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Abstract

We present a class of black string spacetimes which asymptote to maximally symmetric

plane wave geometries. Our construction will rely on a solution generating technique,

the null Melvin twist, which deforms an asymptotically flat black string spacetime to an

asymptotically plane wave black string spacetime while preserving the event horizon.
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1 Introduction

Maximally symmetric plane waves have emerged as an important background space-time

of string theory [1]. Just like Minkowski, anti de Sitter, and de Sitter spaces, maximally

symmetric plane wave geometries are homogeneous. Although all curvature invariants vanish,

they have causal structure different from that of flat space [2, 3, 4, 5] and are not globally

hyperbolic [6]. The most intriguing aspect of certain maximally symmetric plane waves is

the fact that they admit dual field theory description through the correspondence of [7].

Schwarzschild black holes provide important insights into the nature of gravity. While

black objects in other maximally symmetric spaces are well known, analogous solutions in

plane wave geometries have yet to be constructed. Nonetheless, it was shown in [8] that global

null Killing isometry is consistent with the existence of an extremal event horizon. Indeed,

extremal vacuum plane wave black hole solutions with regular horizon were constructed in [9].

Various extremal and non-extremal deformations of the maximally plane wave geometry were

also considered in [10,11]. More recently, pure Schwarzschild black string deformation of the

six dimensional plane wave geometry with regular event horizon was constructed in [12].

Unfortunately, that Schwarzschild deformation has the effect of distorting the asymptotic

geometry by a finite amount and can not be considered as a black string in an asymptotically

plane wave geometry.

In this article, we present a systematic solution generating technique which can be used to

construct a general class of asymptotically plane wave solutions. Our method is based on the

observation of [13] that certain class of plane wave geometries can be generated by applying a

sequence of manipulations, which we will call the null Melvin twist, to Minkowski space. By

applying the same sequence of manipulations starting from a black string solution, we are able

to generate a large class of black string deformations of plane wave geometries with a regular

horizon. These solutions are characterized by the mass density of the black string and the

scale of the plane wave geometry in the rest frame of the black string. For dimensions greater

than six, the deformation due to the presence of the black string decays at large distances in

the directions transverse to the string. Hence in these cases, our solutions describe geometries

with (radially) plane wave asymptotics. One can also construct black hole solutions in

asymptotically Gödel universes [14] by further dualizing these solutions [10, 15, 16].

Since the asymptotically plane wave black string solutions we find in this paper have a

regular horizon, it is straightforward to compute its area. We find that this area is identical

to the area of the black string before the null Melvin twist. We will provide a proof that the

null Melvin twist is a procedure which keeps the area of the horizon invariant.

The null Melvin twist can be used to generate a plane wave background with the same

1



metric as the Penrose limit of AdS5 ×S5 in type IIB supergravity which was identified in [7]

as admitting a dual field theory description. Unfortunately, these two backgrounds differ

from each other in their matter field content. As such, this solution generated using a null

Melvin twist does not yet have an obvious dual field theory interpretation. Nonetheless, the

null Melvin twist yields an explicit black string solution which should provide useful hints

for finding the black string deformation of the plane wave of [7].

The organization of the paper is as follows. In section 2, we construct the black string

solution in ten dimensional asymptotically plane wave background and describe some of its

properties. In section 3, we describe various generalizations including adding charges and

angular momenta. In section 4, we describe the analogous construction for plane wave black

strings in other dimensions. Concluding remarks are presented in section 5.

