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Abstract

Random Perturbatlons of SRB Measures and Numencal Studles of
Chaotlc Dynamics

by
Kevin Kwei-Yu Lin

Doctor of Philosophy in Mathematics
| University of California, Berkeley

: vlﬁrpfe‘e§§olrzAl_vexandre J. Chorin, Chair

' Chaptic behavior occurs naturally in a variety of physical situations governed by determin-
| istic equations of motion. Deterministic chaos is characterized by the .exponential separa-
tion of nearby initial conditions. Thus chaotic systems are intrinsically unstable, and this
" intrinsic mstablhty makes the equations of motion computationally intractable over long
times. In contrast, the frequenaes with which a solution visits different states is generally
stable under small perturbations of the solution and of the equations of mot1on, so the
corresponding statistical averages can be extracted from long time numerical simulations.
, - This thesis proposes a number of simple algorithms which compute statistical
aV,erage_s of observables by adding noise to deterministic chaofic systems. The results of
- this study. show that the addition of noise can be beneficial in numierical studies of the
 statistics of c‘ﬁéotic_ systems: in addition to covering up numerical artifacts which arise
from round-off errc;rs, a moderate amount of noise can help accelerate the Convergenee of
computed time everages of observable quantities. A simple scaling argumeﬁt is used to
derive a rough error estimate and the unique ergodicity of the perturbed process is proved.
. The effect of noise on the statistical properties of the Kuramoto-Sivashinsky equation, in
| partieular the Lyapunov exponents and the statistical dependence of Fourier modes, is aiso

 studied numerically.
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Chapter 1
Introduction

Chaotlc behavior occurs naturally in a var1ety of physmal situations governed by
determ1mst1c equahons of mohon ranging from the dynam1cs of molecules [Gas98] to the
motion of planets [SW92]. Chaos in determlmstlc systems is characterlzed by the expo—
nential separatlon of solutioris with- nearby 1mt1al cond1t1ons Thus chaotlc systems are
mtrmsmally unstable, and this. mtrms1c mstablllty makes the equat1ons of motlon com—
putationally intractable over moderately long t1me scales because of the truncatlon and
round-off errors inhererit in floatmg pomt calculat1ons In contrast the frequenc1es w1th
which a solution v1s1ts different states is generally stable under small perturbahons of the :
solution and of the equat10ns of motion, so these frequenc1es and the statlstmal averages
of observables can be extracted from long time. numerlcal 51mulat10ns _

Tlus thesis proposes a number of s1mple algorlthms whlch compute stanstlcal
averages of observables by 51mulat1ng random perturbatlons of determ1n1st1c chaotic. .5ys- |
tems. The results of this study show that the addltlon of noise can be benef1c1al in nu-
merlcal stiidies of the statlstlcs of chaotlc systems in addrtlon to covermg up numerlcal

artlfacts which arise from round—off errors, a mod r ate amount of n01se can help accelerate

the convergence of computed time averages of observable quant1t1es
This chapter prov1des an informal overv1ew of the maln 1deas in thls the51s Pre- .

cise deﬁmtlons can be found in Chapter 2. Chapter 3 mtroduces the random perturbatlon :

algorlthm for dlss1pat1ve chaotic systems, prov1d1ng a dlscussmn (based on expl1c1t nu-

~merical examples) of algorithmic issues. Chapter 4 d1scusses error estlmates, and Chapter -

5 applles these techniques to an mfmlte d1mens1onal system the Kuramoto-Slvasthsky'

equatron



1.1 Examples of random perturbations
Let us begin by considering the map

20 (mod 27)
F(07 r,8) = | e cos(d) + ear - (1.1)

€15in(d) + e2s

and its iterates on the domain X = {(6,7,5) : 0 < 6 < 27,7% + 5% < 1}. The map F is usu-
ally called the “solenoid map ’ for a reason which will ‘become clear. It is easy to check
that when 0 # ¢/, the n-fold iterates F (9, r, s) and F @1, ¢) will separate exponentially
until the distance between them becomes ~ 1 regardless of the values of r,r,s, and s'.
On the other hand, if § = 6’ then F™{(0,7,s) and F”(G’ ', s') will converge exponentlally,
again regardless ofr,r',s,and §'. Thus, ‘while most pa1rs of initial condltlons will separate
exponentially fast, some special 1n1t1a1 cond1tlons will 1nstead converge exponentrally Itis -
natural to define the stable ‘manifold of (6,7, 5) to be the set {(¢',7',s") : 0" =8} and to call’f
the directions transverse to the stable manifolds the unstable directions. (See Chapter 2for
precise defmmons ) ' ‘ '

