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INTRODUCTION v

advanced designs that have emerged over the last ten

years: elliptically polarizing undulators, in-vacuum small-gap

devices, and superconducting devices. Finally, we would

like to build out a full complement of beamlines. The phi-

losophy here would be to continue our move away from

multipurpose beamlines and to come out of the upgrade

with an array of application-specific beamlines, each of

which is optimized to do one thing and to do it superbly.

With these upgrades, we are confident that the ALS can

sustain its international cutting-edge position into the fore-

seeable future. In the coming year, I intend to engage our

advisory committees, in particular the Users’ Executive

Committee and the Scientific Advisory Committee, to flesh

out the details and present me with a vision of what the

ideal suite of insertion devices and beamlines should look

like ten years from now.

Besides upgrading the existing facilities, we would like to

add a small ring, CIRCE (Coherent InfraRed CEnter), dedi-

cated to the production of coherent infrared and terahertz

radiation. Such a source could revolutionize studies of ultra-

fast dynamic properties of materials, molecular vibrations

and rotations, low-frequency protein motions, phonons,

superconductor band gaps, electron scattering, and collective

excitations. There is also a study under way at Berkeley Lab

for a large-scale Linac-based Ultrafast X-ray source (LUX) to

address the growing national and international need for

femtosecond pulses of both soft and hard x rays. A favored

site for LUX would be immediately adjacent to the ALS (see

the layout below). In this long-range vision, the ALS, CIRCE,

and LUX would become parts of a light-source cluster shar-

ing a common

infrastructure,

including a new

user building and

user housing faci-

lity. I look forward

to participating in

the challenges

ahead to convert

these proposals

into reality. 

In preparing for an important

review in February 2002, I chal-

lenged my management team to

formulate a succinct statement of

the mission of the Advanced

Light Source. The result was

“Support users in doing outstand-

ing science.” I thoroughly endorse

this statement and expect every

member of the ALS staff to relate

their activities to this overriding

goal. The expression “outstand-

ing science” is self-explanatory;

the scientific highlights offered in

this volume represent a sampling of the excellent work that

is going on at the ALS. The expression “supporting users” is

more elastic, and I distinguish between supporting users in

the present and supporting users in the future.

The most fundamental support that we offer users in the

present is to supply regular, reliable, and stable beam. We

then strive to ensure that our users have a favorable expe-

rience when they get here, that they receive the help they

need in setting up their experiments, and that they get

assistance, if needed, with the execution of their experi-

ments. We also assist our users in publicizing their work. It

is not sufficient merely to do outstanding science. The rest

of the world must be told about it.

Supporting users in the future presents a major challenge.

In 2003, we will be entering our second decade of operation.

Are we sufficiently equipped to sustain the cutting-edge

position that we presently enjoy? Do we have a strategy to

continue into a third and possibly a fourth decade? We are

at a pivotal point in our history in that all the available

straight sections in our storage ring have been built out or

spoken for. We are proposing that we now enter a phase of

upgrade and renewal. 

First, we would like to increase the brightness by going to

“top-up” injection, upgrading the rf system, and reducing

the vertical beam size. We would then like to start retiring

our older undulators and replacing them with the more

User Housing
Facility

User Support
Building

CIRCE

ALS

LUX
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NOTE FROM THE UEC CHAIR
Roger Falcone, UEC Chair for 2002

novel ways of manipulating the magical machine behind

the wall to explore temporal, spatial, and spectral domains

that weren’t even envisioned when the ALS was built. What

unifies us is a common concern for making the ALS work

better in carrying out the highest quality science. Whether

the needs of the users are for housing, technical assis-

tance on the floor, beam time, funding for facility improve-

ment, or day-to-day experimental expenses, we know that

we can call Daniel, Ben, Neville, Gary, Howard, Zahid, or

any of the other great people associated with the ALS to

get help and resolve issues.

It is very clear that the resources given to users in support

of their science are both enormous and never enough, and

that we receive funds in a competition with similarly legiti-

mate calls on society’s resources. The UEC can function best

when it helps coordinate and articulate the needs of the

outstanding scientists it represents. I urge all users to con-

tinue to engage the UEC in this job in the coming year, as

we explain both our successes and our vision to the public

and to our representatives and funders in Washington.

I was very pleased to serve the

users of the ALS as Chair of the

Users’ Executive Committee (UEC)

during 2002. Thanks to the users, to

the ALS staff, and to ALS and DOE

management, it was a very productive

year for both scientific achievement

and long-term planning to ensure the

continued importance and success of

the ALS. Key issues, such as housing

for visiting scientists, scheduling, and

new modes of interaction between

users and the facility, were signifi-

cantly addressed this year. However,

these issues require constant attention, as we seek to

continually improve the way we operate.

Users of the ALS range from scientists and engineers

whose daily research activities are exclusively conducted at

the ALS, to those who might occasionally carry in a sample

for sophisticated material analysis, to those who explore





As a national user facility, the Advanced Light Source generates light for cutting-

edge scientific and technological research. Users come from industry, academia,

and government laboratories around the world to take advantage of the bright

synchrotron light (primarily x rays) generated by accelerated electrons circulating

in the ALS storage ring. The light is directed along specialized beamlines to

deliver the desired range of wavelengths to a precise spot on a sample in an

experiment endstation. The types of samples and techniques for collecting data

span a tremendous range, enabling a broad spectrum of research and applica-

tions, from protein folding to atomic physics. Competition for time on a beamline

(“beam time”) is keen, and prospective users earn the opportunity through a

peer-review process, either as general users or by joining an approved program

or participating research team. These highlights represent a selection from that

already elite group. A fuller accounting of the year’s experiments is nestled

inside the back cover of this volume—the Compendium of User Abstracts on CD. 
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OVERVIEW
Neville Smith, Division Deputy for Science

To ensure that the science that gets done is as truly out-

standing as possible, access to the ALS is through peer

review. Responsibility for approving and evaluating the per-

formance of participating research teams (PRTs) resides

with the Scientific Advisory Committee (SAC). General user

(GU) proposals are evaluated by one of our two Proposal

Study Panels (PSPs), either the Protein Crystallography PSP,

which operates on a two-month cycle, or the General

Sciences PSP, which meets every six months. We are

indebted to the members of the PSPs for their generosity

with their time, thereby ensuring that the process works. 

Over the last year we have formalized a new mode of

access that we call “approved programs” (APs). An AP is

an investigator or group of investigators that gets a regular

allocation of beam time (typically 10%) for an extended

period (typically three years) in order to carry out a program

of research. The initial complement of APs was created

through the reorganization of some PRTs following their

most recent SAC-mandated reviews. It is anticipated that

responsibility for review and evaluation of proposals for AP

status will pass to the General Sciences PSP. The details

are being finalized in consultation with our various advisory

bodies, and we expect to publish the process on our Web

site (www-als.lbl.gov) very soon. Our Users’ Executive

Committee (UEC) has urged that the access procedures be

fair, clear, and transparent. We agree.

We encourage you to share your perspective, insights,

and questions regarding the ALS scientific program, includ-

ing its portrayal in the Activity Report and the peer-review

process. Contact information for ALS management and the

UEC is on our Web site (www-als.lbl.gov/als/contacts.html).

The mission of the ALS is “Support users in doing out-

standing science.” Some of the outstanding science pub-

lished in 2002 is offered in the highlights presented below.

To keep this volume within reasonable bounds, we restrict

the selection to about 20–25 items distributed over the full

range of scientific activities. It is therefore very much the

tip of the iceberg.

Following the practice started last year, we lead off with a

feature article, or “highlight of highlights,” that takes a

broader view than possible with the single-publication focus

of our science highlights. This year we have chosen the

topic of water’s hydrogen-bond structure as revealed by x-ray

spectroscopy. It is remarkable that at this late date a sub-

stance as basic as water is still not fully understood. Noting

the several independent studies that came to fruition at

about the same time, we are pleased to see that the ALS is

becoming a place for outstanding research related to water.

SCIENCE HIGHLIGHTS: OVERVIEW 3

Neville Smith introduced the concept of approved programs at
the 2002 ALS Users’ Meeting.



Life on earth depends on the unusual structure and anomalous nature of liquid

water. The hydrogen-bond (H-bond) structure between water molecules is respon-

sible for much of water’s weirdness and its consequences, such as the ability of

cell membranes to keep the cell contents in and the environment out. H-bonds

are not completely understood in water, in part because they have not been

accessible to direct investigation. In 2002, four papers from researchers working

at the ALS showed that local H-bonding can be effectively probed via x-ray spec-

troscopy of the electronic structure of water. 

Water molecules are polar with a weak positive charge on each of the hydrogen

atoms and negative charges on the oxygen. The attraction between the charges

on neighboring water molecules results in an H-bonded network (see Where the

Atoms Are in Water) with a locally tetrahedral structure comprising a central mol-

ecule surrounded by four others (Figure 1). H-bonds are weak and easily broken,

but they are constantly reformed. When all the hydrogen bonds are intact, a con-

figuration denoted SYM, the H-bond length in liquid water exhibits small deviations

from the 2.7-Å distance known for ice.

SCIENCE HIGHLIGHTS: THE ALS TAKES THE PLUNGE 5

PLUNGEDIVING INTO WATER’S HYDROGEN-BOND STRUCTURE

THE ALS
TAKES THE
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SYM A-ASYM D-ASYM

FIGURE 1 Locally tetrahedral configuration of H-bonded water
molecules consisting of a central molecule with four H-bonds
between it and neighboring molecules, two between the central
oxygen and neighbor hydrogen atoms, and two between the cen-
tral hydrogens and the neighbor oxygen atoms (SYM). Broken
bonds give rise to other configurations, including A-ASYM and 
D-ASYM.
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Where the Atoms are in Water
Water consists of a flexible, three-dimensional network

consisting of rings of water molecules bound together

via hydrogen bonds (H-bonds). X-ray contributions to

understanding this structure began with reports of x-ray

scattering in the 1920s for ice and in the 1930s for

water. Nowadays, x-ray (sensitive to oxygen) and neutron

(sensitive to hydrogen) scattering collectively provide O–O,

H–O, and H–H radial distribution functions [g(r)], yielding

average distances between nearest-neighbor atoms and

numbers of atoms in nearest-neighbor shells. The radial

distribution functions provide important tests for molecu-

lar dynamics simulations of the structure of water based

on theoretical interatomic potentials (water models),

which must reproduce the measured g(r) function for each

atomic pair, as well as other properties of water.

Despite many years of investigation, the variability from

experiment to experiment in g(r) can be greater than the

estimated experimental error. Two years ago, a University

of California, Berkeley, group began reporting new “high-

quality” x-ray scattering data from ALS Beamline 7.3.3

SCIENCE HIGHLIGHTS: THE ALS TAKES THE PLUNGE

In the liquid phase, a number of different configurations involving broken

H-bonds are possible. Two broken-bond configurations of note are those in

which (1) one H-bond between the central oxygen and a hydrogen atom from

a neighboring molecule is broken (A-ASYM) and (2) one H-bond between a

hydrogen atom in the central molecule and a neighboring oxygen is broken

(D-ASYM). The A in A-ASYM refers to an H-bond acceptor because the cen-

tral molecule needs a hydrogen from a neighbor to form the bond, whereas

the D in D-ASYM refers to an H-bond donor because the central molecule

provides the hydrogen atom for the bond. Interatomic distances shift in dif-

ferent ways, depending on which bonds are broken.

Before the x-ray spectroscopy findings, computer (molecular dynamics)

simulations provided the only way to obtain an atomistic view of the H-bond

network, but many simulations with different configurations of broken H-bonds

were consistent with experimental data, so it was not clear which configuration

was correct. The more direct information now obtained from x-ray experi-

ments on liquid water presented some experimental challenges and in

some cases required novel instrumentation (see How to Do Spectroscopy

of Volatile Liquid Water).

Local H-bonding can be probed via x-ray spectroscopy because the molec-

ular electronic structure is perturbed by the formation of the bonds, and

this interaction can be detected by x-ray spectroscopy of the electronic

structure. Interpretation of spectral changes depends heavily on the elec-

tronic structure calculated for different broken H-bond configurations, so

close collaboration between experiment and theory is essential.
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FIGURE 2 K-edge x-ray absorption and fluorescence in oxygen. In absorption
(NEXAFS), the oxygen 1s electron is excited to empty electronic states in the
water-molecule conduction band, and the dipole selection rule provides a tool to
study locally the oxygen 2p character of these unoccupied (antibonding) molecu-
lar orbitals. In emission (SXE), the core vacancy left by the excited 1s electron is
filled by a valence-orbital electron, thereby giving direct information about the
chemical bonding in which these electrons participate.

FIGURE 1 Comparison of new experimental radial distri-
bution function gO–O(r) with previous results (solid black,
ALS data; dashed green, previous x-ray data; dashed blue
and solid red, previous neutron-scattering data).
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based on several experimental improvements and a more

comprehensive consideration of the electronic structure of

the water molecule than was common in the past [T.

Head-Gordon and G. Hura, Chem. Rev. 202, 2651 (2002)].

The group’s first published result is an O–O radial distribu-

tion function gO–O (r) with a first peak that is taller and

sharper, as compared to earlier experiments, and with

other peaks shifted to smaller interatomic distances, sug-

gesting a more “structured” liquid water than had been

assumed previously (Figure 1). 

Extended x-ray absorption fine structure (EXAFS) is a com-

plementary, element-specific way to obtain interatomic dis-

tances in disordered materials. For the last two years, a

second group of UCB researchers and their co-workers

have been reporting water EXAFS at the ALS. First, they

showed that EXAFS from Beamline 9.3.2 taken above the

oxygen K edge could detect O–H distances in water vapor

[K.R. Wilson et al., Phys. Rev. Lett. 85 4289 (2000)]. With

the help of a liquid-microjet technique (see How to Do

spectroscopy of Volatile Liquid Water), the same group

published EXAFS results from Beamline 8.0.1 for the liquid

and the liquid/vapor interface [K.R. Wilson et al., J. Phys.

Chem. B 105, 3346 (2001)]. The O–O distance obtained

for the liquid agreed with that of bulk water (2.85 Å), and

that obtained for the surface was similar to but slightly

larger than that of isolated water dimers (2.98 Å). The

group’s 2002 report of EXAFS measurements expanded

the earlier results on water, added liquid methanol to the

samples studied, and interpreted results in terms of a

broken hydrogen-bond structure, which is quite different in

water and methanol [K.R. Wilson et al., J. Chem. Phys.

117, 7738 (2002)].

SCIENCE HIGHLIGHTS: THE ALS TAKES THE PLUNGE

Three of the 2002 water research papers, which appeared in the same

issue of Journal of Physics: Condensed Matter, reported near-edge x-ray

absorption fine structure (NEXAFS, also called XANES) measurements made

at the oxygen K edge (Figure 2). The fourth paper added soft x-ray emission

(SXE) excited at the oxygen K edge to the mix. Because of the femtosecond

time scale of the absorption process, the molecular geometry is frozen dur-

ing these measurements, so there are no effects due to atomic motion.

Myneni et al. reported NEXAFS spectra of liquid water as well as ice and

vapor. The researchers compared the measured spectra with those obtained

from density functional theory (DFT) calculations for model structures obtained

both from molecular dynamics simulations and from small clusters of mol-

ecules. Their conclusion was that the differences between the spectra from

liquid and those from ice and vapor were due to unsaturated and strongly

asymmetric H-bonding; for example, the DFT calculations indicated that the

D-ASYM configuration was associated with a strong pre-edge peak below

the usual oxygen K edge (Figure 3). They also found that the number (1.2 to

1.6) of broken H-bonds per molecule was larger in the liquid than expected

from molecular dynamics simulations.

Guo et al. applied SXE to the same problem. This group relied on

Hartree–Fock calculations to provide a picture of molecular orbitals that
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FIGURE 3 Left, measured NEXAFS spectra for solid, liquid, and vapor phases of
water. Right, calculated NEXAFS spectra (red) for ice and three H-bond configura-
tions in liquid water (SYM, D-ASYM, and A-ASYM) and measured spectra (blue).
The strong pre-edge feature of liquid water is associated with the D-ASYM config-
uration, which causes shifts in the antibonding orbitals relative to ice.
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How to Do Spectroscopy of
Volatile Liquid Water
While x-ray spectroscopy has over the years provided a

powerful tool for investigating the electronic structure of a

wide variety of sample types, it has not until recently

been so successful when applied to volatile liquids, such

as water. The pioneering studies of hydrogen bonding in

liquid water conducted at the ALS in 2002 (see The ALS

Takes the Plunge) depended in part on the availability of

instrumentation able to deal with the experimental chal-

lenges they presented.

X-ray absorption spectroscopy seldom involves measure-

ment of the intensity of the transmitted radiation; instead,

it relies on alternative measures of the absorption,

notably the total or partial yield of photoelectrons escap-

ing from the surface, the yield of photoions emitted from

the surface, and the intensity of x-ray fluorescence.

Challenges and opportunities are associated with each of

these options for investigating water, which is surrounded

by a vapor. For example, electrons and ions cannot readily

reach a detector unless they are travelling most of the

way through a good vacuum, whereas fluorescent photons

can easily reach a detector but their intensity is often low.

For their near-edge x-ray absorption fine structure (NEX-

AFS) measurements on ALS Beamline 8.0.1, Myneni et al.

adopted the x-ray fluorescence approach. In their SXEER

(soft x-ray endstation for environmental research) station,

a silicon nitride window separated a liquid sample in a

polypropylene straw surrounded by 760 torr of helium

SCIENCE HIGHLIGHTS: THE ALS TAKES THE PLUNGE

could be used to interpret the measured emission spectra. The group’s liquid

water emission spectra suggested strong involvement of a valence orbital

with 3a1 symmetry, which is a mixture of oxygen 2p and hydrogen 1s

orbitals, in the H-bonding (Figure 4). The group interpreted this involvement

as evidence of electron sharing between water molecules, but an alternative

explanation involving charge redistribution within the molecules has also

been proposed. Resonant emission spectra excited at the liquid absorption

pre-peak and theory also confirmed the strong presence of the D-ASYM con-

figuration of broken H-bonds (Figure 5).

Wilson et al. extended NEXAFS to the liquid-water surface, where most of

the actual interaction of water with other species takes place. They carried

out DFT calculations for clusters of water molecules with donor and accep-

tor broken H-bond configurations deduced from molecular dynamics simula-

tions. Comparison of experiment and theory identified a previously unknown

species at the liquid surface, an acceptor-only configuration in which both

donor bonds are broken and which is in dynamic equilibrium with the vapor
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FIGURE 4 SXE emission of water in the liquid and vapor phases. Comparison
of experiment and theory indicates a strong role for the 3a1 orbital in the liquid
SXE spectrum. 

FIGURE 1 Liquid water microjets combined with three-
stage differential pumping makes it possible to do x-ray
absorption spectroscopy of the water surface by means of
electron and ion detection while the surface is in equilibri-
um with a vapor layer.
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(Figure 6). Donor species were found to be more representative of the bulk

liquid and the surface of amorphous ice.

Bluhm et al. combined NEXAFS with x-ray photoelectron spectroscopy (XPS)

to observe thin layers of liquid on ice. Interpretation of NEXAFS spectra

(e.g., emergence of the liquid pre-edge peak) provided evidence for “pre-

melting” at the surface of ice at temperatures between –20°C and 0°C.

The group used the pre-edge peak for the liquid to measure the thickness

of the layer (Figure 7). Thanks to the XPS spectra of the liquid surface, the

cleanliness of the water surface could be ascertained. It was found that

submonolayer amounts of oxygen-containing hydrocarbon contaminants can

substantially enhance the extent of premelting. 

It is always hard to predict the impact of a new capability. One view is that

presented by an online news article associated with the issue of the Journal

of Physics: Condensed Matter in which the three NEXAFS papers appeared,

which called attention to “…a new era in the all-important field of water

research. For the first time the experimentally determined, highly resolved

electronic structure of water in the liquid phase must also be taken into

consideration when evaluating the accuracy of theoretical models of the liq-

uid.” A good sign is that a growing number of publications in print and in

press from groups at other synchrotron sources is adding to what may

become a deluge.

9

from the ultrahigh vacuum of the beamline, and a stream

of helium removed the water vapor from the sample. In

the soft x-ray emission (SXE) measurements conducted by

Guo et al. on ALS Beamline 7.0.1, a spectrometer ana-

lyzed the x-ray fluorescence from a small volume of liquid

sealed in a liquid cell and separated the liquid from the

surrounding vacuum by a thin silicon nitride window. The

brightness of the ALS was an important factor in generat-

ing a large enough fluorescence signal to analyze.

Wilson et al. took on the formidable task of investigating

the surface of liquid water, which like most surfaces has a

different structure from that in the interior. For their exper-

iments, they adapted to the synchrotron environment an

earlier microjet technology in which a pressurized stream

of liquid just 20 µm in diameter is surrounded by a thin

vapor blanket (Figure 1). They used total-electron-yield

NEXAFS to probe the liquid below the surface of the

microjet and total-ion-yield NEXAFS to look at the surface

layer. A three-stage differentially pumped sample chamber

protected the beamline, and additional pumps kept the

pressure in the sample chamber low.

In analogy with SXE, where an x-ray spectrometer rather

than a simple detector is required, in photoelectron spec-

troscopy (XPS) an electron spectrometer analyzes the pho-

toelectron energies. Working at ALS Beamline 9.3.2,

Bluhm et al. used a so-called ambient-pressure chamber

equipped with a high-pressure transfer lens comprising a

four-stage, differentially pumped electron spectrometer

with four electrostatic lenses (Figure 2). While a silicon

nitride window protects the beamline, the differentially

pumped lens allows detection of oxygen Auger KLL elec-

trons for surface sensitivity in NEXAFS and for XPS.
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FIGURE 5 Measured and calculated SXE spectra excited above the oxygen K
edge (red, normal) and at the edge (blue, resonant). The resonantly excited
spectrum is in good agreement with that predicted for the three-bonded D-ASYM
configuration.

FIGURE 2 A novel differentially pumped multi-stage elec-
tron lens system allows detection and energy analysis of
photoelectrons by reducing the distance traveled to reach
an aperture into the lens system just above the sample
surface.
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CONDENSED MATTER
PHYSICS

Putting a New Spin on Surface
Electronic Structure

One of the great themes of modern solid-state physics is

that one can make a metal or some other material behave

in an unusual way by making it very small. Magnets are a

case in point with the potential to affect the life of everyone

who uses computers of any kind. For example, computer

disks have larger storage capacities, work faster, and cost

less each year, in part because the magnetic area that rep-

resents a piece of data has been getting progressively smaller.

If the trend continues, these magnets eventually will consist

of only a few atoms. With the help of an x-ray technique,

Hochstrasser et al. have confirmed an earlier, surprising con-

jecture that electrons in thin surface regions only a few

atoms thick on otherwise nonmagnetic metals behave in a

way similar to electrons in magnets. This finding will now

have to be folded into the interpretation of experiments

aimed at studying magnetism in small structures.

To everyone’s great benefit, magnetic storage devices

have gotten progressively smaller, faster, and cheaper in

the last few years. Based on past trends, the future is

expected to bring ever smaller magnetic elements until at

last the atomic scale is achieved. To that end, scientists

today are exploring the fundamentals of magnetism in

model systems with at least one dimension only a few

atoms wide, such as surfaces. Surprisingly, experiments

have suggested not only that electrons confined to the sur-

faces of some nonmagnetic metals exhibit a spin ordering

somewhat similar to the momentum-dependent spin order

in magnets, but that adsorbed atoms can enhance the

ordering. Our spin-resolved photoemission measurements

have now directly confirmed the previously controversial

interpretation of momentum-dependent spin ordering on

some nonmagnetic metallic surfaces.

In nonmagnetic metals, electrons in a given state, or

band, have an energy uniquely determined by their momenta,

irrespective of their spins. But as the earlier experiments

demonstrated, even without long-range magnetic order, the

local environment around an electron at the surface of a

metal can cause an energy splitting in a surface state that

can be detected with spectroscopy. Since the earlier experi-

ments were not sensitive to the electrons’ spins, some

effect other than the proposed momentum-dependent 

spin ordering might have been responsible for the splitting.

Therefore, we sought to directly confirm the effect with spin-

resolved measurements. Because the electron throughput

is so reduced for photoemission with both spin and angular

resolution, our measurements needed to be done at a

third-generation synchrotron source. 

Our group—a collaboration between scientists from the

Lawrence Livermore National Laboratory, the University 

of Oregon, and the ALS—performed its experiments at

Beamline 7.0.1 of the ALS. We studied a monolayer of

hydrogen on tungsten. The physics behind the results are

illustrated in Figure 1. As electrons traverse the surface

plane of the solid, they feel the surface electric field as a

magnetic field in their reference frame. Since by symmetry

the electric field is normal to the surface, the induced mag-

netic field must be in the plane. The energy of the electrons

therefore depends on how their spins are aligned relative

to the field, so we expect to find that the surface state’s

energy is split into two bands. The purpose of the hydrogen

is to make the effect stronger by increasing the surface

FIGURE 1 The relationship for an electron traveling in the 
surface plane between the surface electric field, E; the electron
velocity, v (related to slope of the electron energy–momentum
curve); the surface magnetic field, B (in the electron’s rest
frame); and the electron spin, σ. 
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electric field and by redistributing the surface charge closer

to the strong-field region.

Figure 2 shows in-plane, spin-resolved, valence-band

spectra for a particular momentum. Two peaks near the

Fermi level (zero binding energy) are due to surface-confined

electron states. The inset shows the energy–momentum

(angle) bands for these two peaks measured without spin

resolution. The issue is whether or not the splitting between

the bands is due to spin ordering. If it is, the two peaks

should appear only in the opposite spin channels. The data

show that this is indeed the case. We see that the other

peaks in the spectra, which are dominated by bulk states,

do not show the effect in any way, while the surface peaks

show the effect for in-plane spin-polarization but not for

out-of-plane spin directions. Therefore the hypothesis of

momentum-dependent spin ordering is proven.

This effect is important because it shows that the surface

structure can impose a spin ordering regardless of magne-

tization (which may also be present) and must be taken into

account when interpreting similar experiments at magnetic

surfaces. It also may play a technological role in spin-based

electronic (“spintronic”) devices at the nanometer scale.

For example, by suitable arrangement of apertures, a 100

percent spin-polarized electron beam could be generated

by photoemission.
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Auger Resonant Raman
Scattering in Itinerant Electron
Systems

In an atom, electrons orbit around the nucleus. Everyone

knows that. But what happens when two or more atoms join

to form a molecule? It turns out that some electrons stay

localized around one nucleus, while others wander more freely

around the entire molecule. In a chunk of metal, effectively

a huge molecule, these itinerant electrons roam everywhere.

Collectively, the details of these electron behaviors make up

the electronic structure of the molecule, a structure that

determines many of the day-to-day properties of matter.

Scientists use forms of x-ray spectroscopy (e.g., absorption,

fluorescence, and electron emission) to study the electronic

structure. A particularly useful form of x-ray spectroscopy that

applies equally to atoms, molecules, and solids is resonant

photoemission based on a process called Auger resonant

Raman scattering. It had been thought that localized electrons

were required in order to observe this process. However,

Föhlisch et al. have now shown that a scattering description

also holds for only weakly localized electrons, thereby making

it a general feature of resonant photoemission.

Resonant photoemission in the vicinity of a core-level

threshold is a powerful technique for investigating the elec-

tronic structure of matter, both in basic atomic and molecu-

lar physics and in applied materials science. The basis of

resonant photoemission is the opening of an Auger resonant

Raman scattering channel at the core-level threshold, so

that the same final state is reached via direct photoemission

and Auger resonant Raman scattering (excitation and decay

of a core resonance with the energy released in the emission

of an Auger electron). 
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FIGURE 2 Spin-resolved photoemission spectra for a particu-
lar electron momentum indicated by the dashed yellow line in
the angle-resolved band map (inset). Two peaks are observed
near the Fermi energy (zero binding energy) for surface elec-
trons, corresponding to whether the electron spin is aligned 
or anti-aligned with the surface magnetic field. Red and blue 
triangles, in-plane spin-polarization; green line, out-of-plane 
spin directions.
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In Auger resonant Raman scattering, the core-excitation/

decay sequence must be considered a single process (a

one-step or coherent process). Experimentally, scattering

into a localized intermediate state is manifested through 

a linear dispersion of spectral features with photon energy.

In contrast, normal Auger decay is commonly seen as a

two-step or incoherent process, where the emission of the

Auger electron is independent from the initial absorption,

thus leading to emission at constant kinetic energy for all

photon energies above the threshold sufficient to excite an

electron into the continuum. 

Whether Auger resonant Raman scattering requires

localized absorption resonances and to what degree the

occurrence of Auger resonant Raman scattering can be

taken as an experimental measure of electron localization

have been controversial issues. Our approach to investigat-

ing the connection between the degree of electron localiza-

tion in an extended system and the occurrence of coherent

scattering in resonant photoemission was to conduct polar-

ization-dependent photoemission at the Cu L edges.

Our polarization-dependent photoemission measurements

in copper now show that significant Auger resonant Raman

scattering can also occur via itinerant continuum states.

This finding makes Auger resonant Raman scattering a

general feature taking place both in localized and rather

delocalized electron systems.

The experiment was performed at ALS Beamline 8.0.1.

Two detection geometries were used, as indicated in 

Figure 3. In the photoemission geometry, the electric

field vector of the synchrotron radiation is parallel to 

the direction of detection. In the Auger geometry, the

electric field vector lies perpendicular to the direction 

of detection.

Auger
Geometry

Entrance Slit

Exit Slit
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GratingElectrons

Vertical
Condensor

U5 Undulator

E

Photoemission
Geometry

FIGURE 3 Schematic diagram of Beamline 8.0.1 and the two
detection geometries used in the experiments.
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FIGURE 4 Spectra obtained in the photoemission geometry
over a range of exciting photon energies near and above the
copper L3 edge. Above threshold, the kinetic energies of the
peaks in the spectra show departures from the kinetic-energy-
independent peaks expected for normal Auger emission for
excitation into the continuum.

FIGURE 5 Spectra obtained in the photoemission geometry
over a range of exciting photon energies near and above the
copper L2 edge. Above threshold, the kinetic energies of the
peaks in the spectra show departures from the kinetic-energy-
independent peaks expected for normal Auger emission for
excitation into the continuum.
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Figures 4 and 5 show spectra taken in the photoemis-

sion geometry for a photon-energy range from just below

the thresholds for copper L3 and L2 excitation to the contin-

uum. While the Cu L3M4,5M4,5 and L2M4,5M4,5 normal Auger

lines with continuum excitation would have a constant

kinetic energy, the spectra show deviations from this

behavior at 4.2 eV and 7.7 eV above the respective L3 and

L2 thresholds. This evolution is summarized for peak posi-

tion and peak intensity of the 3d8 1G4 spin-orbit compo-

nent, as measured in both the photoemission and Auger

detection geometries above the L3 edge (Figure 6).

Most notably, we observe characteristic deviations from

the constant kinetic energy 4.2 eV and 7.7 eV above the L3

edge. Furthermore, we observe a significant variation of

these deviations above the L3 and L2 edges, and the weak

polarization anisotropy directly indicates dominant Auger

resonant Raman scattering and weak direct photoemission

for the 3d8 final states. These deviations, which occur at

critical points at the L1 and X1 points in the first Brillouin

zone of fcc copper where the density of states varies, can

be fully described by a simple energy-conserving numerical

model of the scattering process (Figure 7) using the differ-

ent L3 and L2 core-hole lifetimes. 

In a nutshell, our findings directly point toward Auger res-

onant Raman scattering as a general feature of photoemis-

sion, independent of the degree of electron localization.
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RIXS Technique Measures
Hubbard Interaction

With their repulsive negative electric charges, electrons

would just as soon avoid each other, but crammed together

in a solid material, they must find a way to get along. In many

materials, such as metals and semiconductors, electrons are

able to dance smoothly together without a second thought.

But in certain “strongly correlated” materials, the mutual

repulsion between electrons overshadows the interaction

with positively charged atomic nuclei that otherwise smooths
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FIGURE 6 Photon-energy dependence of the L3M4,5M4,53d8

1G4 final state. Top, the kinetic energies of the peaks in pho-
toemission geometry (open circles) and the Auger geometry
(red dots) for different exciting photon energies shows that 
the deviations from constant kinetic energy occur 4.2 eV 
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FIGURE 7 Auger resonant Raman numerical simulation of 
the photon-energy dependence of the L3M4,5M4,53d8 1G4

final state. Top, 3d8 1G4 peak energy. Bottom, 3d8 1G4 peak
intensity and theoretical Cu sd density of states (courtesy of
O. Eriksson and B. Johansson) used in the calculation.
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the way. The theory of strongly correlated materials is so

tough that theorists are still struggling with ways to describe

the unsociable electrons. In the Hubbard model, named for the

British theorist who devised it, some electrons split into two

groups called Hubbard bands. Zhang et al. have used x rays

to measure the energy difference between the Hubbard

bands in a material (sodium vanadate) for which they were

also able to calculate the energy difference. The close match

they found between the measured and calculated values

lends confidence in the experimental and theoretical tools

for probing strongly correlated materials.