2 Asymptotically plane wave black string in 10 dimensions

In this section, we describe the black string in an asymptotically 10 dimensional plane wave

geometry. We will denote the maximally symmetric plane wave geometry in d dimensions

by Pd. The metric of P10 is

ds2 = −dt2 + dy2 − β2

8
∑

i=1

x2

i (dt + dy)2 +
8
∑

i=1

dxi dxi . (2.1)

If this metric is supported by a self dual 5-form field strength as in [1], this background is a

maximally supersymmetric solution of type IIB supergravity with isometry group SO(4) ×
SO(4). In fact, there exists a one-parameter family of metrics [17,18] with the same spacetime

geometry, but with the metric supported by a combination of the RR 5-form and a RR 3-

form of IIB supergravity. A generic member of this family preserves 28 supercharges and

a U(2) × U(2) isometry group. Another special member of this one parameter family is a

solution which is supported by the RR 3-form alone, with the isometry group enhanced to

U(4). Using S-duality, we then obtain a new P10 solution which is supported entirely by

fields in the NS-NS sector.

The P10 solution with NS-NS fields above is particularly well suited as a background for

introducing a black string for two reasons. First, the action of the isometry group U(4) is

transitive on the transverse seven-sphere (the orbits are U(4)/U(3)), which means that we

can expect to modify the metric with functions of the transverse distance only and thus can

use brute force to find the black string solution. Second, and more importantly, we can find

the black string by using the fact that Minkowski space is related this P10 by a null Melvin

twist.
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2.1 Null Melvin twist

In this subsection, we will describe the sequence of solution generating manipulations which

we call the null Melvin twist. We start by constructing a neutral black string in P10 as

an example. As was shown in [13], these same manipulations applied to Minkowski space

generate P10. As the construction involves only the NS-NS sector fields, they can be applied

to any supergravity with an NS-NS sector. To be specific, let us describe the case where

we start with a type IIB theory. To facilitate the duality transformations, we will write the

metric in string frame.

1. Consider a Schwarzschild black hole solution in 8+1 dimensions [19] embedded into

type IIB supergravity

ds2

str = −f(r) dt2 + dy2 +
1

f(r)
dr2 + r2 dΩ2

7
. (2.2)

f(r) = 1 − M

r6
. (2.3)

which describes a black string with mass density M . This solution is translationally

invariant along y.

2. Boost the geometry in the y direction by an amount γ. This gives rise to a black string

with net momentum Py = M sinh γ cosh γ.

3. T-dualize along y. This gives a solution of IIA supergravity with fundamental string

charge QF1 = M sinh γ cosh γ. Translation along y and SO(8) rotations along the

transverse S7 remain isometries of this geometry.

4. Twist the rotation of S7 along y. By twisting, we mean parameterizing the plane

transverse to the string in cartesian coordinates xi, and making the following change

of coordinates

x1 + ix2 → ei α y(x1 + ix2)

x3 + ix4 → ei α y(x3 + ix4)

x5 + ix6 → ei α y(x5 + ix6)

x7 + ix8 → ei α y(x7 + ix8) . (2.4)

where the parameter α controls the amount of twisting. For the sake of simplicity, we

twist in all four planes of rotation by the same amount. This has the effect of replacing

the metric on the 7-sphere according to

dΩ2

7
→ dΩ2

7
+ α σ dy + α2 dy2 (2.5)
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where

r2 σ

2
= x1dx2 − x2dx1 + x3dx4 − x4dx3 + x5dx6 − x6dx5 + x7dx8 − x8dx7 . (2.6)

5. T-dualize along y. This geometry now corresponds to a black string in type IIB su-

pergravity with momentum Py = M sinh γ cosh γ sitting at the origin of the Melvin

universe [20], and has a U(4) isometry group.

6. Boost the solution by −γ along y. The purpose of this boost is to cancel the net

momentum due to the original boost performed at step 2.