It is not difficult to prove that this map has an attractor ”: its domain X contains
a compact subset K to which all trajectories converge asn — oo. Furthermore itis easy to
show that this attractor has dimension > 1. However a naive numerlcal 1mplementatron
of the solenoid map yields Figure 1.1(a). A closer exar_mnatron of the resulting numeri-
cal data shows. that all numerically generated iterates of the solenoid map converge: 'Ito a
unique fixed point though the system has no stable fixed pomts This problem is easy to-
understand: The first coordinate of the solenoid map 51mply 1terates the one- dunensronal:.
map 6 — 26 (mod 27). Clearly, in finite prec1s1on arithmetic, 1terat1ng this map w1ll even-
tually produce a sequence of zeros _'

There is an easy solution to tlus problem At every step, add a small amount
of noise to the angle 6. The resulting picture is shown in Figure 1.1(b). The addition of a
small amount of noise helps cover up the fact that digital computers can only manipulate a
finite amount of information. Moreover, this simple example points out another important
property of chaotic systems: noise added in thedlrectlon of the stable manifold is simply
damped out, while noise injected in the unstable d1rectrons is fed back into the system,

making more efficient use of randomness. It is therefore not necessary to add noise in
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Figure 1.1: Two ways of computing the solenoid attractor.



Figure 1.2: The Lorenz attractor.

all directions. This observation becomes important when we consider dynamical systems
defined by partial differential equations, as the addition of noise may impose constraints
on the efficiency of numerical integrators.

A second reason for adding noise to a dynamical system can be illustrated by the

Lorenz equations:

.’tl = 0 (.’EQ — CEl)
Ty = T2y —To— 1Tz - (1.2)
T3 = —bxs+ x172

Let us assume, for the moment, that o = 10, r = 28, and b = %. It has long been observed
[Lor63] that with these parameters, almost every initial condition generates trajectories
converging to the “strange attractor” in Figure 1.2). Recent work of Tucker [Tuc99] has
shown decisively that the Lorenz attractor really exists and is not a numerical artifact.

As will be explained in Chapter 2, the existence of a robust compact attractor
corresponds to the existence of a well-defined statistical steady state (invariant probability
measures). To extract statistical information from the equations of motion, it is natural
to perform long time numerical simulations and compute time averages of the results.

The decay rate of autocovariance functions plays a fundamental role in determining the
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Figure 1.3: The autocovariance functions C1 1 (t), C22(t), and C53(t) for the Lorenz system
(1.2). Two of the curves (C1,1 and Cs ) practically coincide and cannot be distinguished in
this plot. The third curve C3 3 decays much more slowly than the other two.

accuracy of this procedure. Roughly speaking, a faster decay rate means that one can
obtain more “effectively independent” samples per unit of computation time. (See §2.5.2.)

The autocovariance functions of the coordinate maps of the Lorenz system are
shown in Figure 1.3. One can see that correlations decay much more slowly along one
axis than along the others. This is because vertical motions along the attractor occur on
a fundamentally slower time scale than motion in the other two directions. This slower
rate of decay limits the efficiency of time average computations. In high- and infinite-
dimensional systems, this problem is expected to be worse.

Suppose now we can estimate the unstable directions for the Lorenz flow, and
periodically kick the system in such directions with a uniformly-distributed noise of am-
plitude €. The corresponding average values of the x3 coordinate is shown in Figure 1.4.
Clearly, the expectation value of the third coordinate 3 in the perturbed system converges
smoothly to the expectation value in the unperturbed system as ¢ — 0. More importantly,

the correlation decay times are affected by the perturbations as well, as shown in Figures
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Figure 1.4: The expectation value [ z3 du.(z) as a function of the noise amplitude e.
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Figure 1.5: Autocovariance function Cs3(t) for the Lorenz flow, for e ranging from 0
(slowest-decaying curve) to 4.3 (fastest-decaying curve).
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Figure 1.6: The spectral power densities of the covariance functions shown in Figure 1.5.
The spectral densities become more smooth as the noise amplitude € increases.
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Figure 1.7: The exponential decay times for each component of the randomly-perturbed
Lorenz flow as functions of the noise amplitude e.



1.5 and 1.7. These results suggest that one can decrease the correlation times of a chaotic
system with the introduction of noise, while incurring only small and controllable errors

in the desired expectation values.

1.2 Why chaotic systems?

The idea of using random perturbations to reduce correlation times is very natu-
ral and is apparently applicable to a wide range of deterministic and stochastic dynamical
systems and their invariant measures. Nevertheless, the effectiveness of random perturba-
tions in numerical simulations depends strongly on the dynamical system and the invari-
ant measure under study.