The Hubbard interaction term, U, is a measure of the

strength of the repulsion between electrons in certain

solids, but direct measurements of its value have been diffi-

cult. Our group from the University of Tennessee, Knoxville,

and the Oak Ridge National Laboratory has used the tech-

nique of resonant inelastic x-ray scattering (RIXS) at the

Advanced Light Source to make a particularly clean meas-

urement of U in sodium vanadate (NaV2O5). We were able

to compare measured RIXS spectra to spectra calculated

with the U of the Hubbard model as a variable. For a partic-

ular value of U, theory and experiment turn out to be in

good agreement, thereby suggesting that RIXS provides

useful information for solids with strong electron–electron

interactions.

Multielement oxide compounds containing transition

metals variously known as complex materials or strongly

correlated materials are at the forefront of today’s solid-

state science. On the level of fundamental understanding,

they have for many decades defied theorists’ efforts to

model them accurately, owing to the large electron–electron

interaction that casts into doubt the applicability of the

conventional energy-band models of solids (both conven-

tional one-electron and more sophisticated quasiparticle

varieties). At the same time, these materials exhibit a won-

drous variety of phenomena signaled by phase transitions

and collective or many-body effects of various types, some

of which potentially have commercial overtones, such as

the high-temperature superconductivity and colossal mag-

netoresistance that result by doping the parent compounds

with small concentrations of additional elements.

In thinking about strongly correlated materials, theorists

frequently start from the Hubbard model, a simplified

scheme that contains a single parameter, the Hubbard

interaction term, U, to characterize electron–electron repul-

sion. When U is large, a partially occupied band straddling

the Fermi energy can split into two Hubbard bands, producing

an energy gap that converts what was a metal into a Mott

insulator. In real Mott insulators, the many energy bands

traceable to electrons originating from the different atomic
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tion of the energy loss (difference between the energies of the absorbed and emitted x rays) for several excita-
tion energies (indicated by the lower-case letters in the total fluorescent yield spectrum, right). The emission
peak (dotted line) that is independent of excitation energy is due to resonant inelastic scattering (RIXS).
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shells (s, p, d, etc.) can overlap, so that extracting the

splitting between the Hubbard bands is not so easy.

Study of sodium vanadate overcomes this problem

because there is a single narrow band at the Fermi level

before the strong electron–electron interaction is taken into

account. But it introduces a new complication for optical

absorption spectroscopy of the Hubbard bands, because

quantum-mechanical selection rules prohibit transitions

excited by absorption of a single photon between electron

states with the same angular momentum. Our collabora-

tion attacked the selection-rule problem with RIXS, which is

a two-photon soft x-ray technique in which the first photon

can excite an electron from a core state to the upper

Hubbard band and the second photon is that emitted when

an electron in the lower Hubbard band falls into the hole

(missing electron) in the core state.

In measurements at ALS Beamline 8.0.1, our group

excited electrons from vanadium 2p core states (vanadium

L edges). The resulting x-ray emission spectra contained

two prominent features over a small photon-energy range

that could be distinguished by watching how peak positions

changed with excitation energy (Figure 8). In this way, we

isolated the emission peak due to excitation into the upper

Hubbard band followed by recombination from the lower

band. Both bands derive from vanadium d states (or more

specifically, dxy states). From the energy difference between

the inelastic and elastic (emitted photon energy is the same

as the excitation energy) peaks, we derived the energy

splitting between the bands. A calculation, based on a sim-

ple cluster model of sodium vanadate with the Hubbard

interaction term, U, as a variable parameter, yielded good

agreement between experimental and theoretical energy

splittings for a particular value of U equal to 3.0 eV (Figure 9).
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Electronic Structure of MgB2 from
X-Ray Emission and Absorption

For many decades, all the known superconductors (materials

that conduct electricity with no resistance when cooled to

frigid temperatures within a few degrees Kelvin of absolute

zero) were predominantly metals and metal alloys and com-

pounds whose behavior was well explained by the Bardeen–

Cooper–Schrieffer (BCS) theory. In 1986, a revolutionary new

class of “high-temperature” superconductors comprising fam-

ilies of copper-oxide ceramics was discovered, some of which

retained their superconductivity above 100 degrees Kelvin.

There is no adequate theory as yet for these superconductors.

Two years ago, researchers were excited yet again when a

possible third category of superconductors entered the scene

with the discovery of superconductivity in a metal compound,

magnesium diboride, that remained superconducting at a much

higher temperature than expected from the BCS theory but

not so high as the high-temperature materials. Kurmaev et

al. have performed x-ray spectroscopy experiments on mag-

nesium diboride that explore the behavior of electrons in this

material with an eye toward understanding what makes it tick.

The recent discovery of superconductivity in magnesium

diboride (MgB2) with a transition temperature Tc close to

40 K was unexpected. Not only is this value of Tc the highest

reported for any binary compound, it is much higher than

previously expected within the context of the standard BCS

theory of superconductivity and thus raises the possibility

of a whole new class of superconductors. Amid the experi-

mental and theoretical activity stimulated by this discovery,

our group—a collaboration of Russian, German, Canadian,

and Japanese researchers—measured boron and magne-

sium x-ray emission and absorption spectra (XES and XAS,

respectively) in MgB2 and the related compounds graphite

and AlB2. Our results support one interpretation of the origin

of the superconductivity.

X-ray spectroscopy is a powerful element-specific probe of

the electronic structure of solids. The accessible core states

are localized states, which allows interpreting the experi-

mental spectra in terms of unoccupied states for absorption

and occupied states for emission. Since dipole selection

rules govern the transitions to or from the core level, it is

actually the angular-momentum-resolved density of states

(DOS) that is measured. Accordingly, we compared our results

obtained with first-principles calculations of the partial den-

sity of states.

The boron K emission and absorption spectra were stud-

ied at Beamline 8.0.1 of the Advanced Light Source with

the soft x-ray fluorescence endstation. The measurements

of the magnesium L-emission spectra were performed

using an ultrasoft x-ray grating spectrometer with electron

excitation. The magnesium 2p absorption spectra were

measured at Beamline BL-12A at the Photon Factory (KEK,

Tsukuba). The calculations were made using the full-poten-

tial LAPW code WIEN97.

Theoretical and measured boron K emission and absorp-

tion spectra of MgB2, which probe boron 2p occupied and

unoccupied states, respectively, are presented in Figures

10 and 11. In order to determine the position of the Fermi

level and convert experimental spectra to the binding-energy

scale used in the calculation, we made x-ray photoemission

(XPS) measurements of the boron 1s and magnesium 2p

core levels. The calculated spectra, which show that emis-

sion and absorption follow the boron 2p partial density of

states very closely, are in good agreement with the experi-

mental spectra.

Calculated and measured magnesium L emission and

absorption spectra, which probe occupied and unoccupied

Mg 3s states, are shown in Figures 12 and 13. The calcu-

lated emission differs somewhat from the magnesium 3s

partial DOS because the contribution to the x-ray intensity is

larger for states near the Fermi level than it is for those at

the bottom of the valence band, in accordance with the

energy dependence of the radial dipole matrix elements. We

found reasonable agreement between calculated and experi-

mental spectra, thus suggesting that electron–electron
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FIGURE 10 Calculated (top) and measured (bottom) boron K
emission spectra of MgB2. The spectra closely follow the cal-
culated density of unoccupied boron 2p states. 
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interactions are not important in the case of MgB2, so that

it behaves like a conventional metal well described by band

theory. 

A negative chemical shift of about 0.5 eV is found in the

magnesium L2,3 XES with respect to that of pure magne-

sium, which we consider evidence for charge transfer from

magnesium to boron atoms in this compound. This is an

important effect because it lowers the π (pz) bands relative

to the bonding σ (sp2) bands. This lowering causes σ→π

charge transfer and σ-band hole doping and is said to drive

the superconductivity in MgB2. 

In order to investigate this interpretation further, we com-

pared the Kα XES for graphite, AlB2, and MgB2 by alignment

of the Fermi levels as determined from XPS measurements

(Figure 14). The maximum originating from σ states is

shifted in MgB2 toward the Fermi level with respect to that

of graphite. AlB2 occupies an intermediate position, which

results in filling of the σ bands, decreasing the density of

states at the Fermi level, N(Ef) and finally destroying super-

conductivity.
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FIGURE 11 Calculated (top) and measured (bottom) boron K
absorption spectra of MgB2. The spectra closely follow the cal-
culated density of occupied boron 2p states.
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FIGURE 12 Calculated (top) and measured (bottom) magne-
sium L emission spectra of MgB2. The spectra near the Fermi
energy show some departure from the calculated density of
unoccupied magnesium 3s states.
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FIGURE 14 Comparison of x-ray K emission spectra of hexag-
onal graphite, AlB2, and MgB2 on the binding-energy scale. The
maximum originating from σ states is shifted in MgB2 toward
the Fermi level with respect to that of graphite, while the maxi-
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Hot Spots Turn Cold in the
Overdoped Regime of Cuprate
Superconductors

The origin of superconductivity (resistanceless flow of elec-

tricity) in “high-temperature” superconductors has remained

a mystery since the discovery of the first of these ceramic

compounds in 1986, despite a mountain of experimental

data and reams of calculations by theorists. A key require-

ment of any model of superconductivity is to explain how

electron pairing occurs. When the electrons pair up, the

usual causes of electrical resistance become inoperative

until there is enough energy available to break up the pairs.

In most superconductors, pairing is mediated by vibrations

of the atoms around their nominal positions (an electron–

phonon interaction, in the scientific jargon). Scientists have

made many proposals for alternative pairing mechanisms in

high-temperature superconductors, but the evidence for any

of them is as yet unconfirmed. By irradiating a sample with

x rays and making careful photoemission measurements of

the energy and number of electrons emitted in various direc-

tions, Bogdanov et al. have now produced strong evidence

against one of the proposed pairing mechanisms.

Over the last decade, angle-resolved photoemission spec-

troscopy (ARPES) has served as a powerful tool to uncover

some of the main aspects of the physics of high-temperature

superconductors (cuprates). In particular, one can directly

extract information about the dynamics of quasiparticles in

solids, such as the quasiparticle energy–momentum (dis-

persion) relation and the lifetime. In this way, it is possible

to probe the fundamental scattering process in the material.

Our ARPES measurements of the electron scattering rate in

lead-doped Bi2Sr2CaCu2O8 (Pb-Bi2212), one among several

families of cuprates, show that a postulated magnetic res-

onance (spin scattering) mode cannot be the dominant

scattering mechanism that drives electron pairing in these

materials.

By studying the lineshapes of photoemission energy dis-

tribution curves (EDCs), in particular the width of spectral

peaks, one can extract a quantity proportional to the quasi-

particle lifetime, which is a very sensitive test of the scat-

tering processes in cuprates. The continuing improvement

of the angular resolution in photoemission spectroscopy

has made it possible to use ARPES to search for anisotrop-

ic scattering by studying the variation of the linewidth with

momentum direction (direction in k space). 

The observation of broader photoemission spectra in the

anti-nodal direction (π, 0) with respect to those in other

momentum regions has been attributed to spin scattering

centered around the scattering vector Q=(π, π). This vector

connects the Fermi surface “hot spot” at the (π, 0) point of
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FIGURE 15 Fermi surface mapping of overdoped Pb-Bi2212
single crystal. The lower right quadrant of the Brillouin zone
identifies the bonding band Fermi surface (blue) and the anti-
bonding band Fermi surface (red). The yellow arrows indicate
the direction along which the data were collected. The red
arrow represents the Q=(π, π) vector, as determined in neutron
scattering experiments, connecting the two (π, 0) hot spots of
the Fermi surface.
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the Brillouin zone to the (0, π) hot spot (Figure 15), result-

ing in a broadening of the photoemission spectra by the

simultaneous excitation of collective modes near this region. 

From this finding, an anisotropy in which the peak width

increases toward (π, 0) can be considered as a sign of the

presence of antiferromagnetic interactions in the electron

dynamics. However, the recent report of a momentum-

dependent splitting between bonding and antibonding energy

bands (bilayer splitting) in the superconductor Bi2212 raises

the question whether a second, unresolved bilayer splitting

may be the actual source of the observed broadening at

(π, 0). The fundamental importance of this question to

identifying the main scattering mechanism for supercon-

ductivity motivated our investigation. 

Our approach was to focus on the lead-doped material

Pb-Bi2212 in the overdoped regime (Tc=70 K), where a

“superstructure band” that arises from the lattice mismatch

of the BiO with the CuO2 planes is suppressed by the intro-

duction of lead. In addition, in this doping range, the bond-

ing and antibonding bands can be well resolved, making it

possible to study in detail the momentum evolution of the

quasiparticle scattering rate. We recorded our spectra at

ALS Beamline 10.0.1 with 22-eV photons on single crys-

tals in both the superconducting and normal states.

We carefully studied the evolution of the widths of the

quasiparticle peaks along the two resolved Fermi surface

pieces. In particular, as can be seen in Figure 16, one

sees that along the bonding Fermi surface the spectra do

not change significantly, and the width of the peak appears

almost constant, hinting at an isotropic scattering rate. A

similar conclusion can be drawn for the lineshapes along

the antibonding Fermi surface, despite the more complex

structure of the lineshapes, which consist of two features:

a peak at the Fermi level and a feature that disperses to

higher binding energy. We adopted different analysis proce-

dures to extract the width of the EDCs and have unambigu-

ously shown that the scattering rate does not increase

towards (π, 0). 

This result contradicts what is expected from the Q=(π, π)

scattering, indicating that the hot spot has turned cold at

this doping level and therefore promotes another kind of

mechanism. This finding puts a very strong constraint on

any theory of high-temperature superconductivity, and in

particular it shows that the magnetic resonance mode can-

not be the driving force for electron pairing.
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FIGURE 16 Energy distribution curves (EDCs) along the two
bonding and antibonding sheets of the Fermi surface taken at
the points indicated in Figure 15. The blue EDCs are for the
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Fermi surface. Analysis shows that the peak width (scattering
rate) does not change significantly near the hot spots.
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Standing Waves Probe
Nanowedge Interfaces

Magnetic nanostructures comprising multiple layers of mag-

netic and nonmagnetic materials each only a few atoms thick

are the foundation of modern magnetic data storage and

memory devices. But because most of the action takes place

out of sight in the comparatively few atoms that reside at or

near the boundaries (interfaces) between the layers, some

details are hard to study. Yang et al. have attacked this prob-

lem for the interface between iron and chromium by creating

a so-called x-ray standing wave that penetrates vertically through

the sample so that the maximum x-ray intensity, which will gen-

erate most of the signal to be measured, occurs at a particular

depth below the surface. By scanning a focused x-ray beam

across the surface of a wedge-shaped sample in which the

position of the interfaces changes with thickness, they were

able to map the changes in chemical and magnetic behavior

at and around the interface. Researchers in other areas of

nanostructure science should also find this technique valuable.

Structures with nanometer-scale dimensions are ever

more important in science and technology. Integrated cir-

cuits are the most familiar example, but nanostructures 

of a different type are also commercialized in magnetic

read heads for high-density data storage and may soon

appear in magnetic memory chips. With the increased

importance in such nanostructures of atoms residing at

buried solid/solid interfaces, characterizing buried inter-

faces becomes a crucial step in understanding mechanisms

and developing new devices based on these state-of-the-

art materials. For example, new methods to nondestruc-

tively study buried interfaces would help to clarify the

nature of both the giant magnetoresistance effect and

exchange biasing, two key phenomena that make magnetic

nanostructures useful.

To this end, our group of researchers from Berkeley Lab

and the University of California, Davis, has combined the

technique of generating standing waves of circularly polar-

ized soft x rays with the growth of wedge-shaped samples.

In this way, we demonstrated the ability to map both com-

position and magnetization across an iron/chromium inter-

face by means of core-level photoelectron spectroscopy,

magnetic circular dichroism, and parallel mathematical

modeling.

In order to study buried interfaces in this way, we first

realized that soft x-ray standing waves generated via Bragg

reflection from a multilayer mirror should make it possible to

spectroscopically study buried interfaces nondestructively,

provided that there is a way to vary the position of the

standing-wave intensity maximum around the interface.

We also knew that wedge-shaped samples can be used

to investigate the thickness dependence of many types of

phenomena. In a combined approach, we grew the sample

to be studied on top of the mirror in a wedge shape, and

then simply by translating the sample horizontally in front

of a focused x-ray beam, the standing wave could be

scanned vertically through the buried interface.

In the experiments, which were carried out at ALS Beam-

line 4.0.2, strong standing waves with a period of 4.0 nm

and an approximately 3:1 ratio between the maximum and

minimum intensities were created by a synthetic multilayer

mirror fabricated at Berkeley Lab’s Center for X-Ray Optics.

The mirror consisted of 40 periods of B4C and tungsten:

[B4C/W]40. A wedge-shaped bilayer of chromium (variable

thickness) and iron (1.6 nm thick) was grown on top of the

multilayer (Figure 1). By analyzing various core-level photo-

electron intensities as a function of both x-ray incidence

angle and beam position, we could derive layer thicknesses

and measure the interface mixing/roughness due to migra-

tion of atoms across the interface to form a mixture of iron

and chromium.
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FIGURE 1 Wedge-shaped sample. Scanning the sample in the
direction of the wedge moves the intensity maximum of the
standing wave from one side of the iron/chromium interface to
the other.
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In addition, magnetic circular dichroism in photoemission

from the 2p and 3p levels of iron and chromium (Figure 2)

resulted in identification of regions with decreased

(increased) ferromagnetic alignment for iron (chromium)

and a quantitative determination of the positions and

widths of these regions (Figure 3). The magnetically altered

regions in both metals were only one to two atomic layers

in thickness. From these results, our group concluded that

(1) normally antiferromagnetic chromium becomes ferro-

magnetic just below the center of the interface but with

antiparallel alignment with respect to iron, and (2) the

equal-concentration region in the center of the interface

strongly inhibits magnetic alignment for both species along

the direction of net magnetization that was probed (also

the direction of light incidence). Multiplet-split spectra from

the 3s levels of iron and chromium further indicated that

the local spin moments on both atoms do not change on

crossing the interface.

We expect that the standing-wave-plus-wedge method will

not be limited to magnetic nanolayers but should apply

equally well to the characterization of other types of nano-

structures and their interfaces. Expanding the signal detected

to include soft x-ray fluorescence, valence-band photoemis-

sion, or the spin of the photoelectrons will also extend the

range of applications.
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Electromigration in Advanced
Integrated Circuits

In state-of-the-art computer chips, more than 100 million

transistors have to be connected by metal lines buried in an

insulator (dielectric). The metal interconnects in advanced

microelectronic devices are only about 1000 atoms wide

and operate at high current densities at least a hundred

times higher than in common metal wires. As a result, one

of the major failure mechanisms is electromigration, i.e., the

transport of atoms in an interconnect along the direction of

electron flow. The transport of many atoms can result in

voids in the wire, leading to open circuits, as well as hillocks

that extrude from the original interconnect, causing short

circuits. Schneider et al. have used an x-ray microscope to

study the pathways by which copper atoms move by observ-

ing directly the transport of matter in interconnects during

electromigration. Correlation of these real-time measure-

ments with post-mortem electron-microscope images shows

that the nucleation and subsequent motion of voids in cop-

per occurs at boundaries between crystalline regions (grain

boundaries), an observation that any cure for electromigra-

tion will have to take into account.
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Electromigration-induced atomic transport in the metal

lines connecting transistors in integrated circuits (ICs) is

best studied in situ in an intact IC, so that a technique

capable of high spatial resolution when penetrating through

several microns of dielectrics is needed. Since x rays have

the penetrating power and they are element specific, our

collaboration comprising Berkeley Lab and German research-

ers used x-ray microscopy to image copper interconnect

lines embedded within SiO2 while electromigration was occur-

ring. In this way, we were able to study the dynamics of void

development in passivated copper structures comprising inter-

connect lines in different layers and the vias that link them.

The challenge in designing advanced ICs is to ensure reli-

ability while the number of devices increases. As both tran-

sistor and interconnect dimensions decrease, the overall

performance of microprocessors is increasingly determined

by interconnect design and materials. While aluminum-

based interconnects are being replaced by inlaid copper

with a higher conductivity and improved electromigration

performance, electromigration phenomena nevertheless

remain severe reliability concerns. Among the issues asso-

ciated with electromigration in an IC, the mass flow in an

interconnect due to electromigration is constrained by

encapsulation. The resulting high mechanical stress in the

interconnect influences the material transport significantly. 

To investigate this behavior, we used the full-field x-ray

microscope, XM-1, at ALS Beamline 6.1.2, which is operated

by Berkeley Lab’s Center for X-Ray Optics. The interconnect

structures used for our electromigration experiments are

located within the scribe lines of production wafers. Figure

4 (left panel) shows a schematic cross-section of our test

structures with a two-level copper interconnect. A focused

ion beam (FIB) was used to thin the IC at the region of

interest to a thickness of about 2 µm (see middle and right

of Figure 4). Material was removed from both sides of the

copper structures under test, so that all neighboring metal

lines were removed from the XM-1 field of view. A 50-µm-

wide trench leading to the area of interest was cut. The 

x-ray beam penetrated the sample through this trench (see

Figure 4, middle). 

Figure 5 (parts a–e) shows a sequence of in-situ x-ray

micrographs of the copper via/line interconnect structure

that were captured with XM-1 at a 1.8-keV photon energy.

The electron flow was from left to right in the image, and

upwards through the via. Figure 5a shows the initial state

of the interconnect structure without any voids. During the

experiment, void formation (Figure 5b), movement (Figure

5c–d) and agglomeration (Figure 5e) were seen in the via.
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FIGURE 5 Selected images (a–f) from a sequence of x-ray
micrographs taken at successive times showing void formation,
movement, and agglomeration inside the passivated copper via.
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FIGURE 4 Left, schematic diagram of the cross-section of the electromigration test sample with copper via (interconnect) struc-
tures. Center, SEM micrograph of a fully prepared test sample. Right, SEM micrograph of the cross-section of copper metallization
thinned locally with a focused ion beam. 
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The image sequence indicates that initial voids are formed

in the copper bulk structure, probably at grain boundaries

or grain boundary triple points. 

To obtain detailed structural information of the via after

the electromigration experiment, the JEOL Atomic Resolution

Microscope operating at an accelerating voltage of 800 kV

at Berkeley Lab’s National Center for Electron Microscopy

was used to image the stressed sample. There seems to

be a significant mass transport along grain boundaries to

the copper/tantalum interface at the via sidewall, where

voids grow and agglomerate (see Figure 6). Figure 6 also

shows a scanning electron microscopy (SEM) image of an

FIB-thinned cross-section of the test sample, which shows

a grain boundary leading to the large void. Small voids are

visible along this grain boundary, giving evidence for the

grain boundary diffusion mechanism.

By correlating the information showing the transport of

matter with the copper microstructure obtained from x-ray

micrographs, the dominant copper diffusion pathways can

be identified. Visualizing the exact location (bulk or inter-

face) of voids in interconnects during electromigration by

means of real-time x-ray tomography and its correlation

with electron micrographs might help to design faster

microprocessors.
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Resolving Nanometer-Scale
Magnetic and Chemical Structure
in Magnetic Recording Media Films

The usual way to look at something very small is to examine

it through a microscope. As the size shrinks below the micro-

scopic, x-ray and electron microscopes become the tools of

choice. But what is the researcher to do when even these

instruments cannot resolve the details of interest? At this

point, scattering rather than imaging may come to the rescue.

Scattering measures the angular variation of the intensity of

the radiation (whether light waves, x-ray beams, or electrons)

that is deflected (scattered) on passing through a sample.

From the intensities of scattered radiation and the angles at

which they occur, one can work backwards to deduce some-

thing about the sizes of the objects within the sample

responsible for the scattering and about the composition

and other properties of the objects. Drawing on the sensitivity

of x rays to magnetic atoms, Kortright et al. took this tack in

their x-ray scattering investigation of the composition and

magnetic properties of the tiny particles that hold the bits 

of information in computer disks.

Current magnetic recording media alloy films consist of

chemically segregated, polycrystalline grains whose centers

are ferromagnetic and whose boundaries are nominally

nonmagnetic. Our Berkeley Lab–IBM group has used the

high sensitivity of resonant soft x-ray scattering to make

the first direct measurements of magnetic correlation lengths

in advanced recording media, to obtain estimates of the

chemical compositions of the segregated phases, and to

follow the evolution of this correlation length with alloy

composition on media films grown on a common buffer

layer structure similar to that used in current technology.

The chemically and magnetically heterogeneous

microstructure of magnetic recording media has evolved

through an increasingly complex set of alloys from CoCr to

CoPtCr to CoPtCrB. Chemical segregation in these films

can be resolved with high-resolution transmission electron

microscopy (TEM), as seen in Figure 7. However, to directly

measure the magnetic correlation length giving the dis-

tance over which grain-to-grain magnetism is correlated has

remained difficult because the length scales are too small

to resolve with microscopies (e.g., magnetic force and

Lorentz transmission electron microscopy), and the scatter-

ing contrast is too weak for polarized neutron-scattering

measurements. The high sensitivity of resonant soft x-ray

scattering to elemental, magnetic, and charge scattering

has allowed us to resolve and follow magnetic correlation

lengths in recording media films. 

The strong resonant sensitivity of soft x-rays is illustrated

in Figure 8, which shows intensity as a function of scatter-

ing vector q and photon energy hν near the cobalt L3 edge

from a Co69Pt9Cr22 granular media film. Of the two peaks

observed, the one at larger q clearly results from the chem-

ically segregated grain structure, since 2π/q = 11 nm cor-

responds to the chemical grain size known from TEM. The

origin of the low-q peak is unambiguously determined by

modeling its energy spectrum; only a model assuming pure

magnetic scattering can reproduce the shape. Modeling

also confirms the chemical origin of the high-q peak and

yields a good estimate of the compositions of the grain

boundary and center phases. For CoPtCr media, the mag-

netic correlation length is several times the chemical grain

size, indicating that exchange coupling between adjacent

grains limits its recording density. 

The effect of alloy composition on magnetic and chemical

length scales was also studied (Figure 9). These data were

collected at x-ray energies near the chromium and cobalt L3

10 nm

FIGURE 7 This plan-view high-resolution TEM image shows
the polycrystalline grain structure in a CoPtCrB recording media
film. Analytical techniques can reveal that chromium and boron
segregate to the grain-boundary areas that are lighter in color
and believed to be nonmagnetic. The darker grain centers are
rich in cobalt and platinum and are magnetic. Until now it has
remained difficult to measure the magnetic-correlation length
that gives the distance over which the grain-to-grain magnetiza-
tion is strongly coupled. Short magnetic-correlation lengths are
desired for recording media alloys, since this length sets a
limit on how sharp the magnetic transition between memory
bits can be. (Photo courtesy Kai Tang, IBM)
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core resonances. At the chromium edge, all samples have

a single peak at the high-q position of the chemical grain

size peak, which changes little between the three alloys.

The absence of magnetic peaks at lower q is expected,

since the chromium in these films is not magnetic. At the

cobalt edge, the magnetic low-q peaks are prominent for

the CoCr and CoPtCr films but not for CoPtCrB. The differ-

ence between the cobalt and chromium resonant scans

results from cobalt magnetic–magnetic and magnetic–charge

correlations, the former dominating the low-q peak and the

latter contributing progressively with increasing q. In the

progression of alloy compositions, the magnetic correlation

length remains unchanged between CoCr and CoPtCr but

moves much closer to the polycrystalline grain size peak for

the boron-containing sample. Boron addition is thus highly

effective in reducing magnetic correlation lengths, explaining

why B is the segregant of choice in current recording media.

Systematic studies of the effects of composition, growth,

and processing on magnetic and chemical properties of

films of potential interest in future generations of magnetic

storage media are already under way. As the recording

industry moves toward perpendicular recording, resonant soft

x-ray scattering is particularly well suited to characterize the

new recording media that will be needed. The same resonant

scattering techniques will also provide valuable new informa-

tion on a broad range of nanostructured magnetic materials. 
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FIGURE 8 Top, resonant small-angle scattering from a
Co69Pt9Cr22 in-plane recording media film reveals two peaks in
q space that disperse differently with photon energy near the
cobalt L3 edge at 778 eV. Bottom, energy spectra (symbols)
measured at these two peaks are modeled using measured
resonant charge and magnetic scattering factors for cobalt and
tabulated values for platinum and chromium. The models (lines)
confirm the magnetic origin of the low-q peak and the chemical
origin of the high-q peak and further provide a measure of the
chemical compositions of the segregated grain-center and
grain-boundary phases. The large magnetic-correlation length
indicates that some fraction of individual grains remain mag-
netically coupled by intergranular exchange.

FIGURE 9 Resonant x-ray scattering from CoCr (top), CoPtCr
(center), and CoPtCrB (bottom) media measured at the cobalt
(brown squares) and chromium (red triangles) L3 lines and the
difference between the spectra (scaled to match at high q)
(blue circles). The inset shows the scattering geometry and 
the media layer with magnetic grains (diameter D and the in-
plane magnetization direction represented by the arrows) and
nonmagnetic grain boundaries. Intensity peaks result from
interference between the scattering of well-defined neighboring
scattering centers. The high-q peaks in the chromium-edge data
give the average chemical grain size of about 10 nm. The low-q
peaks in the difference data approximate the magnetic-magnetic
interference and show how the magnetic correlation length
changes with alloy composition.
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Electromigration-Induced Plastic
Deformation

Anybody who has contemplated a boulder-strewn beach

after a big storm implicitly understands the power of large

numbers of little things (the water molecules) acting in con-

cert to push around much bigger things (the boulders). The

same phenomenon plagues the metal conductors that connect

the hundreds of millions of transistors on a state-of-the-art

computer chip. In the connectors, nowadays only a fraction

of a micrometer wide and much thinner than that, the raging

electrons dislodge the atoms and carry them away. It is easy

to imagine that over time, such atomic transport can lead to

breaks in a connector and, hence, failure of the chip to oper-

ate correctly. The first step to solving this increasingly urgent

problem, known as electromigration, is understanding exactly

how it occurs. At the ALS, researchers have developed and

now put to use an x-ray technique (microdiffraction) that is

able to look with submicroscopic resolution at local stresses

in metal conducting lines on test microchips, thereby catching

the early stages of electromigration in the act.

X-ray microdiffraction is joining x-ray imaging and spectro-

microscopy in the arsenal of spatially resolved techniques

at synchrotron radiation sources. At the ALS, our collabora-

tion comprising researchers from Stanford University, the

ALS, Bell Laboratories (Lucent Technologies), and the Intel

Corporation has focused on mapping with submicron spa-

tial resolution the local crystalline orientation and strain/

stress distributions in polycrystalline thin films. With this

capability, we have made the first observation of plastic

(permanent) deformation induced by electromigration in

metal interconnects in computer microchips.

Electromigration refers to the motion of atoms induced

by the flow of electric current. It increasingly affects the

reliability of integrated circuits as the dimensions of the

metal lines that connect the transistors on a chip become

ever smaller with each new technology generation, so that

the current density in these interconnects can be enormous

(around a million amperes per square centimeter). The

resulting atomic transport leads to the formation of voids

or metal extrusions and, eventually, circuit failure due to

breaks in the lines or short circuits with neighboring metal

areas. Insight into the details of electromigration has

awaited techniques able to measure local stresses with

micron spatial resolution.

Enter x-ray microbeam techniques and microdiffraction in

particular. X rays make an ideal probe because they can be

focused to submicron spot sizes to probe individual grains

within the patterned polycrystalline metal films that represent

interconnect lines on a silicon chip. X rays can also pene-

trate through passivating layers, such as silicon dioxide,

that overlie the metal lines. The ALS has been one of the

centers of microdiffraction activity with the development of

Beamline 7.3.3, a bend-magnet beamline that provides a

FIGURE 10 Laue diffraction pattern of grains in an aluminum
line on a silicon substrate.
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white-light beam spanning the photon-energy range from 6

to 14 keV for Laue diffraction measurements (Figure 10). A

Kirkpatrick–Baez pair of bendable elliptical mirrors focuses

the beam to a spot 0.8 µm by 0.8 µm, and a CCD area

detector records the diffraction patterns. 

In our electromigration experiments, we studied a test

line consisting of an aluminum (plus 0.5-weight-percent

copper) strip 30 µm long by 4.1 µm wide by 0.75 µm thick

that was sputtered onto a silicon substrate and covered by

a 0.7-µm-thick passivation layer of silicon dioxide. The first

set of measurements made with no current applied yielded

a map showing the orientation of each of the grains in the

aluminum line and the diagonal components (i.e., along

the length, across the width, and through the thickness) of

the distortional (deviatoric) stress tensor for each of the

grains. The changing values of these components from

grain to grain demonstrated that the stress state was far

from homogeneous and that appreciable local stress gradi-

ents existed even without an applied current (Figure 11). 