7. Now, we perform a double scaling limit, wherein the boost γ is scaled to infinity and

the twist α to zero keeping

β =
1

2
α eγ = fixed . (2.7)

The end result is the black string in an asymptotically P10 spacetime.

ds2

str = −f(r) (1 + β2 r2)

k(r)
dt2 − 2 β2 r2 f(r)

k(r)
dt dy +

(

1 − β2 r2

k(r)

)

dy2

+
dr2

f(r)
+ r2 dΩ2

7
− β2 r4 (1 − f(r))

4 k(r)
σ2

eϕ =
1

√

k(r)

B =
β r2

2k(r)
(f(r) dt + dy) ∧ σ (2.8)

where

k(r) = 1 +
β2M

r4
. (2.9)

Steps 3 through 5 are the manipulations involved in generating an ordinary Melvin flux

tube solution by twisting along a spatial isometry direction y which was originally described

in [21]. Steps 2 and 6 boost the direction in the t-y plane along which the Melvin twist is

performed. The final step has the effect of scaling the isometry direction of the Melvin twist

to be null. It is therefore natural to refer to this sequence of steps as the null Melvin twist.

2.2 Properties of the asymptotically P10 black string solution

The solution (2.8) is very simple. By inspection, if we set M to zero the solution reduces

to the P10 geometry described at the beginning of this section. On the other hand, setting

β = 0 will reduce the solution to the black string solution (2.2). There is a regular horizon

at

rH = M1/6 (2.10)
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which persists for finite values of β. One can therefore interpret (2.8) as the black string

deformation of P10. Furthermore, since both f(r) and k(r) asymptote to 1 as r is taken to

be large, the effect of M decays at large r. Unlike the six dimensional solution described

in [12] which deformed the geometry by a finite amount at large r, (2.8) is a black string

solution which genuinely asymptotes to P10.

Because both the dilaton and the metric asymptote to P10 in (2.8), one can unambigu-

ously define the area of the horizon in Einstein frame with the same asymptotics. The area

of the fixed (r,t)-surface in Einstein frame for (2.8) is

A = L
√

k(r) − β2r2 r7 Ω7 (2.11)

where Ω7 = π4/6 is volume of a unit S7 and L is the length of the translationally invariant

y-direction. At the horizon, this evaluates to

AH = L M7/6 Ω7 . (2.12)

It is tempting to interpret this area in Planck units

S =
L M7/6 Ω7

4 G10

(2.13)

as an entropy of some sort. A remarkable fact is that this quantity is independent of the

parameter β.

It would also be interesting to compute the temperature associated to this black string.

Ordinarily one computes the temperature of a black object in terms of the surface gravity

κ2 = −1

2

(

∇aξb
)

(∇aξb) , (2.14)

where ξa is the null generator of the horizon. The temperature is then given in terms of the

surface gravity as TH = κ/2π.

For the solution (2.8), the null generator of the horizon is simply the Killing vector

ξa =

(

∂

∂t

)a

. (2.15)

Special care is necessary with regards to the normalization of this Killing vector in the

computation of the temperature. In asymptotically flat space, for example, it is natural

to normalize the Killing vector so that it is of unit norm asymptotically. It is a priori not

clear what constitutes a natural normalization of the Killing vector in an asymptotically

plane wave geometry. Let us therefore use a normalization such that the Killing vector takes

precisely the form (2.15) and interpret the temperature as being measured in units of inverse
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coordinate time t. With this caveat in mind, the temperature at the horizon of the solution

(2.8) is found to be

TH =
3

2π
M−1/6 . (2.16)

What is remarkable about these results is the fact that both the temperature and entropy

are independent of the parameter β. We will in fact show in the appendix that the area of

the horizon is invariant under a null Melvin twist for a general class of spacetimes. This

would appear to indicate that the parameter M has a natural interpretation as the mass

density of the black string. This is a rather non-trivial statement since a proper notion of

mass analogous to the ADM mass for an asymptotically plane wave geometry has not yet

been defined.

The solution (2.8) is free of closed time-like curves so long as the y coordinate is decom-

pactified at the end of chain of dualities. If the y coordinate is compact, closed time-like

curves can appear just as in the case of ordinary plane-waves.

3 Generalizations

The null Melvin twist construction is extremely simple and can be applied to generate a

wide variety of asymptotically plane wave geometries. In this section we will describe a few

examples.

