in polar 

plot gave uniform values for all regions and hence appears 
over-exposed. 

IV. DISCUSSION 
In the past we have used a semi-automatic technique to 

define regions of interest in dynamic SPECT images and 
obtain the time-activity curves. Several others perform the 
region of interest selection manually. Both of these methods 
are time-consuming and are based on selecting regions 
independently slice-by-slice based on the summed intensity 
distribution. In contrast, the clustering algorithm described 
here is based on partitioning the 4D data into groups of 
similar time-activity curves. This helps to select regions in 
three-dimensions and obtain less noisy curves resulting in 
better fits with the compartment model. 

Other investigators have used different types of clustering 
algorithms for segmenting time-activity curve data with 
different imaging modalities. Wong et. al [8] used a weighted 
k-means clustering approach to segment dynamic FDG PET 
data for tumor analysis with simulations and real datasets. 
Their PET results indicated that the parameters obtained with 
cluster analysis were similar to those obtained with manual 
selection. Standard k-means clustering (unweighted) has been 
used by our group in dynamic contrast MRI studies to 
segment cardiac data and obtain a blood input function [10]. 
Kimura et. al [9] aimed at segmenting curves from dynamic 
brain FDG PET studies based on the curve shapes that were 
obtained by first normalizing the tissue uptake curves by the 
integral of the activity over the entire scan time. They then 
performed principal component analysis on the normalized 
curves to obtain principal components that were in turn used 
to segment the curves. 

The simulation results indicated that the use of blood input 
fine-tuning following standard k-means clustering helps to 
obtain a more accurate blood input function resulting in low 
parameter bias. The bias in the parameter estimates from the 
simulation data is partly due to fitting curves with different fv 
that were averaged during clustering, while the true estimates 
were obtained with curves where fv was set to zero. More 
work is required to validate the effects of using blood input 
fine-tuning on the bias in the parameter estimates. 

The values of the wash-in rate parameters with clustering 
were lower than the corresponding semi-automatic method 
fits in the case of dynamic teboroxime data for flows greater 
than 3ml/min/g indicating a possibility of bias in the fits. This 
may be due to not using enough clusters. Further, the 
presence of background curves results in fewer clusters being 
selected from the myocardial region. Wong et. al [8] used 
two information-theoretic criteria as well as mean square 
error to determine the number of clusters to use. In the future, 
we propose to improve the algorithm by reducing the 
dependency on the number of clusters. Also, a hybrid method 
will be developed using information from individual pixel 
time activity curves along with our current clustering 
approach to obtain more accurate parametric maps. 
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In the canine studies, it was observed that the cluster 
algorithm gave wash-in rate parameters that gave a good 
correlation with the microsphere derived flows. The use of 
clustering was also advantageous in the case of patient 
studies, where the semi-automatic method failed to converge 
due to the high statistical noise.  

V. CONCLUSION 
In summary, we developed an automated method of 

segmentation and parametric image formation for dynamic 
cardiac SPECT data. The method gives improved parameter 
estimates with noisy dynamic cardiac SPECT data. The use 
of this method offers potential for clinical applicability of 
dynamic cardiac SPECT imaging. 
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Fig. 1. Short-axis images from a teboroxime canine study. (a) is the summed short-axis image and (b) is the corresponding 
wash-in parametric image obtained using clustering (number of clusters = 30). 
 
 
 
 

 
Fig. 2. Blood input function from the simulated data comparing the truth with that obtained with and without fine-tuning. The 
clustered blood input functions were obtained from the noisy simulations. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Mean bias in the rate parameters from simulated data. Cluster analysis with blood input fine-tuning gives estimates with 
lower bias compared to using only standard k-means cluster analysis. 
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Fig. 4. Scatter plots for pooled canine data. (a) and (b) are plots of the wash-in parameter obtained using semi-automatic 
method and clustering respectively versus the microsphere flows for dynamic teboroxime data while (c) and (d) are plots of the 
wash-in parameter obtained using semi-automatic and clustering algorithm respectively versus the microsphere flows for 
dynamic 201Tl data. 
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Fig. 5. Polar plots of the representative flows with different methods for two canine studies with rest and stress dynamic 
teboroxime and dynamic 201Tl protocols. clus represents wash-in data from use of clustering and semi is the wash-in data 
obtained using the semi-automatic method. 
 
 

 
Fig. 6. Polar plots of the flow representative data with summed and cluster analysis for patient studies. The teboroxime rest and 
stress studies were performed in one patient and the 201Tl stress study was performed in another patient. 
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Table I: Simulation Parameters 

 
 
 

Table II: Correlation coefficients for canine studies 
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