Next, we increased the current to 30 mA in steps of 10 mA;

after 24 hours, we turned off the current for 12 hours;

then we reversed the current to –30 mA for 18 more

hours. At the 30-hour point, we observed gradients from

the anode to the cathode in both the width of the diffraction

peaks and the changing angular positions of the diffraction

peaks (Figures 12 and 13). During the 54-hour experiment,

we saw that the distortional stress components averaged

over all the grains increased while the current was on,

relaxed when it was off, and increased again when the cur-

rent was reversed (Figure 14). Taken together, these findings

demonstrate the existence of electromigration-induced

plasticity, most likely due to local shear stresses as metal is

removed from the cathode end and deposited at the anode

end. Such plastic deformation, which results in rotation

and concave bowing of the grains, occurs before formation

of failure-causing voids or hillocks.
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FIGURE 11 Microdiffraction of a 4.1-µm-wide, 30-µm-long 
aluminum (0.5-weight-percent copper) sputtered test line passi-
vated with a 0.7-µm-thick layer of silicon dioxide. a, grain map
shows the orientation of the grains in the polycrystalline line.
b, local x, y, and z components of the distortional (deviatoric)
stress tensor map the inhomogeneous distribution of stress 
in the line even before any current is passed.
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A Sharper View of Atoms

A guiding maxim for those studying solid materials and the

devices made from them is that structure determines func-

tion. Therefore deciphering the structure—where the atoms

are—is an activity of some importance in understanding

why a material behaves the way it does. The corollary is that

knowing how to put the atoms, or other structural units,

where you want them will enable you to construct materials

with the properties you want, everything from mechanical

strength to magnetic and electrical behavior. Today’s frontier

in imaging and manipulating atomic positions lies in the

realm of the ultrasmall, the region of nanostructures, where

the atoms on a surface play an important and sometimes

dominating role. Omori et al. have devised a method that is

especially effective at obtaining accurate positions of atoms

on or near the surfaces of samples. Their method, called dif-

ferential photoelectron holography, is based on the same

principle as the holography familiar to all of us, but it oper-

ates at the level of atoms. Hence, its sensitivity to atomic

positions.

Directly seeing atoms has been a long-sought goal, one

with increasing relevance in nanoscale materials, but true

three-dimensional imaging at the atomic scale has been

elusive. In particular, the quality and precision of the atomic

images obtained to date via electron holography have been

limited by the complexity of the scattering properties of

these particles in matter. Now we have developed a new

technique (we are calling it differential photoelectron holog-

raphy) that makes it possible to greatly improve the atomic

images obtained with holography at surfaces, which are both

ubiquitous and of growing importance in nanostructures. 

Partial success in imaging atomic positions has been

achieved with electron microscopy (especially in periodic

crystal lattices) and with electron holography and scanning

tunneling microscopy (particularly at surfaces of solids). Our

new technique is an extension of photoelectron diffraction,

in which x-rays eject core-level electrons from near-surface

atoms. These photoelectrons then scatter from other

atoms as they escape through the surface so as to form

an interference (or diffraction) pattern that contains all the

desired information about atomic positions. Up to now, the

challenge has been to extract that information and directly

produce a sharp three-dimensional image of the atoms.

The differential method is based on a simple and power-

ful idea: although the scattering properties of electrons are

complex (thus causing the poor prior images), they only
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change slowly with the kinetic energy of the scattering elec-

trons. At the same time, the diffraction that gives relative

atomic positions changes rapidly with this energy. Thus, if

we measure two diffraction patterns at nearby energies

and take the difference between them, the resulting differ-

ential hologram eliminates most of the disturbing scattering

properties. This procedure allows a much cleaner conversion

from diffraction pattern to atomic image. 

Figure 15 shows the improved atomic images that we

achieved with differential photoelectron holography at a

simple surface of crystalline copper, as compared to previ-

ous holographic methods. The black square and circles

indicate the known positions of atoms in a cross-section

through the surface (the solid crystal lies toward the bot-

tom of the images). The non-blue regions show where this

kind of experiment “sees” the atoms. Success in imaging

is achieved when the non-blue regions coincide with the

black circles. Clearly, the prior methods performed poorly,

especially for the surface atoms (seen in the upper part of

the images above a deeper emitting atom located at the

black square). 

The new differential photoelectron holography method

greatly improves both the location and the sharpness of

the atomic images, particularly near the surface where 

this detailed information is usually lacking. Figure 16,

which gives a three-dimensional view (composed of two-

dimensional slices) of the same surface obtained from

actual experimental data measured at the ALS, likewise
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FIGURE 15 Two atomic images of the same cross-section of a  copper (001) surface with the bulk crystal at the bottom and 
vacuum at the top. The left image results from a typical previous holographic method (the Barton approach), while the right image
results from our new differential photoelectron holography. Realistic calculated, rather than measured, holograms are used as the
“experimental data” in these images. Squares and circles represent known atomic positions, while non-blue colors indicate where
holography images atoms. (The image intensity is magnified by the indicated factors below and above the thick horizontal line.)

FIGURE 16 Three-dimensional image composed of three two-
dimensional cross-sections parallel to the same copper (001)
surface as in Figure 15 with actual experimental data meas-
ured at the ALS. The green features are images of the green
atoms drawn in the inset (the photoemitting atom, always at
the origin, is not imaged). The image splittings and nonalign-
ments reflect the limited experimental data ranges and resid-
ual nonideal scattering effects and could be improved in future
experiments.
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clearly locates the various atoms close to their known posi-

tions, as shown in the inset.

Differential photoelectron holography thus promises to

more sharply image the near-surface atoms that play such

important roles in the physical and chemical properties of

nanostructured materials. Images of surface-atom positions,

which might even include time-dependent measurements of

changing geometries in the future, should expose the func-

tionality of these atoms more directly.

The differential approach has also been fruitfully used in

two related forms of holography that we have developed. In

spin-polarized photoelectron holography, the slight differ-

ence in scattering properties between spin-up and spin-

down electrons is exploited to provide images of the local

magnetic order within the surface of a magnetic material.

And in resonant x-ray fluorescence holography (in which 

x rays rather than electrons scatter), the atom-specific

anomalous resonant scattering of x rays is used to image

the local chemical order of a material. Both of these types

of atomic imaging should be useful in future studies of

complex, multicomponent materials.
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POLYMERS AND
BIOSCIENCE

Segregation in Mixed Polymer
Brushes

How water behaves on a surface is a big deal to some of us,

so we buy dishwasher detergents and rinses that promise to

leave dishes without water spots and the like. But how about

a way to make a “smart” surface that adapts to its environ-

ment? Such an adaptive behavior would be just the ticket in

medicine and biological science for designing surfaces that

mimic the permeability of living cell membranes or that selec-

tively recognize and stick to cells or their constituents, as

well as in applications such as self-cleaning clothes. Toward

this end, Minko et al. started by binding different polymers

(long chain molecules) to a solid surface (substrate) to form

a polymer “brush.” Then they exposed the brush to chemical

solvents that caused the film structure to adopt the particu-

lar desired property, such as being hydrophobic (on which

water forms droplets) or hydrophilic (on which it spreads out).

They used x-ray microscopy at the ALS to image the chemi-

cal changes in the brush films induced by the solvents.

The chemical separation of mixed polymers into

microphases represents a powerful and inexpensive tool

for the fabrication of nanostructures. Our international

team comprising researchers from Germany and the ALS

has explored the changing surface chemical structure of

mixed polymer brushes exposed to different solvents. A

brush consists of polymer chains chemically attached to

the substrate. Our observations, made with the PEEM2

photoemission electron microscope at the ALS and an

atomic force microscope (AFM), provide guidance for 

creating novel materials that adapt to their environment by

changing their surface properties.

Polymers make perfect building blocks for manufacturing

nanostructures because of their variable chemical function-

ality and the size of the polymer molecules. Moreover, the

morphology and other important properties of polymers,

such as wetting, adhesion, or biocompatibility, can be

externally modified, e.g., by solvents. Such an adaptive

behavior is very promising for the engineering of smart 

surfaces for biomedical applications and nanodevices. For

example, a mixed brush of hydrophilic and hydrophobic

homopolymers that is exposed to a hydrophilic solvent

should chemically segregate and the hydrophilic compo-

nent will accumulate at the surface, a process called 

perpendicular segregation. Although the reversible switch-

ing from hydrophilic to hydrophobic character has been

observed, the detailed local chemical structure has

remained unknown. 

Photoemission electron microscopy based on near-edge

x-ray absorption fine structure (NEXAFS) provides a way to

identify differences in local chemical structure. By combin-

ing NEXAFS, which has been very successfully used for

years in spectroscopic studies of polymer materials, with

the high surface sensitivity and the high nanometer spatial

resolution (<50 nm) of the PEEM2 on ALS Beamline

7.3.1.1, we were able to image the chemical structure at

the surface of a mixed polymer brush, including the lateral

and perpendicular segregation predicted by self-consistent-

field (SCF) calculations. We were also able to correlate the

chemical morphology of the sample with its topography, as

detected by atomic force microscopy.

The samples, a mixed brush whose two components were

polymethylmethacrylate (PMMA) and a random copolymer

of styrene and pentafluorostyrene (PSF), were fabricated at

the Institute for Polymer Research in Dresden, Germany.

I
I
I
I 60°C, THF,

12 h

+ Monomer 1
I

I 60°C, THF,
12 h

+ Monomer 2

I  40-60 nm= Azo-Initiator

FIGURE 1 Synthesis of a mixed polymer brush comprising hydrophobic and hydrophilic homopolymers (PSF and PMMA, respectively)
via a two-step surface-initiated radical polymerization.
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There a sophisticated technique of grafting the two incom-

patible polymers randomly on the surface of a silicon wafer

was used. This prevents macroscopic phase separation of

the incompatible components, the hydrophobic PSF and

hydrophilic PMMA (Figure 1).

Utilizing the chemical sensitivity of PEEM, we observed

that, after exposure to the nonselective solvent toluene,

the components of the mixed polymer brush created a lat-

erally segregated “ripple” phase comprising worm-like

domains, 150 to 160 nm in width (Figure 2). This lateral

segregation showed up as a reversal in contrast in PEEM

images, which were acquired at two specific x-ray energies

corresponding to characteristic absorption peaks for the

two polymers at the carbon absorption edge. This observa-

tion was corroborated by AFM images, which showed the

same ripple phase in the topography of the sample. The

observed lateral segregation was predicted by the SCF cal-

culations, which considered among other parameters the

length of the polymer chains, the repulsion between the

chains, and the selectivity of the solvent.

When the polymer was exposed to the selective solvent

acetone, a hydrophilic solvent that preferentially dissolves

the PMMA component, we observed a new microscopically

segregated phase that could be described as a “dimple

phase,” with both lateral and perpendicular segregation

(Figure 3). The segregation of the two polymer components

perpendicular to the surface resulted in an enhancement

of the PMMA at the top of the brush (Figure 4). This segre-

gation appeared in the PEEM images as a strong reduction

in contrast, owing to the prevalence of one polymer compo-

nent at the surface. Calculations were again able to

explain the formation of this new polymer phase.

AFM Topography 286.1 eV 289.2 eV

FIGURE 2 Left, an AFM image of a PSF/PMMA brush after treatment with toluene shows that exposure to toluene creates a 
“ripple phase.” The PEEM images show inverted contrast (arrows) at x-ray energies specific for PSF (center) and PMMA (right).

AFM Topography 286.1 eV 289.2 eV

FIGURE 3 Left, an AFM image of a PSF/PMMA brush after treatment with acetone shows that exposure to acetone creates a “dim-
ple phase.” The surface is dominantly PMMA, and PEEM images (center, right) show no indication of contrast reversal.
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ENVIRONMENTAL AND
EARTH SCIENCE

Biodegradation of Organic
Contaminants Catalyzed by
Humic Acid

Contaminants in the environment come in many forms, one

of which is that of the toxic organic (carbon-based) chemi-

cals known as polycyclic aromatic hydrocarbons (PAHs).

These include more than 100 different chemicals resulting

from incomplete burning of coal, oil, gas, garbage, and other

organic substances like tobacco or grilled meat. Converting

PAHs into nontoxic chemicals removes the hazard, but learn-

ing how to do this in an efficient and cost-effective way

remains to be accomplished. Remarkably, since bacteria are

feared by many people as infectious germs, some species of

these microorganisms may provide a solution by, in effect,

ingesting the PAHs and during digestion converting them

into a less toxic chemical, a process known as biodegrada-

tion. Holman et al. made use of an infrared technique to

show that the speed of biodegradation can be dramatically

increased (almost a hundred times) by adding a soil-derived

organic (humic) acid along with the bacteria to a PAH spot

on a mineral surface. This finding will influence the develop-

ment of environmental cleanup strategies based on

biodegradation.

The role of humic acid in the biodegradation of toxic poly-

cyclic aromatic hydrocarbons (PAHs) has been the subject

of controversy, particularly in unsaturated environments. By

utilizing an infrared Fourier transform spectromicroscope

and a very bright, nondestructive synchrotron photon

source (SR-FTIR spectromicroscopy), we monitored in situ

and over time the influence of humic acid on the degrada-

tion of pyrene (a model PAH) by a bacterial colony on a

magnetite surface. Our results indicate that humic acid dra-

matically shortens the onset time for PAH biodegradation

from 168 to 2 hours. These results will have significant

implications for the bioremediation of contaminated soils.

The pyrene-degrading bacterium used for this study is

Mycobacterium sp. JLS, a gram-positive, rod-shaped bac-

terium recently isolated from PAH-contaminated soil at the

Libby Groundwater Superfund Site in Libby, Montana, USA.

Figure 1 summarizes the time series of infrared spectra

obtained from the same location on each pyrene-coated

sample over more than a month. 

Abiotic (no bacteria present) results show that almost all

of the pyrene remains on the mineral surface, owing to slow

removal mechanisms. After introduction of M. sp. JLS in

the absence of humic acid, it took the bacteria about 168

hours to produce sufficient glycolipids to solubilize pyrene.

At this point, biodegradation could proceed, resulting in a

rapid decrease of pyrene and a rapid increase of biomass

within the next 35 hours. After the pyrene was depleted,

the biomass signal significantly decreased, presumably as

the M. sp. JLS bacteria transformed themselves into ultra-

microcells, a starvation-survival strategy commonly observed

among bacteria in waters that are relatively low in accumu-

lated nutrients and high in dissolved oxygen (oligotrophic

environments). 

In the presence of humic acid (specifically Elliot soil humic

acid, or ESHA), pyrene biodegradation began within an hour,

and the pyrene was depleted by the end of the fourth hour,

with a concurrent increase of biomass. Both the degrada-

tion of pyrene and the increase of biomass corroborate the

effectiveness of ESHA in radically accelerating biodegrada-

tion of pyrene. It is likely that the water-insoluble pyrene is

solubilized into the cores of humic acid pseudo-micelles

and therefore becomes directly available for bacterial

uptake and consumption.
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Over longer times, infrared absorption bands of pyrene

on magnetite surfaces first showed a slight increase and

subsequently a decrease. The increase is probably due to

diffusion of pyrene trapped in micropores (≤0.5 µm in

diameter) of the magnetite and/or neighboring surfaces of

higher pyrene concentration after the first wave of rapid

depletion of pyrene by M. sp. JLS set up a diffusion gradient

from the pyrene-containing micropores toward the bacterial

colony. For the surface containing humic acid, the biomass

remained almost constant over a period of more than 200

hours, indicating that the flux of pyrene from the micropores

was sufficient to maintain the bacterial colony. For the sur-

face free of humic acid, there is little evidence of the pres-

ence of a quasi–steady-state biomass. 

At the end of the time-resolved experiment (about 460

hours), spatial distributions of pyrene, M. sp. JLS, and

ESHA were measured by acquiring infrared spectra at 5-µm

intervals across the center of the bacterial colony with humic

acid. Figure 2 shows contour maps of the spatial distribu-

tion of measured infrared absorbances corresponding to

M. sp. JLS, humic acid, and pyrene. The central region of

the maps has a high population density of M. sp. JLS and

a high concentration of humic acid, but the pyrene in this

region was completely biodegraded. Where pyrene is pres-

ent without M. sp. JLS, there is no significant degradation.

We conclude that SR-FTIR spectromicroscopy can assess

real-time interactions between multiple constituents in con-

taminated soils. Combined with conventional mineralization

measurements, which monitor respiration through carbon

dioxide production, SR-FTIR spectromicroscopy is thus a

powerful tool for evaluating bioremediation options and

designing bioremediation strategies for contaminated

vadose zone environments.
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An X-Ray View of the Microworld
of Trace Metals in Soils and
Sediments

Heavy metals are components of hazardous waste at many

industrial and government sites. They can exist in combina-

tion with other species in water-soluble and insoluble forms

and, unfortunately, cannot be completely broken down. As a

rule, the less soluble a chemical species, the less mobile

and less toxic; the more soluble it is, the more mobile and

more toxic. Manceau et al. focused on nickel because cer-

tain nickel sulfates, sulfides, and oxides are suspected car-

cinogens. In soils, nickel often ends up bound (sequestered)

in compressed aggregates or nodules that are rich in iron

and manganese. By using three x-ray techniques in combina-

tion, the researchers were able to determine at the molecu-

lar scale where and how nickel naturally hides itself in soils,

leading to the eventual ability to (1) predict with greater

accuracy the evolution of metal chemistry in a contaminated

environment and (2) modify and control the metal’s form in

order to maintain soil quality and to frame effective, site-

specific strategies for waste cleanup (remediation).

In the last two years, our international team comprising

researchers from France and the ALS has developed new

analytical capabilities that allow them to noninvasively peer

into the heterogeneous world of soils and sediments and

identify and quantify heavy-metal contaminants at microme-

ter scales of resolution. The synergistic use of three power-

ful x-ray techniques—x-ray fluorescence (SXRF), diffraction

(XRD), and absorption (XAFS)—allowed us to identify the

molecular nature of the host mineral species and the trace

metal’s speciation, distribution, and coordination chemistry

with micrometer spatial resolution.

One of the difficulties in assessing the state of these

metals is that the earth’s surface and subsurface are

extremely heterogeneous and become even more so at
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SCIENCE HIGHLIGHTS: ENVIRONMENTAL AND EARTH SCIENCE38

these scales, where heavy metals can exist as trace and

major elements in mineral hosts. We were able to success-

fully apply the three-pronged approach to the speciation of

nickel and zinc in a soil ferromanganese nodule at the ALS

using the microfocus capabilities of Beamlines 7.3.3 and

10.3.2. 

The exquisite sensitivity of scanning x-ray microfluores-

cence (µSXRF) to trace elements makes µSXRF an ideal

tool to map trace element distribution within a heteroge-

neous matrix. After µSXRF has identified the location of

trace and major elements within a matrix, the new tech-

nique of scanning x-ray microdiffraction (µSXRD) identifies

and images the distribution of mineral species in the

nanoscale particles that are the most reactive toward the

trace metals. Then, the nature of minerals hosting a partic-

ular trace element within the heterogeneous matrix is

deduced from the comparison of elemental and mineral

species maps (from µSXRF and µSXRD, respectively).

Finally, with micro-extended x-ray absorption fine structure

(µEXAFS) spectroscopy, the structural relationship between

metal and mineral host is examined. Specifically, the coor-

dination chemistry of the metal is determined, and hence

its incorporation mechanism within the mineral host is

identified. 

The µSXRF elemental maps of the nodule show that iron,

manganese, nickel, and zinc are unevenly distributed at the

micrometer scale (Figure 3). Iron and manganese have no

detectable correlation, and nickel and zinc are both strongly

correlated with manganese and not with iron. Highest zinc

and nickel amounts are observed in the manganese-rich

core; the outer regions also contain significant amounts of

manganese and zinc but are depleted in nickel. The partial
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nickel–manganese association suggests that manganese

is present in at least two forms, only one containing nickel.

The comparison of µSXRF and µSXRD maps clearly shows

that nickel and the mineral lithiophorite have the same dis-

tribution, therefore indicating that nickel is exclusively

bound to this particular manganese phase (Figure 4). The

goethite map does not match the zinc and iron elemental

maps, which means that this constituent is devoid of zinc.

The sequestration mechanism of nickel inferred from

µSXRF and µSXRD was confirmed by nickel K-edge µEXAFS

measurements from selected regions of interest in this

nodule and others from the same soil and from various

soils from different countries across several continents. 

Unlike nickel, the zinc map does not resemble any of the

mineral species maps obtained from µSXRD, nor can it be

reconstructed by a combination of several. Therefore, the

nature and proportion of the zinc host phases were deter-

mined by analyses of five µEXAFS spectra recorded in dif-

ferent spots chosen to vary the proportions of component

species (principal component analysis and least-squares

fitting analysis), which indicated the presence of three pre-

dominant species, lithiophorite, birnessite, and poorly crys-

tallized iron oxide (e.g., ferrihydrite) (Figure 5). Finally, bulk

EXAFS spectra were recorded in order to verify that these

assessments truly represent all of what is found in the

entire sample.
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STRUCTURAL 
BIOLOGY

Structural Basis for Recognition
of Acidic-Cluster Dileucine by
GGA1

For each of the 10 trillion or so cells in the human body, the

cell nucleus with its strands of DNA is just the beginning of

the story. Outside the nucleus is a tangle of organelles

tasked to manufacture biomolecules (proteins) according to

the instructions encoded in the DNA, fine tune them for their

myriad jobs within the cell, and direct them to their working

sites. One of these organelles is the Golgi body, a network of

flattened sacs stacked loosely on one another that serves

as a packaging and distribution center. For example, the

final touches are added here to make certain proteins (gly-

coproteins) that are headed for duty elsewhere. Once com-

pleted, the mature proteins must be sorted and transported

via mobile sacs (vesicles) to their correct destinations.

Sorting and transport require the molecules involved to rec-

ognize each other. Shiba et al. have obtained the atomic

structure of a portion (a domain) of a protein called GGA1

that recognizes the region in a receptor that signals that a

glycoprotein should be transported, thereby revealing the

recognition mechanism.

Structural features of certain proteins are key players in

sorting newly processed proteins and transporting them to

the cell sites where they will perform their respective func-

tions. In order to investigate the structural basis for the

specific interactions involved in transporting lysosomal

hydrolases (digestive enzymes that will become the con-

tents of the vesicles known as lysosomes), we have deter-

mined to a resolution of 2.0 Å the x-ray crystal structures

of the VHS domain of the GGA1 protein that facilitates the

transport. We obtained two structures of the domain,

including one in complex with a peptide [a 13-residue

acidic-cluster dileucine (ACLL) sequence] that is the sorting

signal to be recognized. Our structure provides insight into

the transport mechanism. It also is in agreement with the

structure of the VHS domain of a GGA3 protein, recently

determined by another group.

Many eukaryotic proteins are glycosylated (chemically

linked to carbohydrate residues) after translation to

become mature glycoproteins. Essential for the cell’s

function, efficient sorting of glycosylated proteins is

achieved by vesicle transport in two stages. First, mannose

6-phosphate receptors (MPRs) recognize the mannose 

6-phosphate groups on lysosomal hydrolases in the trans-

Golgi network (TGN). In the second step, an adaptor pro-

tein called AP-1 was traditionally thought to recognize the

cargo-loaded MPRs and transport them from the TGN to

the endosome, or early lysosome (i.e., a lysosome not yet

filled with its complement of enzymes), with the help of still

another protein complex involving clathrins. In 2000, a new

family of transport proteins, GGAs, was identified, and later

in 2001 it was shown that GGAs facilitate this second step. 

All GGAs in the family have a common domain organiza-

tion. At the N-terminus, they have a VHS (Vps27p/Hrs/

STAM) domain, which is conserved in various proteins

involved in endocytic processes (those in which the cell

surrounds an external object) and signal transduction.

Following this domain, there is a highly conserved region in

the GGA family, referred to as the GAT domain, which binds

small G-protein ARF (ADP-ribosylation factor) and is respon-

sible for the family’s TGN membrane association. At the 

C-terminus, GGAs have a domain called GAE which is

homologous to the ear domain of the γ-adaptin subunit of

AP-1 and interacts with various accessory proteins. The

GAT and GAE domains are connected by a hinge region

that binds clathrin.

The N-terminal VHS domain recognizes the ACLL

sequence, a sorting signal in the cytoplasmic domain of

MPRs. In order to investigate the structural basis for the

specific interactions between the GGA VHS domains and

the ACLL sequences, we determined the x-ray crystal struc-

tures of GGA1-VHS domain, in the apo form and in complex

with a 13-residue ACLL peptide from MPR (Figure 1). The

high brightness of ALS Beamline 5.0.2 was essential for

solving the structure of the complex at the 2.0-Å resolution. 

The GGA1-VHS domain forms a right-handed superhelix

with eight α-helices. The hydrophobic core in the center

stabilizes the superhelix, and there is only slight conforma-

tional change in the overall structure upon binding of the

ACLL peptide. The crystal structure shows that the helices

α6 and α8 and the loop immediately after α6 form a recog-

nition site for the ACLL sequence by a combination of

shape and both electrostatic and hydrophobic interactions

(Figures 2 and 3). This was confirmed by a mutant analysis. 

The binding of the ACLL peptide to the GGA1-VHS domain

changes the surface properties of the protein significantly



SCIENCE HIGHLIGHTS: STRUCTURAL BIOLOGY42

(Figure 1). This change might provide a signal to other

events of membrane traffic, for instance, the interaction

between the GGA-GAT domain and membrane-bound ARF1,

recruitment of clathrin molecules, or interaction with acces-

sory proteins that all play important roles in the highly

selective transport processes. Incidentally, a very similar

result was reported for the GGA3-VHS domain by Misra et

al. [Nature 415, 933 (2002)].
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Aquaporin Structure Elucidates
Water Transport

The transport of water through the human body is essential

to our existence. For example, kidney function depends on

the transport of water into and out of cells, reclaiming an

amazing 150 liters a day. Our nerves, digestion, reproduc-

tion, body temperature, and even vision can be adversely

affected by water transport problems. Water transport is so

important to the business of a cell that biochemists often

model a cell as nothing more than a bag of water. But the

bag itself (the cell membrane) must reliably allow the right

sort of molecule in the right amount to move in the right

direction. And not only must a cell get all that right, it must

adapt to changes in its environment. Aquaporin-1 is one of

the membrane proteins that control water transport, giving

the theoretical bag its amazing properties. Sui et al. have

obtained the atomic-level structure of this protein with the

goal of understanding what magic these proteins possess

and ultimately how to restore function when the magic is lost.

FIGURE 1 The GGA1-VHS domain with and without the ACLL
peptide. The surfaces are colored according to the electro-
static surface potential (blue, positive; red, negative). Left, the
VHS domain (in complex form) without the peptide. The green
line outlines the location of the bound peptide. Right, the
same view of the VHS domain with the peptide. 

FIGURE 3 Close-up of the GGA1-VHS domain interacting with
the ACLL peptide. The surfaces are colored according to the
hydrophobicity (green), and the basic residues interacting with
the peptide are labeled. Left, stereo diagram showing the pep-
tide bound to the VHS domain (same view as in Figure 2).
Right, the side of the peptide facing the protein (same view as
in Figure 2). 

FIGURE 2 Close-up of the GGA1-VHS domain interacting with
the ACLL peptide. The surfaces are colored according to the
electrostatic surface potential (blue, positive; red, negative),
and the basic residues interacting with the peptide are
labeled. Left, stereo diagram of the peptide bound to the VHS
domain. The peptide is shown as a stick structure. Right, the
side of the peptide facing the GGA1-VHS domain. 
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From aqueducts to osmosis, water transport is crucial to

life. Yet, precisely how life manages the transport of water

across membranes has remained a mystery for eons—until

now. Our team of researchers from the Berkeley Lab Life

Sciences Division has solved the structure of aquaporin-1

(AQP1), a membrane protein that selectively controls the

movement of water molecules into and out of mammalian

cells. It is a member of the aquaporin superfamily, whose

members include those that transport water, glycerol, or

urea. The new structure offers a resolution of 2.2 Å, allow-

ing us to deduce just how the protein does its job. 

After preliminary work at the National Synchrotron Light

Source and the Stanford Synchrotron Radiation Laboratory,

our team turned to the Berkeley Center for Structural

Biology and ALS Beamline 5.0.2. We began by studying

thallium-derivatized crystals of AQP1 from bovine red blood

cells by multiwavelength anomalous diffraction (MAD). We

then refined the resulting data set to 2.2 Å by using crystals

grown in the presence of gold cyanide. The high-resolution

structure shows atomic-level details of the protein and

water molecules captured in transit. 

The overall structure of AQP1 is that of a tetramer, the

four parts (monomers) of which each define a single pore

(Figure 4). These monomers are arranged side by side in a

tight cluster, with the pores running parallel. Each monomer

in turn comprises six membrane-spanning helices that 

partially surround two shorter helices (Figure 5). The short

non–membrane-spanning helices make up the major por-

tion of the pore. Each pore has a dumbbell-like shape. One

broad end is the cytoplasmic vestibule; the other is the

extracellular vestibule. The bar of the dumbbell is the

selectivity filter, which narrows to a constriction region on

the extracellular end. 

In the new structure, the key elements of the constriction

region can be discerned (Figure 6). A series of carbonyl

oxygens forms a hydrophilic path across the region and

through the rest of the selectivity filter. One of these oxy-

gens, along with a histidine residue and an arginine

residue, forms the hydrophilic face of the constriction

region. Opposite this face is a hydrophobic face formed by

a phenylalanine residue. Three of the four residues that

form the constriction region (the arginine, histidine, and

phenylalanine residues) are conserved in all known water-

specific aquaporins. This observation suggests that the

presence of these residues can be used as a marker for

identifying other water-specific aquaporins.

FIGURE 4 The AQP1 tetramer viewed looking down the pores
from the cytoplasmic side, normal to the membrane. One
monomer of the four is represented as a solid space-filling
model.

FIGURE 5 Side view of AQP1 showing the pore profile
(turquoise dots) and the residues that line the pore (opaque
ball-and-stick structures). The extracellular vestibule is above;
cytoplasmic, below. The pinched-in area with the highest con-
centration of turquoise dots is the constriction region.
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An earlier study by a different group—also done at the

ALS—revealed the structure of a closely related bacterial

channel, the Escherichia coli glycerol facilitator (GlpF),

which selectively transports glycerol. The structure found

for GlpF differs from that of AQP1 in that its constriction

region is about 1 Å wider and slightly less polar. The result-

ing decreases in steric hindrance (physical blocking) and

hydrophilicity favor glycerol transport at the expense of

rapid water throughput. Despite the functional difference,

the GlpF constriction region is strikingly similar to its AQP1

counterpart. It differs only in the replacement of a histidine

by a glycine and a cysteine by a phenylalanine. As both the

cysteine and the phenylalanine provide carbonyl oxygens to

shape the constriction region, the difference in functionality

turns out to depend primarily upon the residue found in the

location of the histidine (H182) in AQP1. This residue thus

appears to be a key in defining selectivity throughout the

aquaporin superfamily.
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Mechanism for Proton Exclusion
by Water-Conducting
Aquaglyceroporin GlpF

Who goes there, friend or foe? For the cells in our bodies,

the sentries that lie at the entry ports or channels in the

membranes that surround our cells are critical. Aquaporins

are channels that control water flow into cells in all life

forms. Water, of course, is hydrogen and oxygen in the com-

bination H2O. In the water molecule, hydrogen nuclei (pro-

tons) carry a positive electrical charge and thus potentially

can carry an electric current. This would be a disaster for

cell function, which depends on the maintenance of an elec-

trochemical potential (like a voltage) across the cell mem-

brane, because it would short-circuit the potential. So how

does an aquaporin let water pass while at the same time

blocking the passage of protons? Tajkhorshid et al. combined

an atomic-level structure of an aquaporin with mathematical

simulations of the motions of molecules within the structure

to find the answer. The key is the nonuniform orientation of

the water molecules, which prevents proton transfer along

the single-file line of water molecules in the channel.

Aquaporins are transmembrane channels found in cell

membranes of all life forms. These channels have the

apparently paradoxical property of facilitating efficient

water permeation through the membrane while excluding

protons, a property that is of critical importance in preserv-

ing the electrochemical potential across the membrane. 

To understand how the channel performs this function, we

determined the structure of the integral membrane protein

E. coli aquaglyceroporin GlpF with bound water and the

structure of a double mutant form of this glycerol facilitator

with two key residues replaced in the center of the water

channel. Extensive molecular dynamics simulations shed
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FIGURE 6 The hydrophilic path across the selectivity filter,
highlighted by ball-and-stick structures of the side chains
involved. The green spheres are the water molecules observed
in transit. The constriction region is indicated by the blue
arrow.  
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critical additional information on the water-conduction

mechanism.