3.1 Rotating black holes

One simple generalization of (2.8) is to add angular momentum. Consider a rotating black

string in type IIB supergravity [22].

ds2

str = −dt2 + (1 − f(r))

(

dt +
l

2
σ

)2

+ dy2 +
1

h(r)
dr2 + r2dΩ2

7
. (3.1)

where

f(r) = 1 − M

r6
and h(r) = 1 − M

r6
+

Ml2

r8
. (3.2)

In general, rotating black strings in 10-dimensions admit four independent angular momen-

tum charges. We have taken all four angular momenta to equal l for simplicity.

Applying the null Melvin twist procedure of the previous section leads to the following

solution of type IIB supergravity

ds2

str = −f(r) + β2r2 h(r)

k(r)
dt2 − 2β2r2h(r)

k(r)
dt dy +

(

1 − β2r2 h(r)

k(r)

)

dy2
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+
dr2

h(r)
+ r2 dΩ2

7
− M

4 r2 k(r)

(

β2 − l2

r4

)

σ2 − Ml

r6k(r)
σ dt

eϕ =
1

√

k(r)

B =
βr2

2k(r)

(

h(r) dt ∧ σ + (1 +
Ml2

r8
) dy ∧ σ +

2Ml

r8
dt ∧ dy

)

(3.3)

where as before

k(r) = 1 +
Mβ2

r4
(3.4)

The inner and outer horizons are located at the roots of h(r). Just as in the non-rotating

case, this geometry asymptotes to plane wave for large r or small M , but reduces to a rotating

black string in the small β limit. The horizon area and the surface gravity are independent

of β and agree with the results for a rotating black string in asymptotically flat space. The

outer horizon of the l 6= 0 solution carries non-vanishing angular velocity

ωH = − 2l

r2

H

. (3.5)

3.2 Charged black strings

It is also easy to add charges to (2.8). Simply start with the non-extremal fundamental

string solution and apply the null Melvin twist. This gives

ds2

str = − f(r)

kδ(r)
dt2 − β2 r2

kδ(r)

(

1 − M cosh2 δ

r6

)

(dt + dy)2 +
1

kδ(r)
dy2 +

1

f(r)
dr2

+r2 dΩ2

7
+

β M sinh 2δ

2 r4 kδ(r)
(dt + dy) σ − β2M

4 r2 kδ(r)
σ2

B =
M sinh 2δ

2 r6 kδ(r)
dt ∧ dy +

β r2

2 kδ(r)
(f(r)dt + dy) ∧ σ

eϕ =
1

√

kδ(r)
(3.6)

Here, we introduced

kδ(r) ≡ 1 +
M sinh2 δ

r6
+

Mβ2

r4
(3.7)

A non-extremal D-string solution can be obtained in the same way if we perform the null

Melvin twist starting from the nonextremal D-string instead of the fundamental string. The

extremal limit of this solution is closely related to the solutions described in [23, 24].

3.3 General twists

So far, we have considered the case where one twists the four complex planes transverse to

the black string equally. One can readily generalize this to independent twists in each of the
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four complex planes

x1 + ix2 → eiα v1 y(x1 + ix2)

x3 + ix4 → eiα v2 y(x3 + ix4)

x5 + ix6 → eiα v3 y(x5 + ix6)

x7 + ix8 → eiα v4 y(x7 + ix8) . (3.8)

Following the chain of dualities one obtains

ds2

str = −f(r) (1 + β2 r2 |σv|2)
kv(r, Ω7)

dt2 − 2 β2 r2 |σv|2 f(r)

kv(r, Ω7)
dt dy +

(

1 − β2 r2 |σv|2
kv(r, Ω7)

)

dy2

+
dr2

f(r)
+ r2 dΩ2

7
− β2 r4 (1 − f(r))

4 kv(r, Ω7)
σ2

v

eϕ =
1

√

kv(r, Ω7)