For example, the Langevin equation

dz(t) = —az(t) + edw(t), (1.3)
2(0) € N(0, €)

has a unique invariant measure: it is the standard distribution with variance e. This It6
stochastic differential equation defines a stationary Markov process whose autocorrelation
function is

C(t) =e-e (1.4)
This clearly has a decay rate independent of the noise amplitude .

Remark 1.1. If we think of the Langevin equation as an effective equation of motion for
finite-dimensional system coupled to an infinite-dimensional heat bath, then the decay
rate a and the noise size ¢ are related through the Einstein-Smoluchowski relations, and an

increase in noise is accompanied by an increase in decay rate.

1.3 Motivation and related work

As stated above, one motivation for computing statistical properties of chaotic
dynamical systems is their sensitive dependence on initial conditions: only statistical prop-
erties are effectively computable. Familiar geometric structures associated with chaotic
dynamics, such as strange attractors and invariant manifolds, are naturally related to the

statistical description of dynamical systems as well.



A second; longer-range: motivation:i$: that-many physical: problems:involve an’
-extremely large number: of degrees.of freedom; Only a’small 'subset =f6f”;:whiehafais of real
scientific interest. However, the ”uninteresting”.:ed‘egreesr’o‘f; freedom-may. involve such -
small time and length écales as to make direct numerical simulations difficult. Thus,
there is a great need for dimension-reduction: techniques which can. predlct the sdynam-
ics of a system using only partial knowledge of its state. A simple approach is to com-
pute the conditional expectation ‘of the future behavior of a' systém using known initial
data: 'this is the minimum mé‘ah—Sc"{ua’féérrOr éstimatoriand ;i:’s"-“"oﬁti‘r’"rfal» in‘thé Sense of

* least squares: This problem of optimal prediction-ifivelves the transmnt ‘statigtital behav-

ior of physical systems and is' ‘thus closely rélated-to fiohéquilibrium statistical mechamcs

- [CHKO2, Cho02]. It presents a far more challengmg set of mathenatical and comp_utatlonal
problems than those outlined in the preceding ‘paragraph; and 4 deeper understanding
of statistical steady states is necessary for solvmg the problem of optimal predlctlon in
dissipative systems. This is because such statlstlcs supply the prior mformahon needed
for computing conditional expectatlons_, and because the effectiveness of ex1stmg optimal

. prediction algorithm§ depends on the stati_stié;al structure of the dynamical system under

. study.
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Chapter 2

Review of Hyperbolichnamic's and

ThlS chapter reviews some background materlal needed in the rest of the thesis.
.Wlth the exceptlon of §2.5. 2 most of this materlal con51sts of, standard results and defini-
tions from dynamlcal systems theory, with a spec1al focus on the statlstlcal steady states
of hyperbohc systems. For more. balanced introductions to this sub]ect see Eckmann and
Ruelle [ER85] and Young [You95] See also the text by Katok and Hasselblatt [KH95] for a
thorough development of the geometnc theory of hyperbohc systems and Guckenheimer
and Holmes [GH83] for apphcahons of geometric methods to concrete examples Section
2.5. 2, which prov1des a qulck mtroduc’non to Markov chain Monte Carlo methods, follows
| Sokal [Sok97] closely.

The following discussion assumes sorfie familiarity with the basic concepts of
differential geometry [Spi79] and measureé theory [Fol84], in addition to some knowledge
of elementary probability theory. |

Some notes on notation:

1 Followmg standard practlce in differential geometry, tangent vectors are identified
with differential operators Thus, a umt vector tangent to a: submamfold of R” in the
d1rect10n of z1 is written as az ' " '

2. Let X .and Y be measure spaces, let 1 be a measure on X, and let F': X — Y bea
measurable map. Then the push-forward F,u of 4 by F is the measure on Y given

by A~ p(F~1(A)) for all measurable sets A C Y.
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3. We will frequently need to consider the n-fold composition of a map F with itself.
This is denoted by F™. ' v

2.1 Basic theory of dynamical systems

' 2.1.1 Flows and maps

Let X be a C*™ manifold and f a smooth vector ﬁeld on X Consider the uutlal
P value problem ‘ BRI _ !
i(t) = f(w(i)),