Our multiwavelength anomalous dispersion (MAD) x-ray

diffraction measurements were carried out at ALS

Beamlines 5.0.2 and 8.3.1. We chose the ALS for this

work because of the very favorable characteristics of the

endstations and operations and because of the efficient

tunability of the beam. 

First, we determined to a resolution of 2.7 Å the struc-

ture of the E. coli aquaglyceroporin GlpF with bound water

by difference mapping against a 2.2-Å structure with glyc-

erol that we had obtained previously [D. Fu et al., Science

290, 481 (2000)]. The gene-duplicated sequence has a

structural counterpart in a pseudo-twofold symmetry within

the monomeric channel protein seen in Figure 7. We also

carried out extensive molecular dynamics simulations (over

12 ns using NAMD) that defined the spatial and temporal

probability distribution and orientation of water molecules

inside the channel. The results reveal that the channel

favors a single file of seven to nine water molecules that

are hydrogen bonded with channel-lining carbonyl groups

and with each other. 

Then we made a double mutant (W48F/F200T), replacing

two of the key residues in the center of the channel with

residues seen in the water channels that do not conduct

glycerol, and determined its structure at 2.1 Å (atomic) 

resolution. We were particularly interested in how these

channels absolutely prevent conduction of protons through

the line of hydrogen-bonded waters. We carried out addi-

tional 12-ns molecular dynamics simulations and compared

them directly with the crystal structures.

Two conserved asparagines force a central water molecule

to serve strictly as a hydrogen-bond donor to its neighboring

water molecules. Assisted by the electrostatic potential

generated by two half-membrane-spanning loops, this prop-

erty dictates opposite orientations of water molecules in

the two halves of the channel and thus prevents the forma-

tion of a “proton wire” while permitting rapid water diffusion.

Both simulations and observations revealed an increased

water permeability for the W48F/F200T mutant. We also

measured the conductance of our mutant channel for glyc-

erol, getting results very close to that predicted by our

molecular mechanics calculations. This in turn predicted

the probability of finding the water molecules in the chan-

nel, very much as we see them to be positioned.

The results explain precisely how the channel freely 

passes water molecules near the diffusion limit and

remains absolutely insulating to the passage of protons,

even though a line of single-file water molecules moves

freely through the channel. The remarkable synergy of 

the x-ray experiment is a first in terms of understanding

membrane-channel conductances. The molecular mechanics

allowed us to separate the contributions of each of the dif-

ferent components to the polarization of the central water,

which then polarizes all the remaining line of waters oppo-

sitely out to the membrane surface, producing an effect

almost as if two electric diodes of opposite sense are wired

in series for protons, while freely conducting a line of water. 
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FIGURE 7 Water conduction in E. coli aquaglyceroporin GlpF.
Stereo images of the monomer of GlpF viewed down the quasi-
twofold symmetry axis with the cytoplasmic side down. The
two gene-duplicated segments (blue and yellow), are related by
a quasi-twofold symmetry axis that passes through the center
of the molecule. The two segments are separated by a linker
region on the periplasmic side that is quite variable between
AQPs. The pseudo-twofold symmetry within the monomeric
channel favors a single file of seven to nine water molecules
(purple) that are hydrogen bonded with channel-lining carbonyl
groups and with each other.
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Unraveling the Regulation of the
Hypoxia-Inducible Transcription
Factor (HIF)

The panicky feeling that arises when trying to hold one’s

breath too long is first-hand evidence that the body forcefully

reacts to a shortage of oxygen. Even under less extreme 

circumstances, cells have to make adjustments when the

oxygen level available to them changes by producing more

or fewer of various biomolecules (proteins) as appropriate.

Since production of proteins begins with the instructions

coded in the cell’s DNA, regulation takes place at the point

where the instructions are decoded (transcribed). As it hap-

pens, the cellular response to a low oxygen level influences

certain deadly diseases like heart attacks and some types

of cancer. One would like to stimulate the response in the

first case, for example to promote the formation of blood

vessels (vascularization) in injured tissue but decrease it in

tumors to stop their growth. Learning how to artificially regu-

late this response via drugs is the motivation for the work of

Dann et al., who determined the atomic-level structure of an

important protein called factor-inhibiting HIF, or FIH-1, that

regulates the transcription process.

Cellular responses to oxygen levels in mammals are

mediated primarily through the action of a family of tran-

scription factors known as hypoxia-inducible factors (HIFs).

Activation of the hypoxic (low-oxygen) response by HIF tran-

scription factors ultimately leads to the production of a

diverse array of proteins designed to help deliver oxygen to

cells both in the short term through increase in red blood

cell production and in the long term via the generation of

new blood vessels (vascularization). 

During the last two years, experiments have identified

hydroxylation of a specific HIF residue as a key process in

the regulation of its activity. Generating inhibitors or activa-

tors for specific hydroxylation enzymes (hydroxylases) and

identifying potential sites for interaction with other compo-

nents of the hypoxic response pathway may lead to phar-

maceuticals able to treat diseases affected by cellular oxy-

gen levels. To this end, our research has focused on the

crystallographic structure of the HIF-regulating hydroxyl-

ases. Here we report our structure for one of these

enzymes, factor-inhibiting HIF (FIH-1).

Like many transcription factors, HIFs act as heterodimers

to regulate transcription. Under hypoxic conditions, the

steady-state level of the HIF α-subunit increases, the pro-

tein translocates to the nucleus where it heterodimerizes

with a constitutive β-subunit, and HIF gene targets are tran-

scribed. Many studies have shown that, under normoxic

(normal-oxygen) conditions, the HIF α-subunit is regulated

at the level of protein stability and transcriptional activa-

tion. The exact biochemical mechanism by which HIF regu-

lation is coupled to oxygen levels remained elusive until

the last two years, when experiments identified hydroxyla-

tion as a post-translational modification responsible for

regulation of HIF (Figure 8). Under normoxic conditions,

hydroxylases modify specific proline and asparagine

residues leading to degradation of HIF α-subunits via the

proteosome and to decreased interaction of HIF with coac-

tivators required to initiate transcription.

Hypoxia sensing by HIF has roles in the progression of

many high-mortality conditions including stroke, myocardial

infarction (cardiac arrest), and peripheral vascular disease,

a common symptom of diabetes. Activation of HIF under

normoxic conditions via the inhibition of regulatory hydroxyl-

ases leads to vascularization and increased oxygen delivery

to tissues, and it may therefore be an effective treatment

for these ischemic conditions. Conversely, activation of the

HIF hypoxic response pathway has been noted in several

cancer types and may promote cell survival in the tumor.

Reduction of HIF through activation of inhibitory hydroxyl-

ases may provide a useful mode of treatment for these

cancer types. However, the only available drugs that
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FIGURE 8 Under normoxic (normal-oxygen) conditions, factor-
inhibiting HIF (FIH-1) reduces the transcriptional activity of HIF-α
through hydroxylation of a specific asparagine (Asn) residue in
the carboxy-terminal activation domain (CTAD). Under hypoxic
(low-oxygen) conditions, the asparagine on HIF-α is not hydroxyl-
ated and p300, a transcriptional coactivator, can bind HIF-α,
allowing full transcriptional activation.
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modulate hydroxylase activity are relatively nonspecific

inhibitors that act by chelating the active site Fe(II). 

Our research has focused on discerning the crystallo-

graphic structure of these hydroxylases. The hope is that

structural studies on hydroxylases including FIH-1 can lead

to development of specific drugs that modulate hypoxic

responses in a therapeutically useful manner and can pro-

vide information on the interactions and regulation of these

enzymes.

The enzymes responsible for the hydroxylation on HIF

belong to a larger class of oxygenases dependent on Fe(II)

and 2-oxoglutarate (2-OG). This class of hydroxylase requires

Fe(II), 2-OG, and molecular oxygen to effect a modification

on HIF, thereby providing an intriguing link between HIF reg-

ulation and oxygen levels. Three hydroxylases have been

identified in humans that act as HIF prolyl hydroxylases

(HPH-1, HPH-2, and HPH-3), while only a single HIF

asparaginyl hydroxylase, factor-inhibiting HIF (FIH-1), has

been identified. FIH-1 down regulates the transcriptional

activity of HIF, since hydroxylation of a specific asparagine

residue in HIF abrogates its interaction with the p300 pro-

tein, a general transcriptional coactivator (Figure 8).

The structure of the asparaginyl hydroxylase FIH-1 in com-

plex with both Fe(II) and 2-OG was determined by x-ray crys-

tallography to 2.4 Å (Figure 9). The structure has verified the

residues predicted to bind Fe(II) and elucidated the residues

responsible for 2-OG binding. The active site architecture

differs from structurally known hydroxylases, particularly in

the residues mediating 2-OG binding, allowing hope for the

development of drugs specific to FIH-1. In addition, the

structure reveals that FIH-1 forms a homodimer mediated

by its two C-terminal helices. Subsequent functional studies

have shown that dimer formation is required for FIH-1 activity.
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Structure of the Extracellular
Portion of the Human LDL
Receptor at Acidic pH

Most people these days are aware that a high blood choles-

terol level can clog arteries and increase the risks of stroke

and heart attack. For most people, a healthy, low-animal-fat

diet along with moderate exercise goes a long way toward

reducing these risks. However, about one in 500 people are

affected by familial hypercholesterolemia (FH), an inherited

genetic condition marked by elevated LDL cholesterol levels

beginning at birth and resulting in heart attacks at an early

age. It is known that FH is caused by genetic mutations that

disrupt the body’s ability to metabolize cholesterol, but how

exactly do these mutations interfere with the mechanics of

the process? The mechanism proposed by Rudenko et al.

adds one more piece to the puzzle and brings us one step

closer to new treatments and drug discovery. As Brown and

Goldstein, two of this work’s Nobel-laureate authors, wrote,

“it may one day be possible for many people to have their

steak and live to enjoy it too.”

Cholesterol, especially in the “bad” form attached to low-

density lipoprotein (LDL) particles, has been maligned as

the culprit behind increased risk of atherosclerosis and

heart disease. The truth, however, is that cholesterol is an

essential component of cell membranes and provides the

raw material for the synthesis of hormones, including 

FIGURE 9 Structure of FIH-1 in complex with Fe(II) (gold
sphere) and 2-oxoglutarate (2-OG, yellow ball-and-stick
structure). The side chains of residues responsible for Fe(II)
coordination and in close proximity to 2-OG are shown (gray
ball-and-stick structures).
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estrogen and testosterone. A healthy level of cholesterol is

regulated in part by a protein called the LDL receptor

(LDLR). Anchored to the cell surface, LDLR captures LDL

particles from the bloodstream and draws them inside the

cell, where a shift to more acidic pH triggers LDL release

(Figure 10). Our team of researchers examined the struc-

ture of LDLR at protein crystallography beamlines at the ALS

and the Advanced Photon Source (APS). The LDLR crystals,

painstakingly prepared to reflect the conditions for LDL

release within the cell (pH less than 6), yielded the struc-

ture of a key portion of LDLR, providing clues as to how the

LDL release mechanism works. Such “working” knowledge

is essential to understanding how breakdowns in the sys-

tem lead to cholesterol-related disease.

Human LDLR is a chain of 839 amino acids organized

into several modular domains. The “ligand-binding domain,”

crucial to binding LDL, consists of seven repeated amino-

acid sequences (repeats R1 to R7). Next is a section

referred to as the “epidermal growth factor (EGF) precursor

homology domain,” because it is analogous to a precursor

protein that stimulates cell growth. The EGF precursor

homology domain in LDLR includes the EGF-like domains A,

B, and C as well as a distinctive protein structure called a

“β propeller.” The remainder of the protein contains a 

highly sugar-linked region, a membrane-spanning region,

and a cytoplasmic domain. In this study, we focused on a

fragment of LDLR that contains the ligand-binding and EGF

precursor homology domains. We wanted to determine the

organization of and interactions between the domains and

shed light on the mechanism by which LDLR releases its

ligand when the pH changes from 7.5 (extracellular) to less

than 6 (in endosomes inside the cell, where the LDL is

released).

Crystals of the human LDLR fragment were grown at pH

5.3. They diffracted x rays very weakly with a best resolu-

tion of 7.5 Å, obtained with intense sources such as ALS

Beamlines 5.0.2 and 8.2.1 and APS Beamline 19-ID.

Tungsten clusters soaked into the crystals of a mutant

LDLR dramatically increased the resolution to 3.7 Å and

also provided anomalous scatterers for the multiwave-

length anomalous diffraction experiments that were used

to solve the phase problem. Using known high-resolution

structures of smaller fragments of the LDLR, we were able

to interpret electron density maps. The resulting model of

human LDLR at pH 5.3 (Figure 11) shows that, while

repeat R1 is disordered in the crystal, repeats R2 to R7

are arranged in an arch covering one side of the EGF pre-

cursor homology domain; in this domain, modules A, B, C,

and the β propeller (Figure 12) form an apparently rigid

entity. Repeats R4 and R5 interact extensively with the β

propeller; this interaction would preclude the binding of a

ligand such as LDL.

The structure offers a plausible hypothesis for the mech-

anism of ligand release upon a change in pH. While at 

neutral pH, the LDLR probably adopts a flexible, extended

conformation and can bind ligands; at low pH, it develops a

binding site for the central part of its own ligand-binding

domain. This new binding site can compete with the ligand,

which is then released. This hypothesis can explain why
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FIGURE 10 Capture and release of LDL. Spherical LDL par-
ticles attach to LDLR anchored to the cell membrane. The cell
membrane folds inwards and pinches off into a cavity within
the cell (vesicle). Fusion of several vesicles gives rise to an
endosome, an acidic “compartment” where the LDL particle is
released. The LDLR is then recycled to the cell surface.
Reprinted with permission from T. Innerarity, Science 298,
2337 (2002). Illustration: K. Sutliff. Copyright 2002 American
Association for the Advancement of Science.
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FIGURE 11 Model of human LDLR at 3.7 Å. The cysteine-rich
repeats R2, R3, R4, R5, R6, and R7 are found in the ligand-
binding domain. The EGF-like repeats A, B, and C as well as
the β propeller form the EGF-precursor homology domain.
Repeats R4 and R5 (critical for LDL binding) interact extensively
with the β propeller.
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LDLR mutants that lack the β propeller can bind, but not

release, ligands. The model can also serve as a basis for

explaining the effects of many mutations in LDLR that

cause familial hypercholesterolemia, one of the most com-

mon single human gene disorders.
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FIGURE 12 Model of LDLR β propeller as described in T.A.
Springer, J. Mol. Biol. 283, 837 (1998), and further verified by
H. Jeon et al., Nat. Struc. Biol. 8, 499 (2001). As described by
Rudenko et al., the propeller plays a key role in displacing LDL
and promoting its release within cells. Illustration rendered by
PyMOL (www.pymol.org).
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ATOMIC AND
MOLECULAR SCIENCE

Circular Dichroism in K-Shell
Ionization of Fixed-in-Space CO
and N2 Molecules

Look at yourself in the mirror: what is the difference

between you and the mirror image? For one thing, your left

hand looks like a right hand. A special kind of light called

circularly polarized is another example of mirror images. One

can visualize the light as tracing out a spiral as it moves for-

ward. In left-handed and right-handed circularly polarized

light, the spirals rotate in the opposite directions (the mirror

images). As it happens, scientists studying how x rays inter-

act with molecules and atoms find circular polarization to be

a useful tool, but it poses challenges for the theorists. To

obtain data from relatively simple molecules for which good

theories are available, Jahnke et al. have used a remarkable

apparatus that records the directions of the electrons and

molecular fragments as they fly apart after a molecule is

torn apart by absorbing circularly polarized x rays. They

found large differences between the effects of left- and right-

handed polarizations for carbon monoxide and nitrogen mol-

ecules. Calculated results provided a good but not perfect

match to experiment, suggesting more challenges for the

theorists.

In atomic and molecular photoionization, the use of circu-

larly polarized x rays gives direct access to phase differences

inside the photoelectron wave-function, quantities com-

pletely hidden otherwise. It therefore provides a benchmark

test for today’s state-of-the-art theoretical models of elec-

tron emission. We have applied the COLTRIMS technique 

to the photoionization of carbon monoxide and nitrogen

molecules in the gas phase by circularly polarized synchro-

tron radiation. Our results show that theory reproduces the

main features, but not all the details of the measurements.

The electric field of a light wave oscillates in a plane per-

pendicular to the direction the light is moving. This oscilla-

tion axis may be fixed, in which case the light is termed 

linearly polarized. If the electric field vector of the light

rotates clockwise or counterclockwise as the light moves

away from the observer, the light is said to have a right cir-

cular or left circular polarization, respectively. When such
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FIGURE 1 Measured angular distributions and circular dichro-
ism of the photoelectron (with 10 eV final kinetic energy) in
the molecular frame, ejected from the carbon K shell of carbon
monoxide. Top, the distribution for left-handed circular polar-
ized light. The spiral indicates the direction and the polariza-
tion property of the photon; the molecular axis is shown by the
turquoise bar with the carbon atom at left. Center, the same
distribution for right-handed polarization. Bottom, circular
dichroism (in the plane of polarization) calculated from the dis-
tributions. Dots, experiment; line, multiple-scattering theory
using nonspherical potentials (MSNSP). 
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photons ionize a molecule, the electron angular distribu-

tions with respect to the molecular axis may be different for

the two polarizations. This circular dichroism is calculated

by subtracting the angular distribution originating from pho-

toionization with left from that obtained with right circularly

polarized light. 

How are the angular distributions for a gas measured?

After a photon removes an inner-shell electron from a

diatomic molecule, an electron from an outer shell drops

into the vacant place, giving its energy to a second outer-

shell electron, which is released from the molecule. The

initial photoionization and subsequent Auger electron emis-

sion leave behind two singly charged ions that repel each

other so strongly that often the doubly charged molecule

dissociates rapidly in a “Coulomb explosion.” In most

cases, the molecular axis at the instant of the photoioniza-

tion can be determined by measuring the directions in

which the two ionic fragments move. 

Our experiment took advantage of the outstanding circu-

lar polarization properties of ALS Beamline 4.0.2. For each

single molecule ionized from the gas phase, the momentum

vector of the photoelectron and two ionic fragments are

measured simultaneously. This multi-coincidence imaging

technique termed COLTRIMS (COLd Target Recoil Ion

Momentum Spectroscopy) uses electric and magnetic

fields to guide electrons and ions toward two large-area,

position-sensitive detectors. From the measured times of

flight and positions of impact for each particle (the photo-

electron and the two ions), their trajectories can be recon-

structed. The technique provides multidimensional images

of the fragmentation process similar to those obtained

from cloud chambers or bubble chambers in nuclear and

particle physics. 

The measured photoelectron angular distributions in the

molecular frame of CO are shown in Figure 1 for left- and

right-handed circularly polarized x rays. The narrow lobes

and deep minima of the distribution are a consequence of

the wavelike character of the outgoing photoelectron. It is

scattered in the potential of the CO molecule, leading to

interference patterns that cause clearly visible minima and

maxima at certain angles of emission. As the polarization of

the photon is switched, the distribution is mirrored exactly

as expected. The circular dichroism can now be determined

from the distributions and compared to theoretical models.

Figure 2 depicts the angular distribution for an N2 mol-

ecule. In N2, the two ends of the molecule are indistin-

guishable, and furthermore it is not obvious from which of

the two nitrogen K shells the photoelectron is ejected.

Thus the distribution must be symmetric with respect to

the center of the molecule. Still the left- or right-handed

torque of the ionizing photon is important, so circular

dichroism occurs for N2 as well.

In sum, current theory can reproduce many of the obser-

vations, but not all. The points of disagreement are driving

theorists to make improvements in their approaches. The

results will be a better understanding of the dynamics of

photoemission from core-ionized molecules and perhaps

predictions of new phenomena as yet to be observed. 
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Large Nondipole Effects in the
Angular Distributions of K-Shell
Photoelectrons from N2

Absorption of an x ray by an atom or molecule often results

in the emission of an electron. In photoelectron spec-

troscopy, scientists measure the spectrum of kinetic ener-

gies of the photoemitted electrons and thereby are able to

probe the orbitals in which the electrons normally reside.

The goal is a description of the “electronic structure” of the

atom or molecule. But electrons also emerge in a variety of

directions. Measuring their spatial distributions provides a

more complete picture of the electronic structure, assuming

that the theoretical framework is in place to interpret the

results. For this reason, angle-resolved photoelectron spec-

troscopy has been used for many years to provide stringent

tests of our understanding of the interaction of x rays with

matter and as a tool to probe physical and chemical struc-

ture. Hemmers et al. have discovered that, for even simple

molecules comprised of only two atoms, the angular distribu-

tions differ significantly from those expected from the stan-

dard theory called the dipole approximation. The deviations

appear to depend on distances between the atoms (bond

lengths), suggesting they may be a universal feature.

Photoelectron spectroscopy is a powerful technique to

directly probe electronic structure in gaseous and condensed

matter. It is even more powerful in an angle-resolved mode,

where photoelectrons also are distinguished by their direc-

tion of emission. Electron ejection probabilities as a function

of angle are excellent probes of quantum-mechanical pho-

toemission channels, because they are sensitive to phase

differences among these channels. One of the basic

approaches to interpreting angle-resolved photoemission

spectra is the “dipole approximation,” which predicts elec-

tron ejection patterns as a function of angle. Our work on

molecular nitrogen performed at the ALS has found large

anisotropies in electron photoemission based on bond-

length-dependent terms that are indicative of a potentially

universal behavior in molecular photoionization.

A mainstay of angle-resolved photoemission is the (elec-

tric-) dipole approximation, which includes only the electric-

dipole interaction and ignores all higher-order photon

interactions, such as electric quadrupole (E2) and magnet-

ic dipole (M1) effects. In the dipole approximation, the dif-

ferential cross-section predicts simple electron ejection

patterns as a function of angle, and a single parameter, β,

completely describes electron angular distributions as a

function of the angle θ relative to the linear polarization

vector, E, of the ionizing radiation (Figure 3). 

In the first step beyond the dipole approximation, higher-

order photon interactions (E2 and M1) lead to additional
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FIGURE 3 In the dipole approximation, a single term describes
electron angular distributions as a function of the angle θ rela-
tive to the linear polarization vector, E, of the radiation. Higher-
order photon interactions lead to nondipole effects, which in
the experiments reported here can be described by two new
parameters and a second angle, φ, relative to the propagation
direction, k, of the radiation.
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electron angular distributions, also known as nondipole

effects, commonly described by three new parameters, δ, γ,

and ζ = γ + 3δ. A second angle, φ, relative to the propaga-

tion direction, k, of the ionizing radiation (Figure 3), also

comes into play, permitting forward–backward asymmetry of

photoemission along k. 

To probe the limits of the dipole approximation, soft x-ray

photoemission measurements on molecular nitrogen were

made at Beamline 8.0.1. Two-bunch operation was neces-

sary because electron kinetic energies were determined via

time of flight (TOF), an efficient technique in which nearly

all kinetic energies can be measured simultaneously. Two

analyzers, placed at the “magic angle” (θ = 54.7°), where

β has no influence, but at different angles φ (0° and 90°)

to be sensitive to forward–backward asymmetries, sufficed

to measure nondipole effects (expressed as the asymme-

try parameter, ζ) as a function of photon energy.

In Figure 4, two nitrogen photoemission spectra taken

with the “magic-angle” analyzers, one in the y–z plane and

the other in the x–y plane, are superimposed. The spectra

are scaled to each other by using nitrogen KLL Auger lines,

which almost always have isotropic angular distributions 

(β = δ = γ = 0), as well as argon calibration spectra with known

values for β, δ, and γ. Obvious intensity differences between

the 1s photoemission peaks are due to nondipole effects.

Figure 5 shows the experimental results over a wide

range of photon energies as well as theoretical data for

molecular nitrogen and for atomic nitrogen. The agreement

between the experimental and theoretical molecular results

is excellent, and the deviation from the atomic theory

shows that the large nondipole effects observed are due to

the molecular field. Electrons emitted from N2 can rescat-

ter in the molecular field, which introduces a bond-length

dependence (distance between the two nitrogen atoms in

N2) that causes a change from the pure atomic behavior

for the photoelectron angular distributions. The theory for

molecular nitrogen agrees with the theory for atomic nitro-

gen when the bond-length is set to zero.

More significantly, measurements on other atoms and

molecules demonstrate that “low-energy” breakdown of the

dipole approximation is a general phenomenon. It is likely

that many applications of angle-resolved photoemission

(e.g., most studies of atoms and molecules, band mapping

in solids, photoelectron diffraction and holography, orienta-

tional studies of adsorbates, etc.) need to include nondi-

pole effects in their analyses. More work to determine the

range of validity of the dipole approximation is under way.

INVESTIGATORS

O. Hemmers and D.W. Lindle (University of Nevada, Las

Vegas); H. Wang (MAX-Lab, Lund University, Sweden); P.

Focke and I.A. Sellin (University of Tennessee, Knoxville);

J.C. Arce (Universidad del Valle, Cali, Colombia); J.A.

Sheehy (Air Force Research Laboratory, Edwards); and P.W.

Langhoff (University of California, San Diego).

FUNDING

National Research Council, US Air Force Office of

Scientific Research, and National Science Foundation.

0

40

20

1900 2000 20501950
Channel Number

2300 2400

60
Co

un
ts

 (T
ho

us
an

ds
)

hν = 500 eV

N2 1s KLL Auger

FIGURE 4 Superimposed molecular nitrogen photoemission
spectra taken with “magic-angle” analyzers, one in the y–z
plane (red), and the other in the x–y plane. The spectra were
scaled to each other by using nitrogen KLL Auger lines and
argon calibration spectra. The intensity differences between
the N2 1s photoemission peaks are due to nondipole effects.

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

400 500 550450
Photon Energy (eV)

600 650 700

An
is

ot
ro

py
 P

ar
am

et
er

, ζ

N2 1s

FIGURE 5 Experimental (data points) and theoretical (solid
line, molecular nitrogen; dot-dash line, atomic nitrogen) values
of the first-order correction term ζ = γ + 3δ for molecular nitro-
gen photoemission determined in the “magic-angle” geometry.



SCIENCE HIGHLIGHTS: ATOMIC AND MOLECULAR SCIENCE54

PUBLICATIONS

1. O. Hemmers et al., “Large nondipole effects in the

angular distributions of K-shell photoelectrons from molec-

ular nitrogen,” Phys. Rev. Lett. 87, 273003 (2001).

2. J.C. Arce et al., “On the angular distributions of molec-

ular photoelectrons: Dipole cross sections for fixed-in-

space and randomly oriented molecules,” Chem. Phys. Lett.

346, 341 (2001); Erratum 349, 349 (2001).

3. R. Guillemin et al., “Non-dipolar electron angular distri-

butions from fixed-in-space molecules,” Phys. Rev. Lett. 89,

022002 (2002).

Dynamic Jahn–Teller Effect in
Buckyball Cations

Stability in nature is associated with the lowest possible

energy. The arrangement of atoms in a molecule is a prime

example; the atoms assume a configuration with the lowest

energy, and then they stay put except for the slight quiver of

molecular vibrations. Quantum mechanics, which governs

motion on the atomic level, adds a subtlety. When the nomi-

nally lowest energy configuration is highly symmetric, like

cubes or pyramids, interactions between the molecule’s elec-

trons and the atomic vibrations make it possible to lower

the energy still further by a slight distortion to a less sym-

metric configuration. Canton et al. have identified for the

first time in positively charged ions of the soccer-ball-shaped

carbon clusters (C60) familiarly known as buckyballs a partic-

ular example of a distortion known as the “dynamic Jahn–

Teller effect.” Though the effect occurs on the tiny scale of

atoms and molecules, its results can be big. Such refine-

ments can work important results in our macroscopic world,

from superconductivity (resistanceless flow of electricity) to

infrared absorption of molecules in outer space.

High symmetry is not always the attribute preferred by

nature when it comes to the geometry of atoms in mol-

ecules and solids, where structural distortions can in 

certain circumstances lower the overall energy and make

for a more stable, if less symmetric, configuration. The lat-

est example comes from our multinational team from the

United States, Finland, and Brazil, which has uncovered the

first experimental evidence for a dynamic Jahn–Teller effect

in isolated cations of C60. With an origin in a strong cou-

pling between electronic and vibrational states, the

Jahn–Teller effect results in a lowering of the icosahedral

symmetry of the neutral cluster. From the valence photo-

electron spectrum, our group was able to unambiguously

identify the relaxed geometry of the ionic ground state and

determine that it was different from that believed to hold in

matrix-isolated ions.

If some of the glamour of carbon-based nanostructures

has passed to carbon nanotubes, C60 clusters (buckmin-

sterfullerene, or even more familiarly, buckyballs) retain

considerable allure in many areas of science. Cations

(C60
+) are of particular interest. In astrophysics, the infrared

bands due to molecular vibrations in these cations have

recently been implicated in the long-standing problem of

diffuse interstellar infrared bands. In condensed matter, it

appears that some of the properties of solids comprising

clusters weakly bonded by van der Waals forces are con-

nected to the electronic structure of the isolated cations.

For example, superconductivity may be mediated by an

electron–phonon interaction that is strengthened by the

Jahn–Teller effect in the cations.

The Jahn–Teller effect in buckyball cations is associated

with the breakdown of the widely used Born–Oppenheimer

approximation, which allows theorists to calculate the elec-

tronic and vibrational states separately with any interaction

between the two systems treated as a small perturbation.

In highly symmetric molecules or solids, where otherwise

distinct electron states may be degenerate (have the same

energy), the Born–Oppenheimer approximation is not nec-

essarily valid, because the electronic and vibrational sys-

tems can then interact strongly to form coupled vibronic

states. In the Jahn–Teller effect, this interaction results in

structural distortion that lowers the symmetry while

enabling the atoms to assume a relaxed geometry. A split-

ting of the degenerate electronic states and a lower energy

is another consequence.

At the ALS, our group investigated free C60
+ ions pro-

duced by ionizing with synchrotron radiation a beam of 

neutral particles from a heated oven. We conducted

valence photoelectron spectroscopy measurements at a

photon energy of 50 eV in this crossed-beam configuration,

and we found that the first band in the photoionization

spectrum, which is due to excitation from the highest occu-

pied molecular orbitals, consisted of three components

(Figure 6). Curve fitting with three asymmetric Gaussian

peaks and a simplified cation potential well enabled us to

reproduce the measured spectrum and determine the sym-

metry and energy of each component (Figure 7).
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Interpreting these findings, we concluded that the three

components were due to vibronic states that tunnel

between energetically equivalent potential wells in the dis-

torted geometry, which has the overall symmetry D3d.

Tunneling is what makes this Jahn–Teller effect dynamic, as

opposed to a static effect in which nuclear states are con-

fined to one well. The observed peak with three bands with

relative intensities appropriate to this symmetry appears to

rule out an alternative static Jahn–Teller D5d geometry sug-

gested by previous experiments by other groups with opti-

cal and infrared spectroscopy of C60
+ ions trapped in glassy

or rare-gas matrices. Earlier photoionization measurements

also ruled out the possibility that the three peaks were due

to individual vibrational states.
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Toward the Goal of Quantum
Mechanically Complete
Experiments

At the level of individual atoms, quantum mechanics con-

trols the action. In recent years, the trend among practition-

ers of atomic physics is to move from being a passive

observer to an active controller of quantum phenomena.

Accomplishing this goal has important ramifications for var-

ied technologies, from the emerging quantum computing

and cryptography to the long-standing problem of controlling

chemical reactions. Full control of quantum processes

requires complete information about the quantum system.

Experiments that measure all information allowed by quan-

tum mechanics are called “quantum mechanically complete

experiments.” For complex quantum phenomena, quantum

mechanically complete experiments fully test the theory and

avoid the pitfalls of determining certain quantities (techni-

cally, a subset of cross-sections) where a match between the

theory and experiment may be fortuitous. McLaughlin et al.

have developed a new method that takes scientists a step

closer to this goal, and they have tested it on argon vapor.

For pure states, the maximum knowledge about a quan-

tum process is obtained when one determines the wave

function of the system rather than a set of cross-sections.

The experimental determination of wave functions, up to an

overall phase, for atomic and molecular systems has been

elusive. Atomic photoionization is one example of complex

quantum phenomena where some progress has been made

in performing quantum mechanically complete experiments.

The wavefunction of the photoelectron can be written as a

superposition of spherical harmonics that are related to

the orbital angular momentum content of the photoelectron

and hence its angular distribution. The coefficients of this

expansion are called the partial-wave amplitudes. The

absolute squares of these partial-wave amplitudes are the

probabilities of measuring a particular partial wave with a

well-defined total angular momentum. 