B =
β r2

2 kv(r, Ω7)
(f(r) dt + dy) ∧ σv (3.9)

with

kv(r, Ω7) = 1 +
β2M |σv|2

r4
, (3.10)

r2σv

2
= v1 (x1dx2 − x2dx1) + v2 (x3dx4 − x4dx3)

+ v3 (x5dx6 − x6dx5) + v4 (x7dx8 − x8dx7) , (3.11)

and

|σv|2 =
1

r2

(

v2

1
(x2

1
+ x2

2
) + v2

2
(x2

3
+ x2

4
) + v2

3
(x2

5
+ x2

6
) + v2

4
(x2

7
+ x2

8
)
)

. (3.12)

Note that since the U(4) isometry is broken, kv(r, Ω7) can now depend non-trivially on the

coordinates of S7. One can explicitly check, though, that the horizon area and the surface

gravity remain independent of β and the vi’s.

To be completely general, one can construct a solution with 13 independent parameters

M , β, Py, QF1, QD1, l1, l2, l3, l4, v1, v2, v3, and v4. We will not write this most general

solution explicitly.

4 Asymptotically plane wave black string in other dimensions

Another natural generalization of our procedure is to apply the null Melvin twist to black

branes smeared in more dimensions. A black p-brane in 10 dimensions, when compactified

along p−1 of the translationally invariant directions, will look like a black string in d = 11−p
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dimensions. The p − 1 extra dimensions play a spectator role, and so by applying the null

Melvin twist on the effective d dimensional black string, one can construct black string

solutions which are asymptotically Pd.

The metric of black (11 − d)-brane is simply

ds2

str = −fd(r) dt2 + dy2 +
1

fd(r)
dr2 + r2 dΩd−3 +

10−d
∑

i=1

dz2

i ,

fd(r) = 1 − M

rd−4
. (4.1)

To simplify the discussion, let us restrict to even values of d. Then there are (d − 2)/2

independent null Melvin twist parameters that one can independently adjust. Let us further

take all the (d − 2)/2 twist parameters to be equal for simplicity. Then, we find that the

supergravity solution for the neutral black string in Pd takes the form

ds2

str = −fd(r) (1 + β2 r2)

kd(r)
dt2 − 2 β2 r2 fd(r)

kd(r)
dt dy +

(

1 − β2 r2

kd(r)

)

dy2

+
dr2

fd(r)
+ r2 dΩ2

d−3
− r4 β2 (1 − fd(r))

4 kd(r)
σ2

d +
10−d
∑

i=1

dz2

i

eϕ =
1

√

kd(r)

B =
β r2

2 kd(r)
(fd(r) dt + dy) ∧ σd (4.2)

with

kd(r) = 1 +
β2 M

rd−6
(4.3)

For d > 6, (4.2) asymptotes to Pd and closely resembles P10 in many ways.

The d = 6, is special in that k6(r) does not asymptote to 1. This is similar to conical

deficits which arise as a result of mass deformation in 2+1 dimensions and cause the back-

ground to be deformed by a finite amount even for large r. Nonetheless, (4.2) for d = 6 can

be considered as a black string deformation of P6 in the sense that in the small M limit,

the solution reduces to P6. The black string deformation of P6 was also constructed in [12],

but was presented in a slightly different form. Let us compare our solution to the solution

presented in [12] in some more detail.

For d = 6, (4.2) becomes

ds2

str = −(1 − M
r2 )(1 + β2 r2)

1 + β2M
dt2 − 2β2r2(1 − M

r2 )

1 + β2M
dt dy +

(

1 − β2r2

1 + β2M

)

dy2

+
dr2

1 − M
r2

+ r2 dΩ2

3
− r2

4

(

β2M

1 + β2M

)

σ2

6
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eϕ =
1√

1 + β2M

B =
β r2

2 (1 + β2M)

((

1 − M

r2

)

dt + dy
)

∧ σ6 . (4.4)

The solution presented in equation (26) of [12] reads

ds2 =
(

1 − 2m

r2

)

dt̃2 + dỹ2 − 2jr2σ6(dt̃ − dỹ) − 2j2m r2σ2

6

+

(

1 − 2m(1 − 8j2m)

r2

)

−1

dr2 + r2dΩ2

3
(4.5)

Here, we relabeled the coordinates (t, y) of [12] by (t̃, ỹ) to distinguish from the coordinates

used in (4.4).