In atomic photoionization, a quantum mechanically com-

plete experiment involves the determination of partial-wave

probabilities of the photoelectron and the phases between

these partial waves. Conservation of angular momentum

and parity restricts these partial waves to a maximum of

three. Thus, one experimentally needs to determine five

parameters: the three partial-wave probabilities and the

two independent phases between these partial waves.

We have developed a new method to determine all of the

partial-wave probabilities of the photoelectron from the lin-

ear and circular polarization measurements of the ionic flu-

orescent radiation. The intensity and polarizations of the

fluorescent radiation reflect the angular-momentum content

of the excited residual ionic state. In turn, the angular-

momentum content of the quantum state of the excited

residual ion is intimately related to the quantum state of

the photoelectron through conservation laws and coupling

rules. This intimate coupling between the residual excited

ion and the photoelectron allows us to determine the prop-

erties of the photoelectron without any direct measurement

on the electron.

In the experiment, we photoionize argon atoms with circu-

larly polarized vacuum-ultraviolet photons. The circularly

polarized photons are produced from the linearly polarized

radiation from the undulator of ALS Beamline 10.0.1 by

means of a unique phase retarder based on quadruple

reflections. With this device, one can obtain radiation with

high circular polarization (of the order of unity) over an

extended range of photon energies from 10 to 60 eV.

Around 36 eV, the transmission efficiency is about 0.01

(1%), and the degree of circular polarization is better than

99.7%. The experimental setup is schematically shown in

Figure 8. The 476.5-nm fluorescence is produced during

decay of an excited argon ion (Ar+)* from the Ar{3p6 1S0} +

hν → Ar+{3p4 [3P] 4p 2P0
3/2} + e photoionization channel. In

P4
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VUV Photon of
Right-Hand
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FIGURE 8 Experimental setup to determine all three partial-
wave probabilities of the photoelectron for the Ar{3p6 1S0} + hν
→ Ar+{3p4 [3P] 4p 2P0

3/2} + e photoionization channel.



SCIENCE HIGHLIGHTS: ATOMIC AND MOLECULAR SCIENCE 57

order to obtain the maximum information about the angular

momentum content of the excited ionic state, we measure

the degree of circular polarization in the forward direction

at an angle of 30° with respect to the beam direction and

the degree of linear polarization in a direction perpendicu-

lar to the beam. 

Figure 9 shows the partial-wave probabilities s1/2, d3/2,

and d5/2 of the photoelectron as a function of photon 

energy. It is quite informative to observe that the partial-

wave content varies for different resonances. It should be

noted the resonance profiles for different partial waves

vary with angular momentum, indicating that the phase dif-

ference between a resonance and the continuum depends

on the partial wave. Finally, the d3/2 and d5/2 partial wave

ratio is dramatically different from the constant value of

1.5 predicted by neglecting spin-dependent relativistic inter-

actions, by an order of magnitude or more.

In summary, we have developed an experimental method

to directly measure for the first time all three partial-wave

probabilities of photoelectrons produced by multielectron

processes over an extended range of energies. This capa-

bility brings us a step closer to carrying out quantum

mechanically complete photoionization experiments.
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An Application of Detailed
Balance in a Unique Atomic
System

Much as we’d sometimes like to make time run backwards,

we know that it won’t happen. On the atomic level, however,

a kind of time reversal is built into the quantum mechanics

that governs processes within atoms. This principle of micro-

scopic time reversal, in which the probability of a physical

process and its inverse are the same, is called detailed bal-

ance. Theorists not only use detailed balance widely, but they

depend on it as a way to make a connection between

inverse processes. For example, an atom can absorb an x ray

and emit a photoelectron (photoionization), and an ion can

attract an electron and return to the initial state by emitting

an x ray (photorecombination). Each process is characterized

by a “cross-section” that measures the probability for its

occurrence. Schippers et al. made a novel use of detailed

balance and the comparison of experimental photoionization

and photorecombination results obtained by two very distinct

techniques to determine cross-sections for both processes in

scandium ions (i.e., photoionization of doubly ionized scandium

and photorecombination of triply ionized scandium).

The experimental determination of photoionization cross-

sections of atomic ions, which are, for example, relevant

for the detailed understanding of both astrophysical and

artificial plasmas, is challenging because the target densi-

ties in an ion beam are limited by space-charge effects to

values of the order of 106 cm–3 (to be compared with ~1013

cm–3 in an effusive beam of neutral atoms). Moreover,

unknown fractions of metastable states in the ion beam

often prevent the derivation of absolute cross-sections. We

report a novel method for the experimental determination
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of the fractional abundances of the 3p6 3d 2D3/2 ground

state as well as of the 3p6 3d 2D5/2 and 3p6 4s 2S1/2

metastable states in an Sc2+ ion beam. 

Our method consists of comparing experimental Sc2+

photoionization cross-sections, obtained at the ion-photon

beam (IPB) endstation of ALS Beamline 10.0.1, with the

previously measured Sc3+ photorecombination cross-section

from the heavy-ion storage ring TSR of the Max-Planck-

Institute for Nuclear Physics in Heidelberg, Germany. The

method relies on the fact that photoionization and photo-

recombination are linked on a state-to-state level by the 

principle of detailed balance.

The measured Sc2+ photoionization and Sc3+ photorecom-

bination cross-sections are shown in Figure 10 (top and

bottom panels, respectively). Because of the high resolving

power of the ALS IPB endstation (up to E/∆E = 35,000),

we were able to obtain detailed spectroscopic information

about numerous photoionization resonances. In the photon

energy range of the top panel of Figure 10, these reso-

nances are mainly due to 3p → 3d excitations. 

Apart from the lower energy resolution of the photorecom-

bination experiment, there are obvious similarities with

respect to relative resonance positions and strengths in

the cross-sections. The resonance at hν = 41.8 eV in the

photoionization spectrum appears in the photorecombina-

tion spectrum at 20.2 eV, an energy higher by about 3.1 eV

after allowing for the ionization potential (24.757 eV) of

the Sc2+ ground state. This shift corresponds to the 3d →

4s excitation energy and is therefore a clear indication for

the presence of metastable Sc2+(3p6 4s) ions in the pho-

toionization experiment. In contrast, in the ion-storage-ring

photorecombination experiment, we could be sure that the

stored Sc3+ ions were in the ground state by simply waiting

long enough in between the filling of the storage ring and

the data taking.

Having determined which photoionization resonances are

to be attributed to metastable Sc2+ ions, we fit the weighted

sum of the partial photoionization cross-sections to the

measured photorecombination spectrum, where the weights

correspond to the fractional abundances of the 3p6 3d
2D3/2 (0.207±0.030), 3p6 3d 2D5/2 (0.546±0.043), and 3p6

4s 2S1/2 (0.247±0.013 ) Sc2+ states. Notably, the fit results

in a nonstatistical distribution. The fit implicitly assumed

that the radiative decay paths of the 3p5 3d2 and 3p5 3d

4s photorecombination resonance states into the 3p6 3d

0

PI
 C

ro
ss

 S
ec

tio
n 

(1
0–1

6  c
m

2 )

2

4

6

0

PR
 C

ro
ss

-S
ec

tio
n 

(1
0–1

9  c
m

2 )

1

2

8 9 10 11 12 13 14 15
Electron Energy (eV)

16 17 18 19 20 21

33 34 35 36 37 38 39 40
Photon Energy (eV)

3p
5  3

d2 (3 F)
 2 F

3p
5  3

d2 (3 P)
 2 P

3p
5  3

d2 (3 F)
 2 D

3p
5  3

d(
1 P)

4s
 2 P

3p
5  3

d2 (3 F)
 2 F

3p
5  3

d2 (3 P)
 2 P

3p
5  3

d2 (3 F)
 2 D

3p
5  3

d(
1 P)

4s
 2 P

41 42 43 44 45 46

FIGURE 10 Photoionization of Sc2+ (top) and photorecombination of Sc3+ (bottom). The electron energy scale in the bottom panel
has been shifted with respect to the photon energy scale by the ionization potential (24.757 eV) of the Sc2+ ground state, so that
the photoionization and photorecombination spectra can easily be compared.



M.E. Bannister (Oak Ridge National Laboratory); G.H. Dunn

(JILA, University of Colorado, Boulder); J.D. Bozek and A.S.

Schlachter (ALS); and G. Hinojosa and C. Cisneros

(Universidad Nacional Autónoma de México, México).

FUNDING

NATO, U.S. Department of Energy, and Deutsche

Forschungsgemeinschaft.

PUBLICATIONS

1. S. Schippers et al., “Experimental link of photoioniza-

tion of Sc2+ to photorecombination of Sc3+: An application

of detailed balance in a unique atomic system,” Phys. Rev.

Lett. 89, 193002 (2002).

2. S. Schippers et al., “Interference effects in the pho-

torecombination of argonlike Sc3+ ions: Storage-ring experi-

ment and theory,” Phys. Rev. A 65, 042723 (2002).

3. S. Schippers et al., “Photoionization of Sc2+ ions by

synchrotron radiation: Measurements and absolute cross

sections in the photon energy range 23–68 eV,” Phys. Rev.

A 67, 032702 (2003).

SCIENCE HIGHLIGHTS: ATOMIC AND MOLECULAR SCIENCE 59

and 3p6 4s photoionization initial states are unique. As

explained in Figure 11, this is a very special feature of the

atomic system under study.

The strongest photoionization resonance at hν = 41.8 eV

is due to a 3p→3d excitation of the 3p 4s 2S1/2 metastable

state. As a result of the photoionization–photorecombination

comparison outlined above, its oscillator strength was

obtained as 2.1±0.4. This value agrees with that for the

same transition in iso-electronic Ca+ ions. This coincidence

strongly hints that our novel method for the purely experi-

mental derivation of absolute state-selective photoioniza-

tion cross-sections (i.e., combining the high resolving

power of a photoionization experiment at a synchrotron

light source with the state selectivity of a heavy-ion storage-

ring photorecombination experiment) is valid.
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Sc2+(3p5 3d n'l') doubly excited state (d) may be formed by
dielectronic capture (inverse autoionization) with nonzero prob-
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pleted by a subsequent radiative transition to a bound state
below the Sc2+ ionization threshold (vertical arrows). For 3p5

3d2 and 3p5 3d 4s doubly excited intermediate states, the
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energetically allowed transitions (vertical black arrows) can be
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ACCELERATOR
PHYSICS

Self-Amplified Spontaneous
Coherent THz Synchrotron
Radiation at the ALS

The Advanced Light Source was built to produce synchrotron

radiation from a high-energy electron beam. The beam is not

continuous but consists of a few hundred bunches into

which the electrons are grouped. Ordinarily, each electron

emits independently, and the total power radiated is propor-

tional to the number of electrons. However, when the wave-

length of the emitted radiation is comparable to the length

of an electron bunch, the electrons emit in unison rather

than as individuals. This coherent emission results in a dra-

matic increase in the power emitted (proportional to the

square of the number of electrons, thereby also causing a

wave of enthusiasm among scientists who are potential

users of coherent synchrotron radiation (CSR), which occurs

primarily at very long wavelengths in the far-infrared portion

of the spectrum. Byrd et al. have used the ALS to observe

and explain an instability in the electron beam that poten-

tially prevents the generation of CSR, thereby contributing to

the ability to design future electron accelerators (storage

rings) optimized to produce it.

When the wavelength of synchrotron radiation is compa-

rable to the length of an electron bunch in the storage ring,

or the length of any structure on the bunch, the radiation

from multiple electrons is in phase, resulting in a quadratic

rather than the usual linear dependence of the power emit-

ted on the number of electrons. Because the number of

electrons participating in the coherence can be large (more

than 1 million), the potential power enhancement is very

large, making coherent synchrotron radiation (CSR) a subject

of great interest to both synchrotron users and accelerator

designers. However, the electromagnetic field associated

with CSR can influence the motion of the electrons in the

bunch, resulting in a self-amplified instability. This instability

increases the electron bunch length and energy spread and

represents a fundamental limitation in the performance of

an electron storage ring. In our studies at the ALS, we

have been able to observe and, for the first time, explain

this instability. 

The interaction of an electron bunch and its synchrotron

radiation is shown schematically in Figure 1. The electron

bunch bends through a magnetic field and emits a cone of

synchrotron radiation that has a transverse electromag-

netic field. Because of its bent trajectory, an electron in the

front of the bunch senses a longitudinal component of the

radiation field that can either accelerate or decelerate the

electron, depending on its position. The interaction can

give rise to a self-amplified instability starting from a small

modulation in the bunch profile. This modulation radiates

coherently, causing the bunch modulation to increase.

Counteracting this effect is the natural energy spread 

within the bunch, which tends to cause any modulation to

smear out. An instability occurs when the runaway amplifi-

cation beats out the damping effect of the energy spread. 

The microbunching instability is illustrated by the com-

puter simulation shown in Figure 2. Above the instability

threshold, a ripple in the energy distribution is evident, along

with a small ripple in the bunch profile. As the instability

ρ

e–

Eφ

FIGURE 1 Schematic view of the interaction of an electron
bunch with its own synchrotron radiation. The curvature of the
electron orbit allows the radiation field to accelerate or decel-
erate the electron.
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progresses, the disruption in the bunch increases, giving a

larger modulation in the bunch profile. Finally, the instability

reaches saturation and the bunch profile smoothes over,

albeit with an increased length. After radiation damping

returns the bunch distribution to its original shape, the

instability repeats. 

During the instability, the microbunching results in bursts

of CSR at the wavelength of the bunch modulation, which

for ALS parameters ranges from a few millimeters down to

half a millimeter (far infrared or terahertz). To observe these

bursts experimentally, we installed detectors, such as

bolometers and heterodyne receivers, at ALS infrared

Beamline 1.4.3. Examples of the signals detected with one

of the bolometers are shown in Figure 3. Above a threshold

single-bunch current, the bursts appear. As the bunch current

increases, the burst rate and amplitude increase and eventu-

ally saturate the detector. At the highest bunch currents
achievable in the ALS, we measured a 700-fold enhance-

ment in the power of the CSR emission over the normal

incoherent radiation. However, the bursting nature of the

signal presents a challenge for its use as a source of CSR. 

To compare our results with a model recently developed

elsewhere, we measured the bursting threshold as a func-

tion of electron beam energy. The results are shown in

Figure 4. The points with error bars indicate the experimen-

tal data, while the lines show the theoretical threshold cal-

culated for nominal ALS parameters. The data show good

agreement with the model. We believe we have a good

understanding of this instability and can use the model to

predict the performance of future storage rings, particularly

sources of CSR.
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Keeping the Advanced Light Source running smoothly requires the efforts of

many minds and many hands. In this section, the leaders of the various teams

responsible for making the facility available to its users discuss the year’s work.

The largest of these, Operations, is responsible for day-to-day running and opti-

mization of the accelerators, while the Accelerator Physics Group works to devel-

op the accelerator systems in order to meet the changing needs of the user

community. The Experimental Systems Group engages in the design and con-

struction of new beamlines and advocacy for new projects. The Scientific

Support Group helps researchers using ALS beamlines through scientific and

technical collaboration and outreach. All of these groups work closely with ALS

engineering, whose work is so integral to their efforts that a separate engineer-

ing report would be redundant. The User Services Group supports the users

through administrative services, logistics, and technical information.
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Question: What’s a better way to grow a user community than starting up a

new beamline? Answer: Starting up three new beamlines. The end of 2001 and

the beginning of 2002 saw the Berkeley Center for Structural Biology (BCSB) and

the ALS Experimental Systems Group (ESG) work together with the ALS engineer-

ing groups to pull off that very hat trick, doubling the number of beamlines avail-

able for protein crystallography studies at the ALS. Even before the first of the

three new superbend beamlines became operational, crystallographers account-

ed for nearly a quarter of the ALS user community. In 2002, that fraction jumped

to more than one third. As the new beamlines get up to speed, the numbers of

scientists using the light source to determine crystal structures are likely to go

through the ALS’s famous domed roof, and two more beamlines are on the way.

The BCSB is currently responsible for the user programs on six operating ALS

beamlines. The first three beamlines were constructed in Sector 5 to take advan-

tage of the hard x-ray light from the ALS’s wiggler. Beamlines 5.0.1 and 5.0.3

enable monochromatic crystallography studies, while Beamline 5.0.2 is optimized

for multiwavelength anomalous diffraction (MAD) phasing. Endstations in Sector 5

are all equipped with robotic automounters to speed sample throughput. 

With the addition of superbends to the ALS magnet lattice (a challenge whose

history is featured in the 2001 ALS Activity Report), a group of new crystallogra-

phy beamlines has sprouted up in Sector 8. The superbends have proven to be

an excellent source of hard x rays for both MAD and monochromatic work. The

Sector-8 lines are also distinctive in that their endstations are ensconced in

“minihutches.” These narrow enclosures allow easy sample mounting through 

a large sliding window. Beamlines 8.2.1 and 8.2.2 were built by the ALS for 

the Howard Hughes Medical Institute, and Beamline 8.3.1, for a collaboration

between UC Berkeley, UC San Francisco, Plexxikon, the Alberta Synchrotron

Institute, and the M.D. Anderson Cancer Research Center.

On the horizon are two more superbend beamlines, one in Sector 12 and the

other in Sector 4. Beamline 12.3.1, created for the SIBYLS (Structurally Integrated

Biology for Life Sciences) project, will be optimized for small-molecule biological
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crystallography. The goal of its collaborators, headed by John Tainer of the

Scripps Research Institute and Priscilla Cooper of the Berkeley Lab Life

Sciences Division, is insight into DNA repair mechanisms and genome

integrity. This beamline’s capabilities include single-crystal diffraction with

MAD phasing and small-angle x-ray scattering (SAXS). Beamline 4.2.2 will

specialize in MAD and monochromatic protein crystallography. The primary

research team for the latter beamline is the Molecular Biology Consortium,

a group of crystallographers from 16 academic institutions across the

United States. Both new beamlines are expected to begin operation in the

summer of 2003.

The idea of doing crystallography at the ALS began to solidify in late

1993, when Thomas Earnest, now head of the BCSB, and Howard Padmore,

head of ESG, put heads together. Their collaboration led to a white paper

that convinced Laboratory Director Charles Shank to contribute $500,000 

in University of California Directed Research and Development funding to

build a wiggler. This success, in addition to funding from the Department of

Energy’s Office of Biological and Environmental Research (OBER) for biologi-

cal support facilities, provided the momentum needed to fund crystallogra-

phy beamlines. In response to a 1994 proposal, OBER provided $4 million

for the design and construction of Beamline 5.0.2. Industrial partners and

other academic institutions, ultimately including Roche Bioscience, UC

Berkeley, Amgen, Syrrx, and the Genomics Institute of the Novartis

Research Foundation (GNF), soon began funding the rest of Sector 5, which

became known as the Macromolecular Crystallography Facility. Both the wig-

gler and the support facilities were in place by the end of 1996, and

Beamline 5.0.2 began serving users in 1997.
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The MCF quickly became oversubscribed as crystallographers realized

that the ALS’s stability and very low emittance were ideal for high-energy-

resolution multiwavelength studies. Earnest says that he expected much

more interest than anyone else, but even he was surprised by the reality.

Growth in the crystallography field itself further fueled the influx, as the

biotech literature reported more and more structures, more and more of

which were obtained at synchrotrons. 

To address the clear need for more crystallography facilities, the

Experimental Systems Group began studying the feasibility of using super-

bends as sources for protein crystallography. Working with the research

groups of Tom Alber, James Berger, and Robert Glaeser of UC Berkeley, they

set up a temporary crystallography endstation on Beamline 7.3.3 to study

the capabilities of bend-magnet sources. By solving a few initial structures

on a regular bend magnet, measuring radiation damage, and modeling the

probable outcomes with a superbend, they showed that the superbend

sources would provide at least as much useful flux as a wiggler. Thus, it

was no accident that the first research team to commit to a superbend

beamline at the ALS (The UC Berkeley structural biology group at Beamline

8.3.1) consisted of crystallographers. 

Padmore recalls how hard the ESG scientists and engineers worked to

come up with a new brightness-preserving design for Beamline 8.3.1. Their
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Cranking Out Crystal Structures
“Crystals in, structures out.” That’s how BCSB Head

Thomas Earnest envisions the future of crystallography at

the ALS. Once all its beamlines are built, BCSB will rely

primarily on improvements in automation for increases in

throughput. Earnest hopes to tap into the possibilities of

robotics, advanced software, and artificial intelligence to

make crystallography faster and more straightforward.

BCSB’s most recent foray into the world of robotics is rep-

resented by the High-Throughput Nanovolume Crystallization

Robot, developed in conjunction with Scripps Research

Institute, GNF, the University of Illinois at Chicago, and

Syrrx, Inc. This robot speeds the most time-consuming and

difficult step in preparing a sample for structure determina-

tion—crystallization. Its ability to automate and vastly

accelerate the process won it a 2002 R&D 100 Award.

Another significant robotic development was the “robohutch,”

the automounting system now employed on all three

Sector-5 beamlines. It was developed as a collaboration

between BCSB, Berkeley Lab’s Bioinstrumentation Group,

Syrrx, and GNF, with additional funding from the National

Institute of General Medical Sciences. The robohutches

have reduced the ten to twenty minutes normally spent

mounting and aligning a sample to about ten seconds.

BCSB is now helping researchers at the National Synchrotron

Light Source and the Cornell High-Energy Synchrotron Source

install similar devices. 

The automounter system will eventually become much

more powerful, as it is coupled with advanced software

being developed by another PBD group, the Computational

Crystallography Initiative (CCI). In collaboration with scien-

tists at the University of Cambridge, Los Alamos National

Laboratory, and Texas A&M University, CCI is working to

create the next generation of crystallography software,

known as PHENIX (Python-based Hierarchical Environment

for Integrated Xtallography). Current crystallography soft-

ware analyzes a set of crystals and gives a strategy for

taking data. PHENIX will take crystallography software into

the realm of artificial intelligence. Besides strategizing, it

will evaluate crystallographic data while it is being collect-

ed, adjust the experimental setup as needed, and eventu-

ally decide when it has enough data to calculate the

structure. The scientist will no longer be burdened with

the technicalities of taking data and will be better able to

focus on the science the data reveals. 
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The protein crystallization robot can screen 480 differ-
ent crystal growth solutions at once.

The Structural Biology Support Facilities, which overlook the ALS experiment hall,
include this electron paramagnetic resonance spectrometer.
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design sealed the case for the technical feasibility of a superbend-based

crystallography beamline. It also served as the prototype for the other

beamlines that soon followed.

In February 2000, while the superbends were under construction, the

BCSB was established within the Berkeley Lab Physical Biosciences Division

to take overall responsibility for operation of crystallography beamlines at

the ALS. The center handles administration, beamline maintenance, and sci-

entific and technical support for structural biology users. (The proposal sub-

mission process is handled by the ALS User Services Office.) Soon after the

new center opened, Beamline 5.0.3 came on line. Beamline 5.0.1 followed

in April 2001.

With the installation of superbends in late 2001 and the new superbend

beamlines getting into gear in 2002, the BCSB and the ALS have been

preparing to handle even more growth in the protein crystallography user

community. The focus is on smoothing the process of solving a structure.

One approach is the use of robotics and advanced software to automate

the taking of crystallographic data (see Cranking out Crystal Structures).

Another approach is streamlining the proposal process, which now allows

bimonthly reviews instead of the traditional twice-or-thrice-a-year cycle of a

synchrotron. With the current system, a scientist can be taking data as

soon as a month and a half after submitting a proposal. 

Once the current crop of new beamlines is up and running, it may seem

that the facility’s rapid growth will come to an end. Not so, says Earnest.

His optimistic eye sees plenty of room to increase throughput via automa-

tion and smart management. “We’ll put our effort toward making what we

have better.” 

The wiggler that serves
as the photon source
for Sector 5 was
installed in April 1996.

Researcher Mhairi
Donohoe demonstrates
the workings of an auto-
mounter robot to a tour
group.

Ribbon-cutting for MCF dedication, September 19, 1997. Left
to right, researcher Sung-Hou Kim, then–ALS Director Brian
Kincaid, Michelle Broido of the DOE office of Biological and
Environmental Research, Deputy Berkeley Lab Director Pier
Oddone, and then–MCF Director Thomas Earnest.



FACILITY REPORT: OPERATIONS 71

OPERATIONS
Ben Feinberg, Division Deputy for Operations

Operations and Availability

The mission for the ALS is “Support users in doing out-

standing science.” The most fundamental support offered

to users by the ALS is delivery of high-quality beam. Such

beams delivered according to a published schedule along

with an efficient, effective safety program allow our

researchers to make maximum use of their limited beam

time. In 2002, the ALS once again maintained its exemplary

operations record while making continuing improvements in

beam quality and reliability. In addition, the Operations

groups worked with ESG and BCSB staff to construct and

install two new superconducting-bend-magnet (superbend)

beamlines for protein crystallography to greatly expand the

capacity of the program in hard x rays, and one new bend-

magnet beamline for small-molecule crystallography. 

The research community at the ALS has become accus-

tomed to high operational efficiency and reliability, and it

was not disappointed during this period. As shown in

Figure 1, the ALS delivered beam to the users about 93%

of the time scheduled for user operations in FY02, approxi-

mately maintaining the availability of the last several years. 

As in years past, we look very carefully at our different

systems to determine where to focus our resources to

improve reliability. Figure 2 shows our “lost user beam

analysis” over the past several years. These figures allow

us to pinpoint the most frequent causes of lost user beam

time. As a result of the 2002 analysis, we are planning

improvements in the third-harmonic cavity and water sys-

tems to improve reliability. We may also make changes in

the storage-ring rf system, to reduce the probability of false

beam trips. 

Changes in User and 
Instrument Hours

The monthly operations schedule continued to include a

minimal number of maintenance and installation periods,

which has been our practice for the last several years. This

has provided the maximum number of hours for user oper-

ations while allowing for needed maintenance and installa-

tion of new instrumentation. In addition to these monthly

periods, this year we had one five-week installation shut-

down to install the new undulator and chicane for the

Molecular Environmental Sciences (MES) beamline, to

install higher-order-mode (HOM) dampers in the main rf
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FIGURE 2 Lost user beam analysis. The bars represent the
percentage of user beam time lost over the last four fiscal
years, separating out the various machine systems responsible.
THC/LBF = third harmonic cavities/longitudinal feedback; SR
RF = storage-ring rf power.

FIGURE 3 Growth in the number of instrument hours (user
hours multiplied by the number of simultaneously running
beamlines) from year to year.
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cavities, to align the storage ring, and to replace the super-

bend magnet cryocoolers. The delivered operating hours

remained constant in FY02. 

With the constant number of operating hours and the

installation of new beamlines, we were able to increase the

number of instrument hours (user hours multiplied by the

number of simultaneous beamlines that can accept beam).

We finished the fiscal year with 30 beamlines operating

simultaneously, up from 27 at the end of the previous fis-

cal year. Figure 3 shows the growth of instrument hours

since the first full year of ALS operations. The growth this

year resulted in the delivery of 152,143 instrument hours,

an increase of 12% over FY01.

Facility Growth 

In April, during our one major shutdown for the year, we

installed the insertion device for the MES beamline and

the chicane magnet that allows us to place a second

insertion device in the same straight section. The MES

beamline was commissioned just after the end of the 

fiscal year. In addition, three new crystallography beam-

lines, two on superbends, were commissioned, as de-

scribed above. These new beamlines have enhanced our

capacity in the hard x-ray region and opened up a major

new capability for MES research within the core region of

the ALS spectrum. 
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ACCELERATOR
PHYSICS

David Robin, Accelerator Physics Group Leader

Christoph Steier and John Byrd, Accelerator Physics Group 

Introduction

To achieve the goal of supporting users in doing out-

standing science, the ALS Accelerator Physics Group

(Figure 1) plays several important roles. The first is to

make certain that the ALS provides high-quality beam in a

reliable manner to its users. The second is to strive to

understand and continually improve the performance of the

facility, keeping it at the forefront of synchrotron radiation

sources. The third role is to ensure that machine upgrades

are implemented smoothly, minimizing any adverse impact

to users. The fourth is to study potential upgrades to the

facility that will enhance the ALS’s capabilities and capaci-

ties. In all these roles, the Accelerator Physics Group

works very closely with other groups both within the ALS

and elsewhere at Berkeley Lab. 

In 2001, the ALS storage ring went through a major tran-

sition with the installation of the superbends. In 2002,

there was no modification as large as that of the super-

bends, but steady and significant gains were realized in

understanding and improving the performance of the ALS

storage ring. Also, much effort was directed at future proj-

ects and upgrades of the facility, particularly for the genera-

tion of femtosecond x rays and far-infrared radiation. 

With regard to the first of the group’s four roles, there

was much effort focused on monitoring the performance of

the ALS. This was the first full year of operation with the

superbends, and we paid particular attention to the impact

on accelerator downtime resulting from superbend subsys-

tems. We are pleased to report that in 2002 the downtime

resulting from superbend subsystems was a small percent-

age of the overall downtime. 

In 2002, the ALS continued to improve the quality of

beam that was delivered to users. In particular there were

significant improvements in stability, both in orbit and in

beam size. There were three improvements that factored

into better orbit stability. The first was the installation of

new chicane magnets. The second was the inclusion of

additional stable, high-resolution beam-position monitors

(BPMs) around the center bend magnets. The third was a

set of improvements in the orbit feedback. These efforts

are part of a long series of improvements over the years

that have resulted in ever increasing orbit stability. We now

will elaborate on the impact of the new chicane magnets. 

Chicane magnets have several functions. The primary func-

tion is to enable two devices to occupy one straight section

with independent beamlines by introducing a closed-orbit

bump (chicane) into a straight section. This is done with

three magnets, as shown in Figure 2. The central chicane

bends the beam by about 2.5 mrad. The second function of

the chicane magnets is to act as fast horizontal and verti-

cal corrector magnets, compensating for orbit disturbances

caused by the insertion devices. Since the effect of the

insertion devices on the orbit is very predictable, the cor-

rection can be done with a feed-forward algorithm—provided

that the correctors have sufficiently small hysteresis.

 

Chicaned Straight — Two 2-Meter IDs

ID

ID 1

Long Straight — One 4.5-Meter ID

ID 2

FIGURE 1  ALS Accelerator Physics Group: left to right,
Christoph Steier, Fernando Sannibale, Weishi Wan,
Tom Scarvie, Hiroshi Nishimura, Steve Lidia, David Robin,
Warren Byrne, and John Byrd.

FIGURE 2 Comparison of a straight section with one inser-
tion device (top) versus a straight section with two insertion
devices and three chicane magnets (in red).
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Specifically, the hysteresis of the magnets should be less

than 1 Gauss-cm. 

The first set of chicane magnets was installed in 1998 in

Straight 4, which contains an elliptical polarization undulator

(EPU). The chicanes were iron-core magnets, and unfortu-

nately they had larger than acceptable hysteresis. Therefore

they could not be used in a feed-forward correction, so the

correction was done with other, lower-hysteresis corrector

magnets located at the end of the straight section. With

this solution, the orbit distortion outside the straight section

was acceptably small when the EPU shifted polarization.

For the beamlines inside the chicane, however, there were

angular variations of up to 10 µrad. These angular varia-

tions resulted in energy variations in the emitted spectrum.

To solve this problem, a new, low-hysteresis chicane mag-

net based on a novel design was constructed. The magnet

was designed and built by the ALS Magnetics R&D/Analysis

unit. Figure 3 shows a drawing of the magnet. Instead of

an iron-dominated magnet, the new chicane consists of

permanent-magnet cylinders and air-core coils, effectively

decoupling the chicane-inducing and orbit-correcting func-

tions of the magnet. The coils can be rotated to gradually

adjust the chicane angle from 0 mrad to more than 2.5 mrad.

Once in position, the coils provide the fast orbit correction.

The result is a magnet with extremely small hysteresis.

Now the insertion devices can shift from left to right circular

polarization with less than 1 µrad angular distortion. This

past year, two new chicanes were installed in the two chi-

caned straight sections (Straights 4 and 11).

Also, 2002 was the first full year in which rf frequency

feedback was routinely included in the orbit feedback pro-

gram. The orbit feedback now compensates changes in the

ring circumference by adjusting the rf frequency. Changes

in the ring circumference are determined by monitoring

changes in the orbit as measured in BPMs located in

regions of dispersion. Then the rf frequency is adjusted 

to keep the orbit stable. 

Figure 4 shows how the ring circumference has changed

since rf frequency feedback was implemented in October

2001. What can be seen in the figure is that there are sub-

stantial circumference variations. Some of the variations

are seasonal and are due to temperature and groundwater

levels. These changes correspond to a variation of about 3

millimeters over the year, and the variation appears to be

cyclic. For instance, the ALS circumference changes rapidly

when the rainy season begins in November (months 3 and

15 in the figure). There are also changes that occur on

faster time scales, such as changes in the thermal load

corresponding to the three daily fills. 

Several other improvements in the orbit stability were real-

ized in 2002. Of particular note was the inclusion of stable,

high-resolution BPMs surrounding the central bend magnets

in Sectors 7 and 11. The orbit feedback system was then

expanded to include these BPMs. The result was a marked

improvement in the orbit stability in the beamlines emanating

from those bend magnets. This year, there is a plan to include

high-resolution BPMs around each center bend magnet.

Another area where the ALS realized significant improve-

ment last year was in vertical beam size control and stability.
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Before 2002, the vertical beam size was controlled by a

series of skew quadrupoles, all powered by a single power

supply to excite the linear coupling resonance. Using this

skew quadrupole “family,” we increased the beam size so

that the vertical emittance was 2% of the horizontal emit-

tance, thus making the beam lifetime longer. The increase

in vertical emittance resulted in the beam decaying from

400 mA to 200 mA in 8 hours. This scheme for controlling

the vertical emittance had several undesirable features,

however, the first being that exciting the coupling reso-

nance made the vertical beam size very sensitive to

changes in the machine conditions. In particular, there was

up to 25% variation in the vertical beam size when one of

the EPUs shifted from left to right circular polarization at

minimum gap. The second undesirable effect was that,

with only a few “families” of skew quadrupoles, it was not

possible to reduce the emittance coupling below 0.5%. 

In 2002, new skew quadrupole power supplies were pur-

chased and attached to 18 of the 48 skew quadrupole

magnets in the storage ring. These individual skew quadru-

pole power supplies were installed for several reasons. The

first was to locally generate a large vertical dispersion

bump in Straight 6 for the femtosecond x-ray R&D effort

(discussed below). In addition, these new skew knobs

opened the possibility of controlling the vertical emittance

in a better way. Using these skew quadrupole families, it

was possible to reduce the coupling and vertical dispersion

in the ring, allowing the ALS to achieve an emittance cou-

pling as low as 0.1%. It also allows us to increase the ver-

tical emittance by increasing the vertical dispersion while

keeping the coupling small. Using vertical dispersion rather

than coupling to increase the beam size makes the vertical

beam size less sensitive to changes in machine condi-

tions. Figure 5 shows a plot of the vertical beam size for

two typical weeks—the first week with the coupling control

and the second with the dispersion control. As the compar-

ison shows, there is substantial improvement in the beam

size stability with vertical dispersion control.

The Femtosecond X-Ray R&D
Effort: Using an Insertion Device
to Generate Bright Femtosecond
X-Ray Pulses for Spectroscopy

Based on an idea by Sasha Zholents and Max Zolotorev

of the Berkeley Lab Center for Beam Physics, an innovative

technique has been developed at the ALS to generate

short pulses of x rays with durations of a few hundred fem-

toseconds. This technique uses the interaction of an elec-

tron bunch with a femtosecond laser beam within a wiggler

to energy-modulate (slice) a short section of that bunch. By

using spatial or angular dispersion downstream of the

interaction with the laser, one can then isolate femtosec-

ond x-ray pulses. Over the past years, a scientific case has

been developed to make use of this new source of x rays.

The proposed experiments make use of time-resolved

spectroscopic techniques (x-ray absorption spectroscopy)

and require a higher average photon flux than can be deliv-

ered by the bending-magnet beamlines on which the slicing

technique was pioneered. 

To increase the average flux of femtosecond x rays, a

new femtosecond x-ray R&D effort has been funded by the

Department of Energy, and the x-ray source and beamline
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are now in the design phase. They consist of several key

components, including two new insertion devices for

Straights 5 (modulator) and 6 (radiator), a new undulator

beamline (Beamline 6.0.1), a new laser system with a sig-

nificantly higher repetition rate, and modifications to the

storage ring to create the vertical dispersion bump used to

spatially separate the sliced electrons and photons. One of

the new insertion devices is a new wiggler for Straight 5

(protein crystallography), which will have a shorter period

(11.4 cm) than the existing wiggler (16 cm) to allow for

optimized, simultaneous use for both protein crystallogra-

phy and slicing experiments. The second insertion device

will be an in-vacuum, permanent-magnet undulator similar

to the ones used at SPring8 in Japan, the European

Synchrotron Radiation Facility, and the Swiss Light Source. 

The accelerator physics efforts to support the femtosec-

ond x-ray R&D effort have been centered on three main

areas: generating the vertical dispersion bump to provide

the spatial separation to isolate the femtosecond x-ray

pulses, minimizing the vertical emittance and unwanted

dispersion, and studying insertion-device issues. 

Figure 6 shows the vertical dispersion bump, a closed

bump with negligible coupling, which is generated by using

four skew-quadrupole magnets. The main issue we have

studied in connection with the dispersion bump is its

impact on the nonlinear dynamics of the ALS, particularly

injection efficiency and lifetime. A dispersion bump of suffi-

cient amplitude for the femtosecond x-ray R&D effort has

been demonstrated experimentally.

Minimizing the vertical emittance and spurious dispersion

allows us to maximize the brightness of a synchrotron radi-

ation source. Because the Touschek lifetime (how long

electrons survive in the ring before they are lost to intra-

bunch scattering) of a low-emittance, low-energy light

source like the ALS is very short, reducing the vertical

emittance below the current operational value of about

150 pm-rad would reduce the lifetime to unacceptable 

values (shorter than 8 hours at 400 mA). In the future,

this situation will change with the use of top-up operation

(essentially continuous injection). The radiator for the fem-

tosecond x-ray R&D effort, on the other hand, will directly

create vertical emittance because of the fairly strong inser-

tion device inside the vertical dispersion bump. Therefore,

it will be important to minimize the baseline vertical emit-

tance outside the dispersion bump. Using 18 individual

skew-quadrupole magnets, whose power supplies were

installed last year, we have demonstrated vertical emit-

tances below 10 pm-rad (an improvement of a factor of 15

compared to the current operating condition). This will

allow the femtosecond x-ray R&D effort to operate with the

vertical dispersion bump at an optimized size, maximizing

the femtosecond x-ray signal-to-noise ratio obtainable while

still making a high brightness (low vertical emittance) avail-

able to all other beamlines.

The issues studied in connection with the two insertion

devices include—to name just a few examples—their

effect on the nonlinear dynamics (using a new numerical

integration technique, a symplectic integrator developed by

Ying Wu and Etienne Forest), resistive wall heating effects,

impedance issues, and the effects caused by the field

imperfections of the devices (coupling, focusing, and orbit

errors). Working together with the ALS Magnetics R&D/

Analysis unit, we developed a set of specifications and a

magnetic design for the new wiggler that minimize all detri-

mental impacts on the electron beam. This wiggler is now

under construction and will be exchanged for the present

wiggler in 2004. For the in-vacuum undulator, the studies

are in their final phase.
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Installation of Higher-Order-Mode
Dampers in the Main rf Cavities

The ALS operates with 400 mA of beam distributed in up

to 328 bunches. Coupling of the motion of individual

bunches through resonances excited in higher-order modes

(HOMs) in the two rf cavities in the ring can lead to beam

instabilities, significantly reducing the beam quality. The

instabilities are currently controlled by broadband feedback

systems. Although the ALS pioneered the use of such feed-

back systems, the system required continuous adjustment

to combat the instabilities driven by higher-order modes in

the main rf cavities. To improve the reliability of this sys-

tem, a team led by Slawomir Kwiatkowski of the ALS

Electrical Engineering Group designed and inserted a water-

cooled antenna into each of the cavities via an available

port to couple to the unwanted modes, reducing their effec-

tive strength. The effective damping provided is illustrated

in Figure 7, which shows the longitudinal coupling imped-

ance before and after the installation of the dampers. The

strongest HOM (TM011) was reduced by 2.5 orders of

magnitude, removing the need for careful tuning of the 

cavity via its temperature to avoid resonances.

Although the procedure was relatively simple, the process

required careful engineering and testing because the rf sys-

tem is so vital to operation of the ALS. Commissioning of

this system was successful and has resulted in a marked

improvement in beam stability. Experience in the design of

the damping antennae has led to the design of similar

damping antennae, which will be installed in the third-

harmonic rf system in April 2003.

CIRCE: a Dedicated Coherent
Far-Infrared Ring at the ALS 

Synchrotron radiation becomes coherent when the elec-

tron bunch length is smaller than the wavelength being

emitted. In this regime, the radiating fields of individual

electrons add in phase, producing an intensity that scales

with the square of the number of electrons instead of lin-

early, as is the case for the more familiar synchrotron

emission. For the last two years, an ALS group led by John

Byrd, Michael Martin of the Scientific Support Group, and

Fernando Sannibale has been exploring the virtues of a

small ring dedicated to the production of coherent far-

infrared, or terahertz, radiation. Feasibility studies have

demonstrated that such a machine is ready to be con-

structed. Specifically, the ALS team, in collaboration with

researchers from the Thomas Jefferson National

Accelerator Facility, has experimentally demonstrated that

coherent terahertz emission produces very high powers. In

collaboration with researchers from BESSY II, the group

has also experimentally verified the regime of stability for

coherent emission in a storage ring and performed the first

scientific experiment with coherent synchrotron radiation

(CSR) in a ring, measuring for the first time the Josephson

plasma frequency in the high-temperature superconductor

Bi2Sr2CaCu2O8. 

The new knowledge of the physics underlying CSR in a

storage ring has allowed the design of CIRCE (Coherent

105

104

103

102

101

100

10–1

10–2

10–3

10–4

0.5 1.0 1.5 2.0 2.5 3.0 
Frequency (GHz)

Im
pe

da
nc

e 
(k

Oh
m

)

TM011 mode FB Damping
Radiation Damping

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

100

1

0.1 1 10 100

10 100

Wavenumbers (cm–1)

CIRCE
(3 modes of 
operation)

Fl
ux

 (W
at

ts
/c

m
–1

)

Energy (meV)

Stanford ps FEL

Synchrotrons

Hg L
amp

Globar

JLab
FEL

1000FIGURE 7 Longitudinal coupling impedance before (red) and
after (black) the installation of higher-order-mode dampers in
the ALS’s main rf cavities. The damping of the longitudinal
feedback system and the natural radiation damping are shown
for reference.

FIGURE 8 Calculated fluxes expected from the CIRCE infrared
ring compared to those from existing sources.



FACILITY REPORT: ACCELERATOR PHYSICS78

InfraRed CEnter), a storage ring optimized for terahertz CSR

production. We anticipate that CIRCE will be a revolutionary

source for a traditionally difficult spectral region at the bor-

der between optics and electronics—namely, the “terahertz

gap.” The calculated flux for the CIRCE source, compared to

those of other sources, is shown in Figure 8. The many-

orders-of-magnitude increase in far-IR intensity is the basis

of the project and will enable new kinds of science.

The idea of a ring-based CSR source was proposed for

the first time by Jim Murphy of Brookhaven National

Laboratory about ten years ago, but stable CSR in a ring

was observed for the first time only recently, at BESSY II.

With a special machine setup incompatible with standard

user operation, a gain in flux of about four orders of magni-

tude was obtained. The ALS CIRCE team recently led col-

laborative studies with researchers from BESSY II and the

Stanford Linear Accelerator Center that have provided a

good understanding of the CSR mechanism. The key effect

is the interaction of the electron beam with its own radia-

tion. The benefit of this interaction is a self-focusing of the

beam, resulting in a stable distortion of the bunch distribu-

tion. This distortion gives a sharp edge to the bunch, which

emits coherently at significantly shorter wavelengths and

shorter pulse lengths than an undistorted Gaussian bunch

(see Figure 9). At higher currents, this self-interaction can

result in amplification of small modulations in the bunch,

causing quasi-chaotic bursts of CSR in a process very simi-

lar to that of self-amplified spontaneous emission. As

already mentioned, both of these regimes have been exper-

imentally demonstrated, and CIRCE is optimized to exploit

the distortion benefits and to produce CSR in the stable

region of emission. 

Most synchrotron light sources require a large floor

space outside the main ring to accommodate long x-ray

beamlines. Infrared beamlines, however, require relatively

little space and are best located as close to the source as

possible. Given the layout of the ALS facility, the ideal loca-

tion for an IR ring is on top of the booster shielding, as

shown in Figure 10. A detailed preliminary design and eval-

uation have been done, resulting in a 66-meter-circumfer-

ence ring that fits on the existing booster shielding. Full-

energy injection to the ring can be done from the ALS

booster without interfering with injection to the main ALS

ring, even during continuous top-up operation. The use of

the ALS injector as well as existing ALS utilities and gen-

eral infrastructure has allowed us to design an extremely

cost-effective project. The optimized electron-beam energy

is 600 MeV with a 1.5-GHz rf system. Nominal bunch

lengths of 1–3 ps can be achieved with a combination of

high-frequency rf and a modest reduction in the lattice

momentum compaction (the relative change in beam energy

with changes in rf frequency). The optimization of CIRCE 

for the terahertz region includes enhanced photon-beam

stability and vacuum chambers with very large apertures

(140 mrad vertical by 300 mrad horizontal) for the best

possible acceptance of the large-divergence coherent tera-

hertz synchrotron radiation. 

For additional information about CIRCE, please visit the

Web site at infrared.als.lbl.gov/CIRCE/.

CIRCE

Booster 
Ring

Existing Storage Ring

FIGURE 10  The CIRCE ring, as it will sit atop the ALS 
booster.
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EXPERIMENTAL
SYSTEMS

Howard Padmore, Experimental Systems Group Leader

Introduction

The roles of the Experimental Systems Group (Figure 1) 

can be split into several categories: (1) to design and build

beamlines and endstations based on the demands of the

user program, (2) to conduct forefront research in science

and instrumentation that will push the boundaries of the

application of synchrotron radiation techniques, and (3) to

give support to existing user programs, usually in areas of

high technical complexity. Approximately 50% of the group’s

activity is in this latter area of direct user support. In this

short report, I will give several examples of work in the two

former areas.

Photoemission Electron
Microscopy (PEEM)

PEEM2
In 2002, ESG members characterized the resolution of

the second-generation photoemission electron microscope

(PEEM2) in terms of the image contrast as a function of

object spatial frequency. Various test patterns were made

to measure contrast, from star patterns of the type shown

in Figure 2 to sets of linear arrays with different periodici-

ties. These were made at the Center for X-Ray Optics at

Berkeley Lab by Weilun Chao and Erik Anderson with the

Nanowriter electron-beam writing machine. The patterns

consist of alternating nickel and photoresist lines. The star

pattern was used to make gross adjustments of focus and

astigmatism, square arrays were used to measure distortion

and field curvature, and linear arrays were used to measure

the modulation transfer function (MTF). This work was led

by Andrew Doran. 

Jun Feng calculated the theoretical MTF by starting with a

statistical ensemble of electrons occupying position, angle,

and energy space; modeling the electrostatic fields in

PEEM2; and then tracing the electrons’ paths through the

potential, taking into account the precise angle–energy 

filtering action of the objective lens’s back-focal-plane 

FIGURE 1 Experimental Systems Group: left to right, Jim
Patel, James Glossinger, Wayne McKinney, Kathy Opachich,
Phil Heimann, Sirine Fakra, Jun Feng, Steve Irick, Jinghua Hao,
Alastair MacDowell, Donnacha Lowney, Tony Young, Everett
Harvey, Peter Schmid, Malcolm Howells, Rich Celestre, Hendrik
Ohldag, Simon Clark, Howard Padmore, Matthew Marcus,
Andrew Doran, Sander Caldwell, Hwa Shik Youn, Jamie
Nasiatka, Nobumichi Tamura, Andreas Scholl, Ernie Glover,
Tony Warwick, Marsha Fenner, and Andrew Franck.

FIGURE 2 Star test pattern imaged in the PEEM2 photoemis-
sion electron microscope. The inner circle encloses 100-nm
lines and spaces.
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aperture. This was done for many combinations of extrac-

tion field and back-focal-plane aperture size. The results 

for one combination are shown in Figure 3, and we can see

excellent agreement between theory and measurement.

The good agreement means that we can successfully pre-

dict the contrast for specific experiments (for example,

nanoparticle imaging at a size scale far less than the reso-

lution), we can monitor the performance of the microscope

over time, and we have the basis for a good comparison

with the future performance of the PEEM3 aberration-

corrected microscope. It also means that we can be reason-

ably assured that the complex modeling involved in this

work is on solid ground and can be used for predicting the

performance of the microscope in other conditions. 

Fundamental magnetization processes occur on a time

scale of picoseconds and a length scale of nanometers.

While such processes are beyond the scope of what we can

study now, a future combination of aberration correction

and pulsed sources (such as the proposed LUX facility)

should make measurements in this spatial–temporal

domain possible. In the meantime, we can still access

interesting processes, albeit on a time scale of 100 ps

and a spatial scale of 50 nm. While laser-based magnetic

microscopy has been used to study picosecond dynamics,

the x-ray PEEM technique offers 10 times better spatial

resolution with parallel imaging and, through dichroism

techniques, the ability to sort out the magnetic state of

complex, multielement coupled systems. 

In a Laboratory Directed Research and Development–

funded program headed by Andreas Scholl, with a team

consisting of Sug-Bong Choe, Yves Acremann, Andrew

Doran, and Andreas Bauer, a prototype pump–probe mag-

netization experiment has been successfully carried out. 

In this experiment, a conductive loop to provide a magnetic

field impulse is driven by a pulse of current from a laser-

excited GaAs switch. All components sit on the same GaAs

substrate. The loop itself is made of a Co90Fe10 soft mag-

netic material. The current pulse leads to an in-plane radial

field at the loop of several hundred oersteds and an out-of-

plane field at the center of the loop. Figure 4 shows the

loop before excitation, at excitation, and more than a

nanosecond after excitation. Before excitation, the magne-

tization state is defined by a ripple structure that results

from pixellation in the digitally generated shape of the

loop. Under excitation, the magnetization is saturated,

leading to an image where the loop is bright at the bottom

(because the magnetization and the helicity of the circularly

polarized light are parallel) and black at the top (where the

magnetization is reversed). Some 1.45 ns later, the magne-

tization has relaxed to the former ripple state. 

Such measurements are done with the ALS operating in

single-bunch mode, and images are integrated over millions

of shots. It is therefore critical in these experiments that

the system return to the magnetic ground state after each

shot. Cross-correlation studies show a system time resolu-

tion of 150 ps. Although looking at the magnetization

dynamics of a simple ferromagnetic system is far from

new, we are now in a position for the first time to look at

more interesting cases involving coupled magnetic systems

that are of fundamental interest and have been completely

inaccessible to traditional techniques. 

PEEM3
While PEEM2 has produced a great deal of pioneering

science and through the development of time-resolved
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FIGURE 4 Time-resolved PEEM images of a cobalt microcoil
in its unmagnetized state (left), fully saturated after a short
current pulse (250 ps later), and returned to its magnetic
ground state (1.45 ns later). 
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FIGURE 3 Modulation transfer function for the PEEM2 micro-
scope for a 20-kV extraction field and a 12.5-µm-diameter
back-focal-plane aperture. The dots show measurements; the
line shows the calculation. The 50% MTF corresponds to a
1/2-period resolution of 100 nm and a Rayleigh-limit resolution
of around 45 nm.
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capabilities is set to continue in this path, the microscope

is fundamentally limited in terms of spatial resolution and

throughput. In addition, the PEEM2 bend-magnet beamline,

7.3.1.1, is limited in terms of flux density, polarization con-

trol, and spectral resolution. The PEEM3 project brings

together a state-of-the-art, high-resolution undulator-based

beamline and an aberration-corrected photoemission micro-

scope. The beamline is under construction in Sector 11

and is due for commissioning in summer 2004. The beam-

line project team is led by Tony Warwick. 

The undulator will be a now-standard 5-cm-period ellipti-

cal polarization undulator (EPU5). Straight 11 is chicaned,

with the molecular environmental science (MES) EPU5 in

the downstream location. The PEEM3 EPU5 will be in the

upstream location. The beamline mechanics will largely be

based on those of the MES beamline (Beamline 11.0.2).

The PEEM3 beamline diverges radically from the MES

beamline in its optical system. Because dichroism experi-

ments call for extreme spectral stability, we have devised a

new optical system based on the Hettrick–Underwood–style

converging-beam, variable-line-spacing (VLS) concept. We

have added the ability to measure the photon energy in

real time by monitoring the spatial position of the zero-

order light beam. These measurements can provide

extremely accurate values for photon energy, or they can

be used as feedback to correct the grating position, main-

taining a defined photon energy to sub-meV resolution. The

optical system comprises the following components: a hori-

zontally deflecting sagittal cylinder to focus from the source

to a vertically defining entrance slit, a converging-beam VLS

monochromator, a horizontally deflecting elliptical mirror to

provide a large degree of demagnification to the exit slit,

an active exit slit that defines the monochromatic beam

and monitors zero-order beam, and a refocusing and

demagnifying elliptical Kirkpatrick–Baez mirror pair to focus

to an image size of 2 × 2 µm. This matches our field size

at high resolution; at lower resolution in the microscope,

the Kirkpatrick–Baez pair is defocused to provide a larger

field of illumination. 

Figure 5 shows the expected flux from this beamline at a

resolving power of 3000. In the transition-metal L-edge

region, the flux should typically be around 6 × 1012 pho-

tons/s. This is more than an order of magnitude higher

than the flux from the PEEM2 beamline and will be focused

into a field size more than an order of magnitude smaller

(3 µm in diameter). And of course, we will have complete

control of the polarization.

The PEEM3 microscope is based on the successful 

concepts used in PEEM2 together with elements of the

aberration-correction concepts introduced independently by

Rempfer in the U.S. and Rose and colleagues in Germany

and embodied in the SMART project at BESSY II. The chro-

matic and spherical aberrations introduced by the acceler-

ating field between the sample and the objective lens and

by all the electrostatic lenses together are compensated by

the opposite aberrations of an electron mirror. Electrons are

directed to and from the electron mirror by a double-focusing,

dispersion-free separator magnet. The microscope is highly

complex and has been the subject of detailed design over

the last several years. The main electron optics simulation

is now complete, and we have entered the engineering

phase of the project. We expect that the system will enter

electron optics commissioning in late summer 2004. We

then anticipate an extensive period of adjustment and meas-

urement before the first science experiments are performed. 

The electron optics design and simulation is a collabora-

tion between Jun Feng, Peter Schmid, Andreas Scholl, and

Matthew Marcus in ESG; Weishi Wan and David Robin in

the Accelerator Physics Group; Ross Schlueter in the ALS

Magnetics R&D/Analysis unit: Etienne Forest of KEK; and

Ying Wu, now at Duke University. The project manager is

Alastair MacDowell, and the lead mechanical engineer is

Rob Duarte, with support from Dawn Munson, Nicholas

Kelez, and Karl Peterman in ALS engineering. 

The performance of PEEM3, relative to the existing

PEEM2 microscope, is summarized in Figure 6, where the

predicted resolution is shown as a function of transmission.
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FIGURE 5 Predicted resolved flux for (left to right) the first,
third, and fifth harmonics of the PEEM3 beamline at a resolv-
ing power of 3000 for 250-, 500-, and 1000-lines/mm grat-
ings, respectively.
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The latter is controlled by changing the back-focal-plane

aperture size. PEEM2 typically operates at 3% transmis-

sion. At the resolution attained by PEEM2 with this value,

PEEM3 will be 25 times as efficient in detecting electrons.

Moreover, at 3% transmission, PEEM3 will be capable of a

resolution around six times higher. This, in combination

with more than an order of magnitude higher flux, three

orders of magnitude higher flux density, and complete

polarization control, will give us unprecedented perform-

ance for the study of complex magnetic systems. 

Molecular Environmental 
Science (MES)

The MES project consists of a new EPU5 undulator; an

entrance-slitless, collimated-light plane-grating monochrom-

ator; a branch mirror; and two branchlines—one for a

scanning transmission x-ray microscope (STXM) and one

for a suite of spectroscopy endstations. David Shuh

(Berkeley Lab Chemical Sciences Division) is the scientific

leader of the project, and Tony Warwick is head of the tech-

nical implementation. Figure 7 shows a view along the com-

pleted beamline. 

The monochromator is similar to that pioneered at BESSY

II, but the beamline’s mechanical system is entirely new. As

the function of the beamline is to do soft x-ray spectroscopy

and spectromicroscopy, the cleanliness of the optics is of

critical concern, as are reproducibility and stability to enable

robust user operation. For this reason, we decided to design

a new type of mechanical system embodying all of the lessons

we have learned on our existing spherical-grating and

plane-grating monochromators. Prime among these was

recognition of the need to get cooling water into the mono-

chromator without introducing any strain into the optical or

mechanical components. This was achieved by placing the

water feeds along the grating and premirror rotation lever

arms. Another desired feature was easy and accurate grating

changeover, which we accomplished by having the manufac-

turer ion etch the grating rulings into one substrate and by

designing the entire monochromator to translate laterally.

We also realized the need to make the whole system truly

ultrahigh-vacuum compatible. 

The system performs very well, and in initial testing it is

meeting all its performance goals in terms of flux, resolu-

tion, spot size, stability, etc. Besides being largely cloned

for the new PEEM3 beamline, the mechanical aspects of

the system have already been adopted at the Canadian

Light Source. The new STXM microscope, developed by Tony

Warwick and Sirene Fakra at Beamline 7.0.1, has moved to

Beamline 11.0.2 and has been recommissioned. With this

new microscope, we have pioneered the use of a two-axis

differential interferometer to encode the relative motions of

the sample and zone plate, thus taking out much of the noise

due to vibrations and stage nonlinearity that has plagued

STXMs up to this point. The microscope was recommissioned

with the help of Tolek Tyliszczak of the MES endstation team

within the Berkeley Lab Chemical Sciences Division. The MES

system, with new controls developed for the polymer STXM

on bend-magnet Beamline 5.3.2, together with the flexibility

and power of the EPU, the state-of-the-art beamline, the 

differential-interferometer-controlled STXM, and new soft-

ware, defines a new level of performance for this type of

instrument worldwide. 

FIGURE 7 The MES beamline (Beamline 11.0.2) is shown
from its plane-grating monochromator through the branch mir-
ror to the endstations for STXM (lower) and spectroscopy
(upper). Beamline 10.3.2 is at the top, and beamline 11.3.1 is
at the right-hand edge of the photo. The PEEM3 beamline will
be located between the MES beamline and Beamline 10.3.2.
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FIGURE 6 Resolution as a function of throughput for the
PEEM3 aberration-corrected photoemission electron micro-
scope and the uncorrected PEEM2.
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Diffractive Imaging

To go beyond the limits of resolution imposed by x-ray

microscopes with lenses, David Sayre (Stony Brook

University) proposed many years ago that an image could

be constructed from its coherent diffraction pattern alone,

i.e., without a lens. This radical suggestion meant that the

lost phase information had to be reconstructed in some way,

and in later work with John Miao (Stony Brook University,

now at Stanford Synchrotron Radiation Laboratory), he

showed how this could be done. The trick is that, after

assuming initially random phases, one mathematically

transforms the diffraction data back and forth between

Fourier and real space, applying constraints on the result

before beginning each iteration. 

This is very much an emerging area in optics, but until

recent work at the ALS, it had always been necessary to

have a low-resolution image of the object. In recent work

led by Malcolm Howells and Heifeng He at the ALS, John

Spence and Uwe Weierstall at Arizona State University, and

Henry Chapman and Stefano Marchesini at Lawrence

Livermore National Laboratory, images at a resolution of

12 nm have been constructed from the diffraction pattern

alone with no prior knowledge of the object shape. Figure 8

shows the diffraction pattern from an array of 50-nm gold

balls. Figure 9 shows an SEM image and an image con-

structed from the diffraction pattern. This spectacular 

work should now allow us to refine the experimental and

computational techniques and to define the limits of reso-

lution imposed by the available coherent flux and radiation

damage. It will also lead us to an understanding of the opti-

mum wavelengths for particular experiments and the design

of an optimum radiation source, beamline, and endstation.

Development of the Femtosecond
X-Ray Program

The femtosecond bending-magnet beamline, Beamline

5.3.1, has been used for a range of studies during the

year using the ALS’s normal 80-ps bunch length and

streak-camera detection. Several of these are reported in

the Compendium of User Abstracts. In the meantime, work

has been ongoing to define the conditions required to gen-

erate femtosecond x-ray pulses at this beamline with the

new femtosecond x-ray R&D effort, a laser slicing source

(See Accelerator Physics, p. 83.) 

With the current slicing source, the fast (200-fs) modulated

x-ray beam is only kicked five standard deviations from the

center of the beam on Beamline 5.3.1, and its intensity is

less than 1/1000 of the intensity of a single normal x-ray

pulse. We must therefore be very careful to ensure that

background noise from optical aberrations or scattering is

at a minimum. Measurements of mirror scattering have

been made at several beamlines and compared to calcula-

tions of scattering based on optical measurements of the
FIGURE 8 Coherent diffraction pattern from an array of 
50-nm gold balls

FIGURE 9 Left, an SEM picture of the object in Figure 8 and,
right, image constructed from the coherent diffraction pattern.
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mirror surface roughness. Through this work, we hope to

be able to close the loop with optical vendors and define

more accurate specifications for surface roughness as a

function of spatial period. We have R&D contracts with two

vendors at present to assess this approach. 

Beamline 5.3.1 functions primarily to develop the tech-

niques of subpicosecond spectroscopy and diffraction. In

order to carry out a full scientific program, we have always

recognized that much higher intensity will be required.

Insertion-device Beamline 6.0.1 is being constructed as

part of the femtosecond x-ray R&D effort to meet that

need. Greater intensity will be gained by using a high-power

insertion device, operating as an undulator in the few-keV

range and a wiggler above that energy, and by using a high-

er repetition rate (40 KHz rather than 2 kHz). The latter

requires a much higher power laser system. 

The overall layout of the beamline is shown in Figure 10.

Light from the source is focused inside the shield wall by a

toroidal mirror, which directs the light to a high-speed chop-

per. As the 500-MHz light from the source is only used at

the 40-KHz (maximum) repetition rate of the laser, the chop-

per can prevent a large fraction of the unused light from

falling on the optics and on the sample. Immediately after

the chopper, there is a space for sample placement and

manipulation followed by a large grating spectrograph. The

dispersed absorption spectrum can then be detected in 

the focal plane by an intensified, gated CCD. A miniature

collimated-light crystal monochromator can also be translated

into the beam between the chopper and the spectrograph

to allow selection of x rays from 2 to 10 keV. In this case,

experiments are done in a hutch. Also shown at the end of

the beamline is the enclosure for the new high-power laser

system. We are now entering the major engineering phase

of this program, and we expect first beam in three years. 

The scientific leader for this activity is Bob Schoenlein

of the Berkeley Lab Materials Sciences Division, the

machine aspects are led by Christoph Steier of the ALS

Accelerator Physics Group, and the beamline aspects are

led by Phil Heimann of ESG, all with support from ALS

engineering.

Other Ongoing Projects

Two beamlines are being built in parallel in superbend

Sector 12, one for structural biology (Sibyls, Beamline

12.3.1) and one for high-pressure research (Beamline

12.2.2). These are now in the final stages of completion,

with first light expected in summer and fall 2003, respec-

tively. The designs are largely based on the successful

Sector-8 protein crystallography systems, with two addi-

tions: lower-angle mirrors for the high-pressure beamline

for higher-energy operation (to 40 keV) and a small-angle 

x-ray scattering station for the Sibyls beamline upstream 

of its protein crystallography station. 

The water-cooled premirrors used in the Sector-8 protein

crystallography beamlines did not meet specification. As a

consequence, although the three beamlines have been

highly successful with performances comparable to that of

the high-power wiggler beamline (Beamline 5.0.2), the flux

through a 0.1-mm collimator, in the normally used angular

acceptance of 1.5 mrad, was a factor of 3 lower than

expected on the 8.2 beamlines and a factor of 6 lower on

Beamline 8.3.1. The premirror has now been replaced on

Beamline 8.3.1, with a 3.5-fold increase in flux at the 

sample at 12.5 keV; we are now less than a factor of two

from theory and at a performance level substantially

greater than that of Beamline 5.0.2. The other premirrors

will be replaced shortly. 

Superbend Sector 8 will be full with the imminent com-

pletion of the tomography beamline (Beamline 8.3.2). This

is a joint enterprise between Lawrence Livermore National

Laboratory, UC San Francisco, the Berkeley Lab Earth

Hard X-Ray
Endstation

Soft X-Ray
Endstation

Laser

Chopper
and
Sample
Chamber

Beamline 5.3.2
(STXM)

Soft X-Ray
Monochromator

M1 Premirror

FIGURE 10 Layout of the femtosecond undulator beamline
at Straight 6.
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Sciences Division, and the ALS. It will have white-light,

multilayer-filtered and crystal-filtered imaging capabilities

and a 3D resolution down to 1 µm for millimeter-scale

objects. It is also designed for imaging centimeter-scale

objects at a commensurately larger pixel size. 