To facilitate the comparison one must rewrite the metric (4.4) in the coordinate chart in

which (4.5) is written. This is achieved by first twisting

σ6 → σ6 + 2β(dt + dy) , (4.6)

and then performing a change of variables

t = (1 + β2M) t̃

y = −β2Mt̃ − ỹ (4.7)

so that the metric becomes

ds2

str = −
(

1 − M(1 + β2M)

r2

)

dt̃2 + dỹ2 +

(

β

1 + β2M

)

r2 (dt̃ − dỹ) σ6

+
dr2

1 − M
r2

+ r2 dΩ2

3
− r2

4

(

β2M

1 + β2M

)

σ2

6
. (4.8)

Now, (4.8) and (4.5) have the same form, and they can be seen to be identical if we identify

the parameters according to

2m = M(1 + β2M)

2j =
β

(1 + β2M)
. (4.9)

So the dimensionless combination 8j2m is related to the dimensionless combination β2M by

8j2m =
β2M

1 + β2M
. (4.10)

The critical value 8j2m = 1, which causes the solution (4.5) to degenerate, corresponds to

β2M being infinite.
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The fact that (4.4) do not asymptote to plane wave geometry makes the identification of

quantities such as mass, entropy, and temperature even more subtle. One can nonetheless

map (4.4) to Einstein frame and compute the horizon area and the surface gravity using the

killing vector (2.15) for these coordinates. This yields a β independent answer

AH = LM3/2Ω3VT 4 , κ2 =
1

M
. (4.11)

This was essentially guaranteed based on the arguments presented in the appendix, and

suggests that the parameter M can be interpreted as a physical mass.

5 Discussion

In this article, we presented a powerful technique for generating a large class of asymptot-

ically plane wave geometries. Using this technique, we have succeeded in constructing a

supergravity solution which contains an event horizon while asymptoting to the plane wave

geometry.

With explicit solutions at hand, one can explore various thermodynamic interpretations

of the black string geometry. We find that the null Melvin twist leaves the area of the

event horizon invariant, suggesting that the entropy of the black string in the plane wave

geometry is identical to the entropy of the black string before taking the null Melvin twist.

Furthermore, with certain assumptions regarding the definition of temperature in asymptotic

plane wave geometries, we found that it too is left unchanged under the null Melvin twist.

This suggests that the mass parameter of the black string solution corresponds to a physical

measure of mass in some canonical way. It would be interesting to make these ideas more

precise by formulating a satisfactory definition of mass and temperature in an asymptotically

plane wave geometry.

We also constructed a black string solution in an asymptotically six dimensional plane

wave background using the null Melvin twist technique. We showed that this solution is

equivalent to the solution presented in [12], provided that we map the parameters (m, j)

characterizing the mass and the characteristic scale of the plane wave in [12] to (M, β) using

(4.9). For fixed j, area of the horizon is not monotonic in m, whereas for fixed β, the area

is monotonic in M . It is therefore more natural to define the microcanonical ensemble as

fixing β instead of fixing j.

Clearly, this null Melvin twist can be used to generate a more general class of solutions

than the ones considered in this article. Unfortunately, this technique can only be used to

construct certain subset of asymptotically plane wave geometries. A plane wave geometry of

particular interest which can not be constructed using this technique is the one which arises
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as a Penrose limit of AdS5 × S5. It would be extremely interesting to find the analogous

black string solution in this asymptotic geometry.

With very little effort, one can dualize the Schwarzschild black string solution in Pd to a

black hole solution in (d−1)-dimensional Gödel universe Gd−1. The horizon and the velocity

of light surface meet only when β2M is infinite.