Following the very successful amalgamation of micro–

powder diffraction for mineral phase identification into 

the microdiffraction station at Beamline 7.3.3, the same

capability has been added to the micro-XAS station at

Beamline 10.3.2. In each case, enormous gains can be

realized by translating the existing beamlines to a super-

bend source. We have assessed the complexity and cost

of this task and are working with user groups to raise the

necessary funds. 

Finally, we are also working closely with the user commu-

nity in defining the proposed ALS upgrade, which would

improve several existing beamlines and add several more

through the use of chicaned straight sections. This gives

us the opportunity to enhance capability by, for example,

exchanging linearly polarized undulators for EPUs on existing

beamlines, adding more capacity and offering higher per-

formance by moving programs that now share beamlines

onto beamlines specifically designed for them, and by

adding entirely new capabilities.
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SCIENTIFIC SUPPORT
Zahid Hussain, Scientific Support Group Leader 

John Bozek, Scientific Support Group Deputy Leader

Introduction

The primary mission of the Scientific Support Group

(SSG, Figure 1) is to support the efforts of researchers at

the ALS through scientific and technical collaboration and

scientific outreach. Working with the users, SSG plays an

important role in developing novel instrumentation that

enables cutting-edge science. Depending on the needs of

the user, the degree of collaboration can range from techni-

cal assistance with the beamline to full partnership in

developing new research programs. 

SCIENTIFIC OUTREACH
SSG strives to expand the scientific program of the ALS

and broaden its user base through publications and presenta-

tions. The group organizes a variety of seminars, including the

weekly ALS/CXRO Seminars in X-Ray Science and Technology

and a targeted weekly lecture series addressing the Frontier of

Synchrotron Radiation Science and Instrumentation. The group

also organizes the quarterly ALS Colloquium.

Working together with the Users’ Executive Committee,

SSG also helps to organize workshops exploring new scien-

tific opportunities and needs for new beamlines or experi-

mental facilities. Six such workshops were held during the

2002 ALS Users’ Meeting.

The ALS Doctoral Fellowship in Residence program, estab-

lished in 2001, has been very popular among doctoral 

students and has been received with much appreciation.

The Doctoral Fellowships enable students to acquire hands-

on scientific training and develop professional maturity for

independent research. More details are given on the ALS

Web site (www-als.lbl.gov/als/fellowships/). A selection

committee consisting of Roger Falcone (chair, UEC), Zahid

Hussain, Steve Kevan (Chair, Scientific Advisory Committee),

Neville Smith, and Z.-X. Shen recommended the following

recipients for doctoral fellowships in the physical sciences

for academic year 2003 (Figure 2):

Alejandro Aguilar (University of Nevada, Reno; 

ion spectroscopy)

Andreas Augustsson (University of Uppsala, Sweden; 

ion spectroscopy)

Henry Chong (UC Berkeley, femtosecond x-ray spec-

troscopy with a slicing source)

David Edwards (Princeton University, molecular environ-

mental science)

Daniel Rolles (Free University, Germany; atomic, molecular,

and optical physics)

Zhe Sun (University of Colorado, angle-resolved photo-

emission spectroscopy)

FIGURE 2 ALS Doctoral Fellows: clockwise from left, David C.
Edwards, Henry W. Chong, Daniel Rolles, Alejandro Aguilar,
Andreas G. Augustsson, and Zhe Sun.

FIGURE 1 Scientific Support Group members, left to right:
front row, Fred Schlachter, Jinghua Guo; second row, Yi-De
Chuang (in plaid shirt), Cheryl Hauck, Daniel Rolles, Bill Bates,
Zahid Hussain, Bruce Rude, Alexei Fedorov; back row, Glenn
Ackerman, Michel Van Hove, Aran Guy, Hoon Koh, Jonathan
Denlinger, Elke Arenholz, Gennadi Lebedev, Mike Martin,
Edward J. Singley, John Bozek, Eli Rotenberg, Rudy Kimmerling,
Joshua Turner.
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SUPPORT
Members of SSG are responsible for the operation,

upgrade, and maintenance of most of the facility beam-

lines and many of the permanent endstations at the ALS.

The undulator-based beamlines—4.0.2, 7.0.1, 8.0.1,

10.0.1, and a photoemission branchline on 12.0.1—each

have about one to two SSG staff members responsible for

their continued operation. SSG is also playing an active

role in fixing some of the problems in the operation of the

chemical dynamics complex (Beamline 9.0.2), which is

operated by the Berkeley Lab Chemical Sciences Division

under separate funding from BES. The year 2002 also saw

the designing of several new experimental systems.

Members of SSG are putting great emphasis on making

the development of novel instrumentation more efficient

and user friendly. 

MEMBER RESEARCH
Beyond their collaborative roles, staff scientists within

SSG are expected to maintain scientific and technical

excellence in areas of synchrotron radiation research.

Participation in active scientific programs is essential for

such development, and all of the SSG scientists are active

members of research programs at the ALS.

Advances in Infrared Research

EXPERIMENTAL PROGRESS TOWARD A COHERENT
SYNCHROTRON SOURCE

Mike Martin of SSG and Wayne McKinney of ESG have

been working with accelerator physicists John Byrd and

Fernando Sannibale in developing the scientific case and a

plan for a high-power coherent synchrotron radiation (CSR)

source in the terahertz range. Such a source could enable

a number of new scientific research directions, including

the study of low-energy phenomena in condensed matter

systems; development of direct nondestructive imaging

techniques for medical, technological, and security applica-

tions; studies of novel nonlinear regimes in materials; and

ultrafast time-resolved studies of the dynamic properties of

chemical reactions and correlated electron systems.

In October, two CSR workshops were convened by the

ALS, one to discuss the scientific opportunities of such a

revolutionary source and one to bring together accelerator

physicists working to understand the detailed beam

physics underlying CSR in storage rings. All of these experi-

mental results are now being used with recently developed

modeling capabilities to determine optimized parameters for

achieving stable high-power CSR in a storage-ring source. 

In 2002, high-profile experiments brought the goal of a

CSR source several steps closer to reality. See Science

Highlights, p.68, and Accelerator Physics, p. 81, for more

details about this research.

SECOND IR MICROSCOPE FOR BEAMLINE 1.4
A second IR microscope and bench have recently been

added to the Beamline 1.4 complex as Beamline 1.4.4.

The FTIR bench is a Thermo Nicolet Nexus 870, which is

capable of both rapid- and step-scan measurements. The

IR microscope is a Thermo SpectraTech Continuum that

has several new features not found on our Beamline 1.4.3

Nic-Plan instrument. This new microscope has a dichroic

element that allows visualization of the sample even while

acquiring data. This capability is very convenient, especially

with the synchrotron source, because the focused visible-

light spot from the synchrotron source can often be

observed, indicating exactly where the beam is located 

on a sample. The optics in this microscope are infinity cor-

rected, which allows the easy addition of several types of

optics that can assist in visualizing a sample, including

visual and IR polarizers, Nomarski differential interference

contrast (DIC) optics, and UV fluorescence with four differ-

ence filter cubes. All of these will be available at ALS

Beamline 1.4.4. This instrument was purchased through 

a DOE Office of Biological and Environmental Research

grant to develop biological and environmental applications

of synchrotron-based infrared spectromicroscopy.

We have conducted initial performance tests on the new

microscope by temporarily installing it on the Beamline

1.4.2 photon port. Since the signal-to-noise ratio is a cru-

cial parameter for good FTIR measurements, we measured

this ratio for a series of 100% reflection lines on a gold-

coated glass sample, comparing the performances of the

synchrotron and the internal EverGlo thermal source as a

function of aperture size (Figure 3). 

Since the focused size of the thermal IR source is

approximately 100 × 100 µm, closing down the aperture

below this size simply reduces the total signal in propor-

tion to the area reduction. The noise level becomes signifi-

cantly worse as the aperture size is decreased, becoming

essentially unusable at aperture sizes below 20 × 20 µm.

The focused spot size of the synchrotron source (3–10 µm

in diameter) is diffraction limited, however, so its 
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signal-to-noise ratio is only affected at aperture sizes close

to the wavelength—smaller than 10 µm. The synchrotron

gives a better signal-to-noise ratio than the thermal IR source

at all aperture sizes. For aperture sizes of 10 µm and smaller,

the synchrotron source’s signal-to-noise ratio is more than

1000 times better than the thermal source. A usable signal

is maintained even at the smallest aperture size available,

5 × 5 µm. These results validate the calculated brightness

advantage of a synchrotron IR beamline over a conventional

thermal IR source for mid-infrared spectromicroscopy.

The Continuum IR microscope and Nexus FTIR bench will

be placed permanently on ALS Beamline 1.4.4 with the

synchrotron beam cleverly split to feed both IR micro-

scopes simultaneously without any loss of signal. This will

be achieved by separately collimating the upstream and

downstream ends of the bend-magnet radiation. 

Vector Magnetometry Endstation
at Beamline 4.0.2

The newly developed vector magnetometry endstation

has been installed at the magnetic spectroscopy and

microscopy beamline, Beamline 4.0.2.

The endstation is based on an octupole magnet that sur-

rounds a small vacuum chamber (see Figure 4). The mag-

net provides magnetic fields up to 0.9 T that can be

applied in any direction relative to the incoming x-ray beam.

In combination with the variable polarization capabilities of

the beamline (left and right circular as well as linear hori-

zontal to vertical polarization are available), the new sys-

tem provides a unique facility for magnetic materials

research using magnetic dichroism in the soft x-ray range.

As a first demonstration, the magnetic circular and linear

dichroism spectra at the iron L3,2 edges of a 40-nm-thick

Terfenol film (Tb0.3Dy0.7Fe) were measured in a transmission

experiment (Figure 5). The magnetic circular dichroism

spectrum was obtained with circularly polarized x rays by

switching the magnetic field orientation between parallel

(I+) and antiparallel (I–) to the incoming x-ray beam for each

photon energy. The magnetic linear dichroism spectra were

obtained with linearly polarized radiation by switching the

applied field from parallel (I||) to perpendicular (I⊥) to the

photon-beam polarization vector. Although the magnetic lin-

ear dichroism effect is small, it can be clearly observed

with this setup.

With magnetic circular dichroism, the reversal of the 

magnetization vector can be studied in detail by choosing

different angles of light incidence while keeping the relative

orientation of the magnetic field and the sample fixed. As

an example, the magnetization components Mx, My, and Mz

were determined for magnetic fields applied in the sample

plane of the Terfenol film (Figure 5).
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FIGURE 3 Comparison of the measured signal-to-noise ratio
at 2500 cm–1 for the synchrotron and thermal EverGlo IR
sources as a function of microscope aperture size. The ratio
for the synchrotron source is more than 1000 times better for
apertures 10 microns or smaller. 

FIGURE 4 The newly installed vector magnetometry endsta-
tion at beamline 4.0.2.



polarization dependence are enabled by the goniometer,

and the acquisition and analysis software has been

revamped to take advantage of the new features. 

Figure 7 shows a two-polar-axis scan of the Fermi surface

of 1.2 monolayers of indium on silicon (111) (√7 × √3

reconstruction) taken around 40 K; the sharpest features

are less than 0.16 degrees wide (~0.01 Å–1 momentum

resolution), and the systematic error due to imaging aberra-

tions over a wide angle range is around 0.02 Å–1.

Nanostructure Characterization
Endstation

A new project at Beamline 8.0.1 headed by Franz Himpsel

(University of Wisconsin–Madison) is the construction of a

new endstation for the characterization of nanostructures

by microprobe near-edge x-ray absorption fine structure

(NEXAFS) with fluorescence detection. This bulk-sensitive,

photon-in–photon-out spectroscopy enables the electronic

structure measurement of insulators, dilute species, and

buried interfaces. With an efficient microfocus excitation
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XPD Out, ESF In

Over the years, the ultrahigh-resolution electron spec-

troscopy for chemical analysis (UltraESCA) endstation at

Beamline 7.0.1.2, also known as the x-ray photoelectron

diffraction (XPD) endstation, has evolved from its original

design as an angle-resolved core-level instrument into one

mostly dedicated to valence-band measurements, with an

emphasis on nanostructures grown in situ by molecular

beam epitaxy (MBE). In the last year or so, we have

brought on line new features to enhance the throughput

and quality of experiments (Figure 6). The endstation is

now known as the Electronic Structure Factory (ESF). 

On the preparation side, we have implemented a new

chamber for MBE growth and characterization (via a new

low-energy electron diffraction [LEED] and ESCA system)

with dedicated pumping and a new sample goniometer. On

the analysis side, we implemented a new six-axis (x, y, z,

θ, β, φ), removable sample stage capable of intermittent

heating to 2500 K and routine cooling to 16 K (measured

at the sample). The lowest temperature is expected to

approach 10 K with a future upgrade of the radiation

shielding. The β axis is a second polar axis perpendicular

to the usual θ polar axis. Numerous new scan modes for

 

40 nm Terfenol
1.0

0.5

0.05

0.00

1

0

–1

–0.05

0

–5

Photon Energy (eV)

Applied Field (T)

680 700 720 740

–0.10 –0.05 0.00 0.05 0.10

Fe L3, 2

Magnetic Circular
Dichroism

Magnetic Circular
Dichroism

Magnetic Linear
Dichroism

Magnetic Linear
Dichroism

MxMx

MxMx
MyMy

MyMy

MzMz

MzMz
×3×3

FieldField

SampleSample

I ⊥
 –

 I ||
I ⊥

 +
 I ||

(%
)

I + –
 I –

I + +
 I –

(%
)Tr

an
sm

itt
ed

 
In

te
ns

ity
, 

(a
rb

itr
ar

y
 u

ni
ts

)

M
ag

ne
tiz

at
io

n 
(a

rb
itr

ar
y 

un
its

)
Commercial
Open-Flow
Cryostat

1" Puck for
Large Samples

Vibration-Free
Cryopump

6-Axis LT
Goniometer

SES-100
Analyzer

ESCA
Detector

Film Growth/
Characterization

Chamber

Storage/
Transfer

Be
am

 In

FIGURE 5 Top, magnetic circular and linear dichroism meas-
urements made at Beamline 4.0.2 for a Terfenol film. Bottom,
magnetization components Mx, My, and Mz for magnetic fields
applied in the sample plane of the film.

FIGURE 6 The new Electronic Structure Factory (ESF) end-
station configuration at Beamline 7.0.1. The overall system is
designed for high-throughput sample growth and characteriza-
tion without interference with the main analysis chamber. The
prep chamber has a new sample goniometer with Mg Kα
ESCA, LEED, a crystal monitor, and sputtering. The storage
chamber has room for about 10 samples, and the analysis
chamber has a cryopump for better base pressure and (upper
right) a new six-axis removable sample stage. 



probe, Kirkpatrick–Baez refocus optics, and an x–y scan-

ning stage with 2.5-µm repeatability, the capabilities of the

system are extended to include the characterization of

small novel samples and a class of “combinatorial materi-

als science” samples, in which a systematic variation of

processing parameters is performed across a substrate. 

The design of the scanning stage is based on a success-

ful design previously implemented at the micro–x-ray photo-

electron spectroscopy (Micro-XPS) endstation at Beamline

7.3.1.2. We are also borrowing from Micro-XPS designs to

make sample handling (compatible with up to two-inch

wafers) more user friendly. In addition, a new optical layout

based on bendable mirrors is being designed to accommo-

date the new nanostructure characterization endstation

(Figure 8), provide the microfocus capability, and provide

more flexible options for rapid switching between this and

other Beamline 8.0.1 endstations. 

Heat Shield for Beamline 9.0

The undulator source for Beamline 9.0 is shared

between the chemical dynamics group on the 9.0.2

branch, which uses low photon energies (small undulator

gap settings), and the coherent science groups on the

9.0.1 branch, which use higher photon energies (larger

undulator gaps). When switching between the two branches

of the beamline, the users observed large horizontal beam

motions over a period of an hour or more. After several

attempts to correlate the photon beam displacement with

electron beam motion due to large changes in the undulator

gap, the problem was found to be caused by heating of the

vacuum tank supporting the first mirror (M1), which is

shared by both branches of the beamline. 

To identify the cause of the heating, we first instrumented

the vacuum tank with thermistors in an attempt to monitor

the effect of the synchrotron beam power on the cooling

water for the mirror. While the water temperature varied by

less than 1°C, the outer surface of the vacuum tank was

observed to heat up by as much as 10°C. The temperature

of the vacuum tank followed the incident photon power

with some long time constant (Figure 9). 

The temperature changes induced a deformation of the

vacuum chamber that supports the M1 mirror. The defor-

mation caused the angle of the mirror to change, resulting

in the observed movement of the photon beam. Sensitive

position measurements of the tank carried out with the

assistance of Andrew Franck of the ESG group correlated

well with the temperature data and confirmed that the ther-

mal motion of the tank was resulting in the observed beam

motion.

FACILITY REPORT: SCIENTIFIC SUPPORT90

Momentum Along [110]

M
om

en
tu

m
 A

lo
ng

 [1
12

]

2

1

0

–1

–2

–2 –1 0 1 2

Precision x-y
Stage Sample Intro

and Prep Ge DetectorPhoton In

Pumps

FIGURE 7 Fermi surface data for 1.2 monolayers of indium
on silicon (111) taken around 40 K. The raw data were taken
over the range kx,y = –0.5 to +2.5 Å–1, and the data presented
were symmetrized by using mirror symmetry.

FIGURE 8 Nanostructure characterization endstation for
Beamline 8.0.1. Key features include a sub-10-µm focus, a
scanning stage with sub-2.5-µm precision, and a fluorescence
detector for photon-yield x-ray absorption.



The transfer of power from the synchrotron beam to the

vacuum tank is thought to occur through fluorescence of

the materials in the M1 mirror, i.e., copper from the sub-

strate and nickel from the coating. When operating at

small gaps, with K values (nondimensional magnetic

strengths) up to 8, the 10-cm-period undulator behaves

almost like a wiggler, producing an intense beam of high-

energy photons. K-shell vacancies created in the mirror

substrate by these high-energy photons will decay via fluo-

rescent processes to a large degree. The fluorescent pho-

tons re-emitted by the mirror then illuminate the vacuum

tank and result in the temperature rise.

To shield the vacuum tank from this fluorescent power, a

water-cooled copper shield (Figure 10) was designed by

Tony Catalano and installed by Bruce Rude during the

spring shutdown. Fitting around the mirror, the 3/8-in.-thick

copper shield absorbs most of the fluorescent power and

prevents the vacuum tank from heating and deforming. The

shield performs as designed, significantly reducing the

power incident on the vacuum tank, as measured by the

temperature rise (Figure 11).

Progress on Beamline 10.0.1

OPTIONS FOR ION SPECTROSCOPY
Spectroscopy of positive and negative ions with the

Ion–Photon Beamline (IPB) continues as one of the most

active areas of atomic and molecular physics research at

ALS Beamline 10.0.1. Three different ion sources are avail-

able: an electron cyclotron resonance (ECR) source to pro-

duce singly or multiply charged positive ions, a cesium

sputtering (SNICS) source to produce negative ions from

solid targets, and a rubidium charge-exchange source to

produce negative helium and hydrogen ions. 

The ECR ion source, developed by Ron Phaneuf’s group

(University of Nevada, Reno) and in particular ALS Fellow

Alejandro Aguilar, serves a large community of users inter-

ested in studying singly and multiply charged positive ions.

The recent addition of a metal vapor oven to the source

has made possible studies of metallic species by

Phaneuf’s group as well as general users such as Alfred

Müller (Giessen) and John West (Daresbury). The multiply

charged ion capability of the ECR source has also enabled

isoelectronic and isonuclear sequence studies to study the

effects of nuclear charge and electronic configuration.

Negative ion spectroscopy with the IPB continued in

2002 with extensive studies of the three-body He– system,
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FIGURE 9 Variations in the temperature of the outside of the
vacuum tank that supports Beamline 9.0’s M1 mirror, meas-
ured at several different locations (multiple colored traces),
with variations in the power (filled purple trace) of the applied
photon beam.
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FIGURE 11 Temperature (multiple colored traces) and power
(filled blue trace) variations in the vacuum chamber that sup-
ports the M1 mirror, after installation of the copper heat
shield.



by Nora Berrah’s group (Western Michigan University), as

well as other atomic and cluster species. A neutral detec-

tor was developed by Glenn Ackerman of SSG and Rene

Bilodeau, a postdoctoral researcher from Berrah’s group, to

study photodetachment (single photoionization) processes

in negative ions. Energetic neutrals strike a biased copper

scattering plate, generating a shower of secondary electrons.

The secondary electrons are electrostatically focused onto a

microchannel plate (MCP) detector. The design was compli-

cated by the need to provide an aperture for the photon

beam while suppressing background signal from two sources:

stray light striking the apparatus and photoionization of back-

ground gas.

A CLUSTER SOURCE FOR PHOTOELECTRON
SPECTROSCOPY

John Bozek and Bruce Rude of SSG have developed a

continuous cluster source and fitted it to the gas-phase

photoelectron spectrometer on Beamline 10.0.1. The

source, which is simply a small orifice nozzle with a high

backing pressure, is fitted onto an x–y–z manipulator used

to align the orifice with a molecular-beam skimmer fitted

into the vacuum chamber. The skimmed beam passes into

the main chamber of the spectrometer, where it intersects

the photon beam and is ionized. The skimmer chamber is

pumped by two 1000-L/s turbo pumps and is allowed to

operate in the 10–4 Torr range, while the main chamber,

which is separated from this region by the 1-mm-aperture

skimmer, is in the 10–7 Torr range.

We used this new capability in conjunction with Erwin

Poliakoff’s group (Louisiana State University) to conduct

photoelectron spectroscopy of Ar2 dimers. The spectra

(Figure 12) exhibited significantly higher resolution than

any previously obtained with helium resonance lamps, with

the added benefit of the tunability of the synchrotron light

source. Further developments of cluster sources for photo-

electron spectroscopy of a variety of cluster species will

continue over the next year.

FURTHER IMPROVEMENTS TO HERS
The high-energy-resolution spectrometer (HERS) has been

considered one of the world’s premier facilities for carrying

out angle-resolved photoemission experiments. Further

improvements to the experimental capability were made in

2002 by incorporating a new custom-designed Scienta ana-

lyzer (SES2002) that has boosted us to the next level in

photoemission spectroscopy with ultrahigh angular and

energy resolution. The new analyzer, with the use of two

different magnification angle modes, offers an angular res-

olution of either ±0.05° or ±0.15°. Furthermore, it provides

energy resolutions as good as 0.9 meV (Figure 13). This

improvement in instrumentation is the result of close col-

laboration between Z.-X. Shen’s group from Stanford

University and members of the SSG group (primarily Zahid

Hussain) with funding from BES and the ALS.
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New Angle-Resolved 
Photoemission Branchline 
on Beamline 12.0.1

In 2002, the angle-resolved photoemission spectroscopy

(ARPES) chamber at Beamline 12.0.1 received a new 

discharge-driven photon source (offering photon energies 

of 21.218 eV and 40.8 eV) with a toroidal-grating mono-

chromator. The source delivers 5 × 1012 photons/s and

has a line width of ~1 meV. The photoemission branch of

the beamline was upgraded with a quadruple reflector for

converting linearly polarized light from the beamline into

circularly polarized light. With these additions, the major

construction of the ARPES endstation has been completed

and commissioning work has begun. The beamline team

was beefed up in a timely manner by hiring an Associate

Beamline Scientist, Rudy Kimmerling. 

The first runs of the photoelectron spectrometer (SES100)

with photons from the beamline have revealed severe aging

in its imaging detector, resulting in a rapid loss of detection

efficiency and nonuniform sensitivity. The same problem

has been reported for other SES spectrometers at the ALS

(at Beamlines 10.0.1 and 7.0.1). Obviously, the standard

detectors offered by the manufacturer of the SES electron

analyzers (Gammadata-Scienta) are not able to handle the

high photon flux of the ALS. As a quick solution, the original

MCPs in the detector have been replaced with plates from

Hamamatsu. Also, we initiated work to replace the phos-

phor screen with the more durable and faster scintillating

crystals. In spite of the detector problems, the spectrome-

ter demonstrated satisfactory energy and angular resolu-

tion. Figure 14 shows data for the Fermi edge of gold

demonstrating a total resolution of 9 meV.

The scientific program conducted by the groups of Dan

Dessau (University of Colorado, Boulder) and Alessandra

Lanzara (UC Berkeley) focused on the studies of cuprate

superconductors and carbon nanotubes. Figure 15 shows

photoemission data for a single-layer Bi2Sr2CuO6 (Bi2201)

sample. A break in the quasiparticle dispersion curve, dis-

covered recently in a double-layer Bi2Sr2CaCu2O8 (Bi2212),

is also readily seen here about 80 meV below the Fermi

energy. Hence, the data give a hint about the universality

of the phenomenon in the cuprates. It may indicate the

presence of a strong electron–phonon coupling, which could

well be a cause of superconductivity in these materials.
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ARPES chamber at Beamline 12.0.1 (photon energy, 21.218
eV; pass energy, 5 eV). The fit to the Fermi function convoluted
by the Gaussian gives a total resolution of 9 meV.
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USER SERVICES
Gary Krebs, User Services Group Leader

Introduction

The User Services Group provides an interface to the

ALS for new and continuing users at the ALS. The group is

made up of the User Services Administration, Beamline

Coordination, and Technical Information Sections. These

groups work together to provide the users with a wide

range of services. It is our goal to continue to provide

these varied services in a friendly and efficient manner.

User Services Administration

The User Services Office is located on the mezzanine

floor of the ALS, down the hall to the left of the reception

area as one exits the elevator. The office is staffed from

8:30 to 4:30 by members of the User Services Adminis-

tration Section (Figure 1), who help new users through the

required registration process before they begin work at the

ALS. (During off hours, users register at the Control Room.)

All users receive an electronic identification card, which

allows them access to the ALS experiment floor. About

1400 users had access to the experiment floor in 2002.

New users also watch a short safety video that describes

some of the potential safety hazards at the facility and out-

lines the experiment safety checkout process. The Admin-

istration Section oversees both badging and safety training.

Section members have also worked to enable new users to

complete much of the processing before they arrive by pre-

registering on the ALS Web site (www-als.lbl.gov). Through

its oversight of the registration process, the User Services

Administration Section also collects data about user publi-

cations and demographics. As a national user facility, the

ALS is required to report these statistics annually to the

U.S. Department of Energy.

In another of its many functions, the User Services

Administration Section coordinates the allocation of beam

time through a peer-review process. For all the sciences

except protein crystallography, general user requests for

beam time are received through the ALS Web site twice

annually. Protein crystallography proposals, also submitted

over the web, are received and evaluated bimonthly to bet-

ter serve the needs of this scientific community for rapid

access. The proposals for beam time are reviewed by the

appropriate Proposal Study Panel (there are separate PSPs

for general sciences and protein crystallography), and

under the direction of ALS Division Deputy for Science,

Neville Smith, beam time is allocated based on principles

and guidelines agreed upon by the ALS and the Users’

Executive Committee (UEC). These principles and guide-

lines adhere to those of the International Union of Pure

and Applied Physics. The UEC, elected annually by the

users, is the voice of that diverse group and represents

them at the ALS as an advisory body. Proposal Study Panel

members are chosen in consultation with the UEC to cover

the wide range of sciences represented at the ALS. The

User Services Administration Section provides administra-

tive and logistical support to both the PSPs and the UEC.

The proposal submission and beam time allocation

process is described in greater detail on the ALS Web site

(www-als.lbl.gov/als/quickguide/independinvest.html). 

The User Services Office can also help out-of-town visi-

tors find a place to stay while working at the ALS. The

office manages the ALS apartments (Figure 2), which are

located near Berkeley Lab along the route of the main labo-

ratory shuttle bus. The apartments, recently increased to
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FIGURE 1 ALS User Services Administration Section: front
row, left to right, Zalaysha Lowry, Sharon Fujimura, Barbara
Phillips, and Jamila Murray; back row, Gary Krebs, Bernie
Dixon, Jeff Troutman, and Jeremy Coyne.



five in number, are available to all ALS users, and detailed

information about costs and other factors can be found on

the Web at www-als.lbl.gov/als/quickguide/housing.html. 

The User Services Administration Section, formerly man-

aged by Bernie Dixon, is now managed by Jeff Troutman

and includes Sharon Fujimura, Zalaysha Lowry, Jamila

Murray, Barbara Phillips, Adriana Reza, and Barbara

Srulovitz (now retired). We are indebted to Bernie Dixon,

who contributed in many ways to the efficiency and devel-

opment of the User Services Office.

Beamline Coordination

The Beamline Coordination Section serves as a point of

contact for users on the experiment floor. Section mem-

bers act as liaisons between users and ALS and Berkeley

Lab resources. They provide shipping and receiving and

temporary storage services as well as endstation setup

and safety checkout coordination. Ensuring that all user

experiments are checked for safety is a crucial function of

this group. Section members work closely with various

Berkeley Lab safety specialists in the areas of electrical,

mechanical, chemical, radiation, biological, and laser safety,

coordinating the process to ensure that all guidelines are

met. This process is required in order to assure the safety

of all users on the experiment floor. Upon the successful

completion of the required safety checks, section members

enable the beamline to receive light. The Beamline Coordi-

nation Section also maintains a stock room of parts and

equipment commonly needed by ALS users and ALS techni-

cians (Figure 3). These supplies are accessible by proximity

card 24 hours a day. The Beamline Coordination Section is

led by Donna Hamamoto and includes Todd Anderson, Gary

Giangrasso, Alex Lobodovsky, Tony Marquez, and Kenneth

Winters (Figure 4).

Technical Information

The Technical Information Section is responsible for this

Activity Report as well as the annual Compendium of User

Abstracts (a copy of which can be found on the CD inside

the back cover of this volume). The group’s members also

prepare special brochures and create posters and announce-

ments for countless workshops and conferences. They are

responsible for the “Science Highlights” shown in the ALS

lobby and on the ALS Web site and many of the posters

around the experiment floor. In addition, the section maintains

FACILITY REPORT: USER SERVICES 95

FIGURE 2 The ALS apartments serve as home away from
home for users on the road.

FIGURE 3 The User Stock Room keeps needed parts and
equipment ready to hand.

FIGURE 4 The Beamline Coordination Section: left to right,
Tony Marquez, Gary Giangrasso, Alex Lobodovsky, Ken Winters,
Donna Hamamoto, and Todd Anderson. 



and develops the ALS Web site and writes and edits the

electronic newsletter, ALSNews. The section, composed 

of science writers along with graphics and Web experts,

provides the ALS scientific and technical community and

government officials as well as the general public with

information about the science carried out at the ALS. The

group maintains a strong tie to the educational community

within the state of California, around the U.S., and even

internationally. In conjunction with the User Services Office,

this group coordinates tours for the several thousand visi-

tors—often from high schools, universities, and industry—

who come to view the ALS annually. The Technical

Information section is led by Art Robinson and includes

Annette Greiner, Elizabeth Moxon, Lori Tamura, and Greg

Vierra (Figure 5).
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FIGURE 5 The Technical Information Section: left to right,
Art Robinson, Elizabeth Moxon, Lori Tamura, Greg Vierra, and
Annette Greiner.





From introducing young students to career opportunities in synchrotron-related

science, to early morning television interviews introducing the Advanced Light

Source to the San Francisco Bay Area, ALS staff members continued to enthusi-

astically participate in a variety of scientific and educational outreach activities.

Highlights included participation in Berkeley Lab’s Open House, an event that

attracted more than 8,000 people; conferences covering a wide range of topics;

and visits by distinguished guests from around the world.
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Molecular Foundry Workshop
Berkeley Lab; April 4–5

Over 350 people registered for the first workshop dedicated to creating a

roadmap for Berkeley Lab’s Molecular Foundry. Slated to open in 2006, the

Molecular Foundry is one of five Nanoscale Science Research Centers

planned by the Department of Energy’s Office of Basic Energy Sciences

(BES). Keynote and invited speakers, including Materials Sciences Division

Director Paul Alivisatos (below left), discussed the concept and design of

the facility while others highlighted the exciting future of nanotechnology

research to overflow crowds in the plenary sessions (below right).

New Opportunities in Ultrafast Science Using X-Rays
Napa, California; April 14-17

California’s beautiful Napa Valley was the site of an international conference

that brought together experts from the research communities of ultrafast

optics and ultrafast x-ray sources. Hosted by the ALS, Stanford Synchrotron

Radiation Laboratory (SSRL), the Swiss Light Source, BioCARS-NIH, and

BES, the workshop focused on cooperation between the two communities to

extend experimental capabilities for ultrafast science.



SPECIAL EVENTS

The 7th International Conference on Surface X-Ray
and Neutron Scattering (7SNXS)
Granlibakken Conference Center, Tahoe City,
California; September 23–27

The science of studying surfaces using neutron and x-ray scattering tech-

niques drew researchers from around the world to the shores of Lake Tahoe

for this five-day workshop. Of particular interest for this year’s attendees

was the structure of nanoscale materials.