So far, we have only considered black string solutions. It would be extremely interesting to

find the solution corresponding to black holes. Unfortunately, the null Melvin twist technique

involves T-duality, and can not be applied at the level of supergravity to backgrounds which

do not contain at least one translational isometry direction. However, since certain plane

wave backgrounds can be constructed using only fields in the NS-NS sector, it may be possible

to extract such a geometry from the consideration of the sigma model for the string world

sheet in this background. A related discussion in the context of duality between Kaluza-Klein

monopole and the NS5-brane can be found in [25].

Acknowledgements

We would like to thank D. Berenstein, E. Boyda, S. Ganguli, O. Ganor, P. Hořava, G. Horowitz,
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Appendix A: Null Melvin twist and the area of the horizon

In this appendix, we will show that the area of the horizon does not change under rather

general set of manipulations for which the null Melvin twist is a special case. The proof will

be based on an assumption that the Bµν field for the initial configuration is regular at the

horizon.

Consider starting from a space-time with a horizon and a space-like translation symmetry

along a coordinate y in type II supergravity theory. We will assume that the metric1 is written

in the Boyer-Lindquist coordinates so that there is a coordinate r which does not mix with

1In this appendix, we always write the metric in the Einstein frame.
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other coordinates, allowing one to write the metric in the form

gµν =















grr 0

0 Mµν















. (A.1)

One of the coordinates of Mµν will be t. By horizon, we will mean a fixed (t, r) surface where

grr diverges and det M vanishes. Let Aµν denote the cofactor of Mµν . The coordinates are

regular away from the horizon, then one can write

Aµν = gµν det M . (A.2)

The area of the horizon is the square root of Att evaluated at the horizon.

Consider starting from a generic space-time with the properties described above, and

applying the following sequence of manipulations:

1. Boost the space-time along y by γ

2. T-dualize along the y coordinate

3. Twist by making a change of coordinates

xµ → xµ + αµy (A.3)

4. T-dualize along y

5. Boost along y by −γ.

These manipulations give rise to a new geometry again in Boyer-Lindquist coordinates,

whose horizon area is given by the square root of

Att + 2 sinh2 γ αµBµνA
yν + sinh2 γ αµαν(BµρBνσ + gµρgνσ)Aρσ (A.4)

Using the relation (A.2) away from the horizon, we can rewrite the last term in this expression

as

sinh2 γ αµαν(BµρBνσ + gµρgνσ)Aρσ = sinh2 γ detM αµαν(BµρBν
ρ + gµν) (A.5)

This is a scalar multiplied by detM , so it has to vanish at the horizon. The second term is

an expression proportional to

VµA
µν = V νdetM (A.6)
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if we set Vµ = ανBµν which we assume to be regular at the horizon. To prove the invariance

of the area, it is sufficient to prove that for any regular vector Vµ, (A.6) goes to zero as we

approach the horizon.

To show this we introduce a vielbein eµ
a for the D − 1 dimensional “metric” Mµν :

Mµν = ηabeµ
aeν

b. (A.7)

Since there is no curvature singularity at the horizon, all components of the vector V a must

be regular there. In terms of the vielbein eµ
a and its cofactor Eµ

a, we can write

VµAµν = −eν
aV

a(det e)2 = −Eν
aV

adet e. (A.8)

Since all elements of Mµν are finite at the horizon, we can choose all eν
a to be finite as well.

This in turn leads to finite minors Eν
a. On the other hand, since detM vanishes at the

horizon, so does det e, proving that VµAµν vanishes at the horizon for any value of ν.

This shows that the area of the horizon is invariant with respect to sequence of manipula-

tions described in this appendix. In particular, by taking αµ to rotate the four independent

transverse rotations of S7 and scaling the twist with respect to the boost, we show that the

area of the horizon is invariant under null Melvin twist.
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[15] E. K. Boyda, S. Ganguli, P. Hořava, and U. Varadarajan, “Holographic protection of
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