Berkeley–Stanford Synchrotron
Radiation Summer School
Palo Alto, California; July 7–15

This year’s jointly organized summer school for the

study of synchrotron radiation applications and

experimental techniques was held at Stanford

University. The 40 students selected for the

school were treated to an intensive program of

lectures and practical courses designed to show-

case the scientific opportunities of synchrotron radiation in the physical and

life sciences. Directors of the school were Mike Soltis and Anders Nilsson

of Stanford University/SSRL, and John Kuriyan and David Attwood of the

University of California, Berkeley/Berkeley Lab.

101

SXNS meeting par-
ticipants paused
for a group photo
between sessions.

Synchrotron
Radiation Summer
School students
and organizers at
Stanford University.



SPECIAL EVENTS102

ALS Users’ Meeting
Berkeley Lab; October 10–12

This year’s meeting attracted more than 350 ALS users and staff ready to

hear about recent research highlights, facility updates, and current user

issues. Hot topics included evolving modes of user access, the commission-

ing of the molecular environmental science beamline, and the success of the

superbend magnets. Other meeting highlights were presentations from young

researchers, invited speakers, and a busy poster session, vendor exhibits,

and an evening awards banquet on the ALS patio. Following the general

meeting program, six focused workshops attracted large crowds interested

in x-ray microdiffraction in materials and environmental science; applications

of infrared radiation; opportunities for chemical physics at the ALS; polarization-

dependent x-ray spectroscopy and microscopy; future projects using ultra-high-

resolution soft x rays; and atomic, molecular, and materials science.

During the open-
ing session, atten-
dees filled the
auditorium to hear
ALS Division
Deputy for
Science Neville
Smith present
new ideas for user
access to the ALS.

ALS Division Director Daniel Chemla
compared notes with Pedro Montano of
the BES Division of Materials Science
and Engineering during the opening ses-
sion (far left) and listened as BES
Deputy Director Iran Thomas posed a
question. BES Director of Science for
Pat Dehmer looks on.
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The poster session,
the student poster
competition, vendor
exhibits, and the
meeting’s awards
banquet were held in
the early evening on
the ALS patio.

Keynote speaker Steve Leone of Berkeley Lab’s Chemical Sciences Division
and the University of California, Berkeley, provided an overview of optical
probes of molecular dynamics.

Mary Kaufman of Montana State University and the Idaho National
Engineering and Environmental Laboratory discussed her graduate
work in microbe–mineral reactions during the always-popular
Highlights from Young Researchers session.
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The 2002 Halbach Award for Innovative Instrumentation at the ALS was 

presented to Harald Ade (North Carolina State University), Peter Hitchcock

(McMaster University, Canada), David Kilcoyne (North Carolina State Univer-

sity), Tolek Tyliszczak (Berkeley Lab), Tony Warwick (ALS), and the STXM

Team for the design and implementation of advanced interferometrically

controlled scanning transmission x-ray microscopes. The Shirley Award for

Outstanding Scientific Achievement was presented jointly to Nora Berrah

(Western Michigan University), John Bozek (ALS), Carmen Cisneros (Univer-

sidad Nacional Autónoma de México), Aaron Covington (Lake Tahoe Com-

munity College), and Ron Phaneuf (University of Nevada, Reno) for their

groundbreaking advances in atomic and molecular physics. Ximei Qian

(University of California, Davis) won the student poster competition with 

her submission titled “State-Selected Ion-Molecule Reaction Dynamics at

Extremely High Vibrationally Excited States.” The Renner User Services

Award was split between Charles A. Knopf (Mechanical Engineering Group,

retired) and Gerry McDermott (Berkeley Center for Structural Biology).

This year’s award winners included, from left,
Harald Ade, Ximei Qian, Nora Berrah, Charlie
Knopf, John Bozek, Roger Falcone (UEC Chair),
and Adam Hitchcock (accepting on behalf of
Peter Hitchcock).

Workshop on Coherent Synchrotron Radiation 
in Storage Rings
Napa, California; October 28–29

This workshop brought together scientists interested in the possibilities of

developing coherent synchrotron radiation (CSR) sources at existing rings 

or new dedicated rings. Participants (left) discussed the theoretical and

experimental understanding of stable CSR and CSR-driven instabilities, tech-

niques for configuring lattices for low-momentum-compaction operation, and

the planning of future accelerator experiments. 
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Distinguished Visitors
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(From left) ALS Division Director Daniel
Chemla met with J. Murray Gibson,
Associate Laboratory Director for the
Advanced Photon Source (APS), and
Steven Dierker, Chairman of the National
Synchrotron Light Source (NSLS), in early
March to discuss how the synchrotron
facility directors can work together to pro-
vide the best research capabilities possi-
ble to the user community.

In February, John Landy, Governor of the
State of Victoria, Australia, led a delega-
tion of scientists and advisors  from the
Australian Synchrotron around the ALS.
During their tour of the experiment floor,
James Sullivan (left), a visiting Australian
postdoc currently working in Japan, gave
Governor Landy (fourth from right) an
overview of his research on Beamline
10.0.1.
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On November 26, U.S. Secretary of
Energy Spencer Abraham visited
Berkeley Lab as part of a tour of the
Department of Energy laboratories in
the Bay Area. During his visit to the
ALS, Abraham learned about the appli-
cations of synchrotron light and
presided over an informal ceremony
launching the BES-funded Molecular
Environmental Science Beamline
(Beamline 11.0.2). 

Secretary Abraham (second from right)
and his wife, Jane (far right), look at
images taken at Beamline 6.1.2 as
Carolyn Larabell (left) of the Life
Sciences Division presents recent
advances in 3D tomography of single
cells. ALS Division Director Daniel
Chemla (center) led the tour, which
ended after the Secretary addressed
more than 200 lab employees on the
ALS patio.

Neville Smith, ALS Division Deputy for Sci-
ence, hosted members of the Norwegian
Research Council and Department of
Medicine and Health as they toured the
ALS. The group, comprising ministers in
education, research, and health; trade
commissioners; and special advisors,
was particularly interested in advances
on the protein crystallography beamlines
and in biotechnology research.
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On December 17, the ALS welcomed Walter Stevens,
new Director of BES’s Division of Chemical Sciences,
Geosciences, and Biosciences. At the ALS, his division
directly supports the Chemical Dynamics Beamline
(Beamline 9.0.2), the AMO branches of Beamline
10.0.1, and the new Molecular Environmental Science
(MES) Beamline (Beamline 11.0.2). Stevens toured the
facility as the guest of Berkeley Lab Division Directors
Dan Neumark (Chemical Sciences), Graham Fleming
(Physical Biosciences), and Daniel Chemla (ALS). During
his tour, Stevens (center) was updated on the status of
the MES beamline by David Shuh (right) of the Chemical
Sciences Division as Neumark looked on. 
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Open House

Division Deputy for Science Neville
Smith gave early risers an introduc-
tion to the ALS and an invitation to
attend Berkeley Lab’s Open House
when he appeared on a local morn-
ing television show. Viewers must
have been intrigued, as more than
8,000 visitors, the largest crowd
ever, attended the October 6 event. 

Berkeley Lab Director Charles
Shank greeted early arrivals in
the Welcome Tent.

Beamline Coordination Section
Leader Donna Hamamoto
showed eager and hungry young
scientists how liquid nitrogen
can make ice cream in a hurry.
Donna and ALS postdoc Tobias
Funk served more than 1500
happy customers during the day.
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Visitors lined up outside the ALS for over an hour to get a tour from staff volun-
teers. Tours around the experiment floor stopped at different beamlines where
guides like Ken Woolfe (left) of the Electrical Engineering Group discussed how the
ALS works. Visitors were then guided over the shielding for a rare opportunity to
view the historic dome.

A visit to Beamline 9.02 was a high-
light for younger visitors as Darcy
Peterka (right), Musa Ahmed (below,
left), and Christophe Nicholas (below,
background) of the Chemical Sciences
Division invited budding scientists 
to “push around” electrons using 
magnets. 
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Educational Outreach and Diversity

The ALS continues to serve as a teaching resource for local schools and

organizations interested in showing students career opportunities in sci-

ence, engineering, and technology. On an international scale, ALS publica-

tions and the educational Web site MicoWorlds provide an introduction to

synchrotron science, its applications, and the jobs that make a facility like

the ALS run smoothly. To expand their awareness of communicating science

effectively to all audiences, ALS editors participated in science communica-

tions conferences in Gaithersburg and College Park, Maryland, and in Cape

Town, South Africa. 

Mhairi Donohoe (left) from the Physical Biosciences Division
(PBD) welcomed students from Oakland’s College Preparatory
High School and showed them how to make protein crystals. The
experiment was followed by a trip to the protein crystallography
endstation where students were shown how a protein is exam-
ined with x rays. The students used their experiences at the ALS
to create a Web page explaining protein crystallography to their
peers.

Berkeley Lab’s annual
Daughters and Sons
to Work Day brought
another eager group
of young scientists
to the ALS. Elizabeth
Moxon of the Tech-
nical Information
Section discusses
some of the clues
her charges found
as they conducted a
scientific scavenger
hunt around the ALS.
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PBD’s Gerry McDermott gave a highlight tour for students from Berkeley’s
Biotechnology Education, Inc. (BBEI) as he showed the intrigued students
how a protein sample is prepared for crystallography experiments. BBEI is a
nonprofit organization that trains high-school students for careers in biotech-
nology and research.

Information Section writers presented posters at
the National Institute for Standards and Technology
(NIST) Best Practices for Communication of Sci-
ence and Technology to the Public conference 
in Gaithersburg, Maryland and at the Materials
Education: Opportunities Over a Lifetime meeting
in nearby College Park, Maryland. ALS writers also
presented a poster (right) and gave a brief talk at
the Seventh International Conference on Public
Communication of Science and Technology in
Cape Town, South Africa. 
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ALS ADVISORY PANELS

SCIENCE POLICY
BOARD
Advises the Berkeley Lab Director on major policy issues 

concerning the ALS.

William Brinkman, Lucent Technologies/Bell Laboratories

John Carruthers, Intel Corporation

Chien-Te Chen, National Synchrotron Radiation Research

Center, Taiwan

Peter Eisenberger, Columbia Earth Institute

Paul Fleury, University of New Mexico 

Franz J. Himpsel, University of Wisconsin–Madison

Yuan T. Lee, Academia Sinica, Taiwan

Albert Narath, Lockheed Martin Corporation (retired)

Yves Petroff, Lawrence Berkeley National

Laboratory/European Synchrotron Radiation Facility

Stephen D. Kevan (ex officio), University of Oregon

SCIENTIFIC ADVISORY
COMMITTEE
Advises Berkeley Lab and ALS management on issues relating

to ALS operations, resource allocation, strategic planning, and

Participating Research Team proposals and research.

Ernst G. Bauer, Arizona State University

James Berger, University of California, Berkeley 

Jeffrey Bokor, University of California, Berkeley

John Carruthers, Intel Corporation

Wolfgang Eberhardt, BESSY GmbH, Germany

Roger Falcone, University of California, Berkeley

Yves Idzerda, Montana State University

Stephen D. Kevan (Chair), University of Oregon

Alain Manceau, Université Joseph Fourier, France

Anders Nilsson, SSRL/Stockholm University, Sweden 

Sunil Sinha, University of California, San Diego

Janet L. Smith, Purdue University

John Spence, Arizona State University/Berkeley Lab

Anthony Starace, University of Nebraska–Lincoln

Louis J. Terminello, Lawrence Livermore National Laboratory
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USERS’ EXECUTIVE
COMMITTEE
Elected by the members of the Advanced Light Source Users’

Association to act as the official voice of the user community

in its interactions with ALS management.

Harald Ade (Past Chair), North Carolina State University 

John Bozek, Advanced Light Source, Berkeley Lab 

Sophie Canton (Student), Western Michigan University 

Jennifer A. Doudna (Vice Chair), Howard Hughes Medical

Institute/University of California, Berkeley 

Roger Falcone (Chair), University of California, Berkeley

Carolyn  A. Larabell, University of California, San Francisco/

Life Sciences Division, Berkeley Lab

Dennis W. Lindle, University of Nevada, Las Vegas 

Gerry McDermott, Physical Biosciences Division,

Berkeley Lab

Alexander Moewes, University of Saskatchewan

Yasuji Muramatsu, Japan Atomic Research Institute 

Eli Rotenberg, Advanced Light Source, Berkeley Lab

2002 ALS Users’ Executive Committee: from left, Eli Rotenberg,
Roger Falcone, John Bozek, Dennis Lindle, Alexander Moewes,
Sophie Canton, Harald Ade, Gerry McDermott, and Gary Krebs
(ALS User Services Group Leader).
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ALS STAFF

DIVISION MANAGEMENT

D. Chemla

B. Feinberg

J. Krupnick

Y. Petroff

N. Smith

ACCELERATOR PHYSICS

D. Robin, Group Leader

J. Byrd, Deputy Leader

S. Lidia

L. Nadolski

H. Nishimura

F. Sannibale

T. Scarvie

C. Steier

W. Wan

ADMINISTRATION

B. Dixon

P. Epps

M. Fenner

R. Pepe

A. Reza

L. Senft

BUDGET 

J. Dahlgard

S. Rossi

J. Zelver

CONTROLS

A. Biocca, Group Leader 

C. Timossi, Deputy Leader

E. Domning

K. Fowler

C. Ikami

S. Jacobson

J. McDonald

A. Robb

L. Shalz

J. Spring

R. Steele

J. Tunis

E. Williams

ENVIRONMENT, HEALTH,

AND SAFETY

B. Fairchild

R. Mueller

G. Perdue

ELECTRICAL ENGINEERING

W. Barry, Group Leader

G. Stover, Deputy Leader

B. Bailey 

M. Balagot

K. Baptiste

M. Bell

R. Benjegerdes

T. Bilstein

K. Bolin

R. Candelario

M. Chin 

R. Cole

R. Colston

P. Cull

A. Detzner

L. Dominguez

J. Elkins 

M. Estrema

D. Edwards

M. Fahmie

M. Foster

R. Gassaway

R. Gervasoni

A. Geyer 

J. Gregor

J. Hellmers

M. Hilburn

L. Holzer

L. Jordan

J. Julian

T. Kuneli

S. Kwiatkowski

E. Lee

A. Lindner 

P. Molinari

T. Nhan

J. Nomura

F. Ottens

S. Patterson 

This is a cumulative list of all those who worked at the ALS during the 2002 calendar year. The list includes visitors, students, and staff

members from other divisions who were matrixed to the ALS.
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A. Ritchie

S. Rogoff

P. Rosado

H. Scheid

A. Sippio

R. Slater

M. Szajbler

M. Thomas

M. Vinco

S. Warner

J. Weber

M. Williams

K. Woolfe

EXPERIMENTAL SYSTEMS

H. Padmore, Group Leader

A. Warwick, Deputy Leader

W. Caldwell

R. Celestre

S.-B. Choe

S. Clark

A. Doran

S. Fakra

J. Feng

A. Franck

E. Glover

E. Harvey

H. He

P. Heimann

M. Howells

S. Irick

A. MacDowell

M. Marcus

W. McKinney

A. Scholl

P. Schmid

R. Sublett

N. Tamura

A. Thompson

A. Warwick

A. Young

MECHANICAL ENGINEERING

A. Paterson, Group Leader

R. Schlueter, Deputy

Leader

J. Akre

N. Andresen

R. Armstrong

W. Baldock

D. Baum

L. Bonifas

D. Calais

D. Cambie

K. Carter

M. Coleman

D. Colomb

J. Comins

C. Cummings

D. Davis 

M. Decool 

R. DeMarco

A. Demello

R. Duarte

D. Eastman

Z. Eisentraut

D. Ellis

K. Franck

D. Fritz

A. Gavidia

D. Gibson

C. Hopkins

D. Hull

D. Jones

J.-Y. Jung

N. Kelez

S. Klingler

C. Knopf

G. Koehler

M. Kritscher

K. Krueger

A. Lim

R. Low

S. Lundgren 

B. Macdonell

D. MacGill

S. Marks

C. Matuk

P. McKean 

H. Meyer

V. Moroz 

G. Morrison

D. Munson 

W. Oglesby

J. Osborne

R. Patton

J. Pepper

K. Peterman

P. Pipersky

D. Plate

S. Prestemon

K. Rex

N. Searls

K. Sihler 

T. Stevens

H. Stewart

M. Thomas

W. Thur 

A. Wandesforde

R. Weidenbach

M. Wingert

E. Wong

J. Zbasnik

F. Zucca

OPERATIONS

B. Samuelson, Group

Leader

T. Byrne, Deputy Leader

D. Bentsen

J. Bishop

D. Brothers

E. Diaz

O. Jones

K. Osborne

J. Pusina

D. Richardson

S. Stricklin

M. Wolfe

PROCEDURE CENTER

R. Jones

PROJECT MANAGEMENT

A. Catalano

J. Harkins

S. Rossi

QUALITY ASSURANCE

E. Lampo

SCIENTIFIC SUPPORT

Z. Hussain, Group Leader

J. Bozek, Deputy Leader

G. Ackerman

E. Arenholz

W. Bates

K. Chesnel

Y.-D. Chuang

J. Denlinger

A. Fedorov

B. Freelon

J. Guo
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A. Guy

N. Hamdan

C. Hauck

R. Kimmerling

G. Lebedev

M. Martin

S. Mun

E. Rotenberg

B. Rude

F. Schlachter

USER SERVICES

Gary Krebs, Group Leader

A. Robinson, Deputy

Leader

T. Anderson

J. Coyne

S. Fujimura

G. Giangrasso

A. Greiner

D. Hamamoto

A. Lobodovsky 

Z. Lowry

A. Marquez

E. Moxon

J. Murray

B. Phillips

B. Srulovitz

J. Troutman

L. Tamura

G. Vierra

K. Winters

VISITORS AND STUDENTS

A. Aguilar*

A. Augustsson*

B. Batterman

P. Bogdanov*

V. Brouet

S. Canton

Y. Chen*

H. Chong*

S. Chourou

J. Diaz

C. Dong

D. Edwards*

J. Glossinger*

J. Graf

G.-H. Gweon

Z. Hasan*

S. Johnson*

N. Khan

D. Kilcoyne

J. Kirz

A. Lanzara

S. Locklin*

D. Lowney*

A. Manceau

C. Morin*

S. Mun

M. Paik*

J. Patel

D. Rolles*

M. Salim

E.J. Singley

C. Slim*

J. Spence

Z. Sun*

W. Stolte

J. Turner

G. Turri

M. Van Hove

K. Wilson*

C. Won*

W. Yang

H.-S. Youn

X. Zhou

*Graduate Student

Research Assistant
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FACTS AND FIGURES

USING THE ADVANCED
LIGHT SOURCE

The ALS, a Department of Energy national user facility, wel-

comes researchers from universities, industry, and govern-

ment laboratories. Qualified users have access either as

members of a participating research team (PRT), as members

of an approved program, or as general users. PRTs (groups of

researchers with related interests from one or more institu-

tions) construct and operate beamlines and have primary

responsibility for experiment endstation equipment. They are

entitled to a certain percentage of their beamline’s operating

time according to the resources contributed by the PRT.

Through a peer-reviewed proposal process, the remaining

beam time is granted to approved programs and general

users, who may provide their own endstation or negotiate

access to a privately owned endstation.

The ALS does not charge users for beam access if their

research is nonproprietary. Users performing proprietary

research are charged a fee based on full cost recovery for

ALS usage. All users are responsible for the day-to-day costs

of research (e.g., supplies, phone calls, technical support).

The nominal operating energy of the ALS storage ring is 

1.9 GeV, although it can run from 1.0 to 1.9 GeV, allowing

flexibility for user operations. At 1.9 GeV, the normal maxi-

mum operating current is 400 mA in multibunch operation. 

The spectral range of undulator and wiggler beamlines extends

from photon energies of roughly 5 eV to 21 keV. On super-

bend beamlines, the range is between 2.4 and 60 keV. Bend

magnets produce radiation from the infrared to about 20 keV.

The ALS is capable of accommodating approximately 50

beamlines and more than 100 endstations. The first user

beamlines began operation in October 1993, and there were

32 operating beamlines, with several more under construc-

tion, by the end of 2002.

FACTS AND FIGURES: USING THE ADVANCED LIGHT SOURCE

Insertion Device
Beamlines

Bend Magnet
Beamlines

Superbend
Beamlines

Operational Under Construction

May 2003

Beam
Test
Facility

U5

W
16

U5 U10

RF

Injec
tio

nEPU5

EPU5

U10

U8

Protein
Crystallography

Protein Crystallography

EUV Lithography Mask Inspection

IR Spectromicroscopy

Visible, IR, FTIR

LIGA

LIGA

Protein
Crystallography

Protein Crystallography

Femtosecond Phenomena

Polymer STXM

High Pressure

Molecular Environmental Science

Small-Molecule Crystallography

PEEM2, MicroXPS

 X-Ray MicrodiffractionSurface, Materials Science

Surface, Materials Science

Tomography

Chemical Dynamics

Coherent Optics/Scattering Experiments

Chemical, Materials Science

Correlated Materials, AMO

X-Ray Fluorescence Microprobe

MicroXAS

AMO, Materials Science

EUV Interferometry, Photoemission12.0.1

Coherent Soft X-Ray Science12.0.2

Calibration, Optics
Testing, Spectroscopy

X-Ray Microscopy

Magnetic Spectroscopy

Magnetic and Polymer
Nanostructures

Diagnostic Beamline

8.2.1

7.3.1

7.3.3

8.0.1

8.2.2

8.3.1

8.3.2

9.0.2

9.0.1

9.3.2

10.0.1

10.3.1

10.3.2

11.3.2

6.1.2

5.3.2

5.3.1

5.0.3

5.0.2

5.0.1

4.2.2

9.3.1

4.0.2

4.0.1

3.3.1

Commercial LIGA 3.2.1

3.3.2

1.4.4

12.3.1 12.2.2

1.4.3

1.4.2

7.0.1

11.0.2

6.3.2

6.3.1

11.3.1

3.1
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ALS BEAMLINES*

1.4.2

1.4.3

1.4.4

3.1

3.2.1

3.3.1

3.3.2

4.0.2

4.2.2

5.0.1

5.0.2

5.0.3

5.3.1

5.3.2

6.1.2

6.3.1

6.3.2

7.0.1

7.3.1.1

7.3.1.2

7.3.3

8.0.1

8.2.1

8.2.2

Bend

Bend

Bend

Bend

Bend

Bend

Bend

EPU5

Superbend

W16

W16

W16

Bend

Bend

Bend

Bend

Bend

U5

Bend

Bend

Bend

U5

Superbend

Superbend

0.002–3 eV 

(15–25,000 cm–1)

0.02–1 eV

(200–10,000 cm–1)

0.05–1 eV

(550–10,000 cm–1)

1–2 keV

3–12 keV

1–20 keV

1–20 keV

52–1900 eV

52–1900 eV

52–1900 eV

52–1900 eV

52–1900 eV

52–1900 eV

52–1900 eV

52–1900 eV

52–1900 eV

6–18 keV

12.4 keV

3.5–14 keV

12.4 keV

1.8–12 keV

250–700 eV

300–900 eV

500–2000 eV

50–1300 eV

100–800 eV

60–1200 eV

50–1200 eV

175–1500 eV

175–1500 eV

6–12 keV

65–1400 eV

65–1400 eV

5–17 keV

5–17 keV

Now

Now

2003

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

2003

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Interferometer

Interferometer

Interferometer

Mirror/filter

None

None

None

Variable-included-angle PGM

Variable-included-angle PGM

Variable-included-angle PGM

Variable-included-angle PGM

Variable-included-angle PGM

Variable-included-angle PGM

Variable-included-angle PGM

Variable-included-angle PGM

Variable-included-angle PGM

Double crystal

Curved crystal

Double crystal

Curved crystal

Double crystal

SGM

Zone-plate linear

VLS-PGM

VLS-PGM

SGM

SGM

SGM

SGM

SGM

White light, two or four crystal

SGM

SGM

Double crystal

Double crystal

Visible and infrared Fourier transform spectroscopy (FTIR)

Infrared spectromicroscopy

Infrared spectromicroscopy

Diagnostic beamline

Commercial deep-etch x-ray lithography (LIGA)

Deep-etch x-ray lithography (LIGA)

Deep-etch x-ray lithography (LIGA)

Magnetic spectroscopy

XMCD chamber

X-ray absorption chamber

Advanced photoelectron spectrometer/diffractometer

Gas-phase absorption cell

Spin spectrometer

MXCD cryo-chamber

L-edge chamber with superconducting spectrometer

XMCD chamber (6 T, 2 K)

Photoemission electron microscope

Multiple-wavelength anomalous diffraction (MAD) and monochromatic

protein crystallography

Monochromatic protein crystallography

Multiple-wavelength anomalous diffraction (MAD) and monochromatic

protein crystallography

Monochromatic protein crystallography

Femtosecond phenomena

Polymer scanning transmission x-ray microscopy

High-resolution zone-plate microscopy

Calibration and standards, EUV/soft x-ray optics testing, solid-state

chemistry

Calibration and standards; EUV optics testing; atomic, molecular, and

materials science

Surface and materials science, spectromicroscopy

Scanning photoemission microscope (SPEM)

UltraESCA

Soft x-ray fluorescence spectrometer (SXF)

Magnetic microscopy, spectromicroscopy

Surface and materials science, micro x-ray photoelectron spectroscopy

X-ray microdiffraction

Surface and materials science, imaging photoelectron spectroscopy,

soft x-ray fluorescence

Ellipsoidal-mirror electron energy analyzer (EMA)

Soft x-ray fluorescence spectrometer(SXF)

Multiple-wavelength anomalous diffraction (MAD) and monochromatic

protein crystallography

Multiple-wavelength anomalous diffraction (MAD) and monochromatic

protein crystallography

BEAMLINE SOURCE** AREAS OF RESEARCH/TECHNIQUES MONOCHROMATOR ENERGY RANGE OPERATIONAL 
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BEAMLINE SOURCE** AREAS OF RESEARCH/TECHNIQUES MONOCHROMATOR ENERGY RANGE OPERATIONAL 

8.3.1

8.3.2

9.0.1

9.0.2

9.3.1

9.3.2

10.0.1

10.3.1 

10.3.2 

11.0.2

11.3.1

11.3.2

12.0.1

12.2.2

12.3.1

BTF

Superbend

Superbend

U10

U10

Bend

Bend

U10

Bend

Bend

EPU5

Bend

Bend

U8

Superbend

Superbend

Linac

Multiple-wavelength anomalous diffraction (MAD) and monochromatic

protein crystallography

Tomography

Coherent optics/scattering experiments

Chemical reaction dynamics, photochemistry, high-resolution photoelec-

tron and photoionization spectroscopy, photoelectron and photoioniza-

tion imaging and spectroscopy

Crossed molecular beam

Molecular-beam photoelectron/photoion spectroscopy

Molecular-beam photoelectron/photoion imaging and spectroscopy

Flame chamber

Ablation chamber

Atomic, molecular, and materials science

Angle-resolved time-of-flight electron spectrometer

Ion time-of-flight spectrometer

Magnetic mass analyzer

Polarized-x-ray emission spectrometer

X-ray absorption cell

Chemical and materials science, circular dichroism, spin resolution

Advanced materials chamber (AMC)

Ambient pressure photoemission

Photoemission of highly correlated materials; high-resolution atomic,

molecular, and optical physics

High energy resolution spectrometer (HERS)

Electron spin polarization (ESP)

High-resolution atomic and molecular electron spectrometer (HiRAMES)

Ion–photon beamline (IPB)

X-ray fluorescence microprobe

Environmental and materials science, micro x-ray absorption spectroscopy

Molecular environmental science

Wet spectroscopy

High-pressure photoemission spectroscopy

Scanning transmission x-ray microscope (STXM)

Small-molecule crystallography

Inspection of EUV lithography masks

EUV optics testing and interferometry, angle- and spin-resolved 

photoemission

EUV interferometer (two available)

Angle- and spin-resolved photoemission

California High-Pressure Science Observatory (CALIPSO)

Nanoscience/materials chemistry

Solid-state physics/geoscience

Multiple-wavelength anomalous diffraction (MAD) protein crystallography

and small-angle x-ray scattering (SAXS)

Beam Test Facility

Double crystal

Double crystal

None or off-axis zone plate

White light, Off-plane Eagle

White light, Off-plane Eagle

White light, Off-plane Eagle

White light, Off-plane Eagle

White light, Off-plane Eagle

Double crystal

Double crystal

Double crystal

Double crystal

Double crystal

SGM

SGM

SGM

SGM

SGM

SGM

White light, multilayer mirrors

White light, two crystal

Variable-included-angle PGM

Variable-included-angle PGM

Variable-included-angle PGM

Channel-cut Si(111)

VLS-PGM

VLS-PGM

VLS-PGM

Double crystal

Double crystal

Double crystal and double 

multilayer

None

2.4–15 keV

3–60 keV

10–800 eV

5–30 eV

5–30 eV

5–30 eV

5–30 eV

5–30 eV

2.2–6.0 keV

2.2–6.0 keV

2.2–6.0 keV

2.2–6.0 keV

2.2–6.0 keV

30–1400 eV

30–1400 eV

17–340 eV

17–340 eV

17–340 eV

17–340 eV

3–20 keV

2.5–17 keV

75–2000 eV

75–2000 eV

180–1000 eV

6–17 keV

50–1000 eV

60–320 eV

20–320 eV

6–40 keV

6–40 keV

6–18 keV

50-MeV electrons

Now

2003

Now

Now

Now

Now

Now

Now

Now

Now

Now

2003

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

Now

2003

2003

2003

2003

Now

*All listed beamlines except for Beamlines 1.4.2, 1.4.3, and 1.4.4 are capable of operating simultaneously. The information in this table is valid as of May 2003. The most current

information on ALS beamlines is available on the Web at http://www-als.lbl.gov/als/als_users_bl/bl_table.html.

**Bend = bend magnet; EPU5 = 5-cm-period elliptical polarization undulator; W16 = 16-cm-period wiggler; Ux = x-cm-period undulator; Superbend = superconducting bend magnet
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ALS INSERTION DEVICE PARAMETERS

ALS STORAGE RING PARAMETERS

DEVICE

U5 Undulator

U5 Undulator

U8 Undulator

U10 Undulator

U10 Undulator

EPU5 Elliptical

Polarization

Undulator

W16 Wiggler

PARAMETER

Beam particle

Beam energy

Injection energy

Beam current

multibunch mode

two-bunch mode

Filling pattern (multibunch mode)

Bunch spacing

multibunch mode

two-bunch mode

Circumference

Number of straight sections

Current number of insertion devices

Radio frequency

Beam size in straight sections, rms

(multibunch mode)

VALUE

electron

1.0–1.9 GeV

1.0–1.5 GeV

400 mA

2 × 30 mA

276 to 320 bunches

possibility of 10-mA “camshaft” bunch 

in filling gap

2 ns

328 ns

196.8 m

12

7

500 MHz

310 microns horiz. × 23 microns vert. 

at 1.9 GeV

PARAMETER

Beam lifetime

multibunch mode*

two-bunch mode

Horizontal emittance

Vertical emittance†

Energy spread (∆E/E, rms)

VALUE AT 1.5 GEV

~3.5 hours at 400 mA

not used

4.2 nm-rad

0.2 nm-rad 

8 × 10–4

VALUE AT 1.9 GEV

~8.0 hours at 400 mA

~35 min. at 40 mA

6.75 nm-rad

0.15 nm-rad

1 × 10–3

*In multibunch mode, the storage ring is typically filled every eight hours or as 

requested by our users.

†Vertical emittance is deliberately increased to improve beam lifetime.

BEAMLINE

8.0

7.0

12.0

9.0

10.0

4.0

5.0

STATUS

Operational

Operational

Operational

Operational

Operational

Operational

Operational

ENERGY RANGE
(AT 1.5 GEV)

130–1900 eV

50–1900 eV

18–1200 eV

5–950 eV

8–950 eV

60–1000 eV*

5–13 keV

ENERGY RANGE
(AT 1.9 GEV)

210–3000 eV

80–3000 eV

30–1900 eV

8–1500 eV

12–1500 eV

100–1500 eV*

5–21 keV

PERIOD
LENGTH

5.0 cm

5.0 cm

8.0 cm

10.0 cm

10.0 cm

5.0 cm

16.0 cm

NUMBER OF
PERIODS

89

89

55

43

43

37

19

OPERATING 
GAP RANGE

1.4–4.5 cm

1.4–4.5 cm

2.5–8.3 cm

2.4–11.6 cm

2.4–11.6 cm

1.45–5.5 cm

1.4–18.0 cm

PEAK EFFECTIVE
FIELD RANGE

0.46–0.10 T

0.85–0.10 T

0.80–0.07 T

0.98–0.05 T

0.80–0.05 T

0.79–0.10 T (vertical field)

0.54–0.10 T (horizontal field)

2.1–0.03 T

* Eliliptical polarization mode
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