21).
z(0) = 2o G X @1

- Under surtable condrtlons for example when Xis compact and has no boundary, Equatron
(2.1) has a unique solution for all time ¢ > 0. Equation (2.1) thus defines a map ¢t (a:o) via
¢{ (zo) = =(t). (The superscnpt fin ¢! will be dropped whenever no confusron is llkely to
arrse) The map ¢>t (aco) isa smooth functlon of (£, %6) and satlsfles ¢0 (a:o) = Zo. Replacmg.
f w1th =f shoWs that ¢z i$ definéd for all t € R, that qSt is 1nvert1ble w1th smooth mverse,

' and that (qu ) 1z ¢f "Hus famrly of dlffeomorp}usms forms a one-parameter group

Dynam1ca1 systems theory focuses on geometnc and topolog1ca1 str ctures in-

duced by a ﬂow o on 1ts phase space X rather than oh'the analytlcal proper' ‘ ‘s: of 1nd1— '

" vidual solu’aons As an example, consider the Lorenz system (1 2) from the Introductlon

& = a(zg-a)
Ly = TT1— Ty TIT3 -
T3 = —bxz+ T172

For suitable parameter values like ¢ = 10, 7 = 28;and b = & 3 ~almost every iruﬁal condi-
tion produces a plcture like Flgure 1.2. Tra]ectones rapldly approach a butterﬂy-shaped
compact set known as the Lorenz attractor denoted here by KLO,W The set Kipepand a
small nerghborhood around it thus contain all. the 1nformat10n relevant to the long-tlme
behavior of the Lorenz system. On the other hand Frgure 2.1 demonstrates that nearby
“solutions of the Lorénz systeém tend to diverge exponentlally fastin t1me (the verhcal scale
shows the natural logarithm' of the distance). Thus;, individual tra)ectorles of the Lorenz

~ system are unpredictable over moderately long time infervals, even though the existence
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Fignre 2.1: Ekponenﬁel separétfon of'neatb}{ tr‘ajectoriesj:intnge Lorenz ﬂow

:of the attractor and an associated invariant 'prob:i'bilitysmeésu‘r‘e‘-‘(«invari"antfmeasures are
defined later in this chapter)‘constfaints trajectories to-visit regions of phase sp‘éce with
definite frequencies, facilitating the definition and computation of statistical properties of
trajectories over long time intervals. -

. Let P(2) denote the set

o

P(Z) {(z1, $2, 103) Ey =" Z}
» . ,
If the constant zis chosen approprlately, P (z) and Kiorens, will mtersect inaway Wh.lCh guar-

antees that almost every trajectory of the Lorenz flow mtersects_‘lf_(z) mf;nttely many times
(see Figure 2.2(a)). Poincaré realized that in such a situation, one catn reduce the dimension
of the dynamical system by recording only the intersections of individual trajectories with
the plane P(z). This defines a return map (or Pomcaré map) Rf 2 : P(z) = P(z) and a
return time function Tf 2 P(z) [0, +00], so that S - '

Tf.(z) = in_f{t >0:¢i(x) € P(z)},
Rf;z(m) = ¢Tf,z(z)(x)'
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The result is Figure 2.2(b). The two segments in the center represent downward crossmgs
of the section; the segments on the left and the right side of the figure represent upward
crossings. '

This simple and powerful idea is called the Poincaré section '[GH83, Ott00, SW01].
It is a valuable tool for understanding_the structure of invariant sets. Poincaré sections are

| especially useful when the dimension of the phase space is relatively small (~ 3), althohgh
sometimes sections can be constructed for low-dimensional invariant sets embedded in
high-dimensional phase spaces [CCP97].

An additional benefit of Poincaré sectlons is that they reduce problems 1nvolv1ng'
flows to problems mvolvmg maps, and maps are sometimes easier to analyze than flows.
'Furthermore, some propertles of flows, such as the existence of natural 1nvar1ant measures |
and ergod1c1ty (these concepts are developed below), can be deduced from the Pomcareiv .
map. -Finally, it-is poss1ble to start with'a map F' : X — X and construct a manifold ¥ -
and a vector field f onY such that X can be 1dent1f1ed with a subset of Y and F arises
as the Poincaré map of f. This constructlon is called a suspensron It is not needed here;
interested readers can consult [KH95]. _

_ Another way to obtain maps from ﬂows is by samplmg a flow at per1od1c mter- S

.' vals That is, simply fix a constant T' > 0 and set F = 7. Maps define. discrete-time B

-dynamlcal systems in the same way vector fields define continuous- tlme dynarmcal sys— |
: tems ' o '

S =Fla) =

Let us denote the n—fold composmon of F w1th 1tself by F", so that Ty = F”(xo) Ob-, o

serve that random perturbat1ons of the tlme-T map of a flow correspond to per1od1callyr '
”krckmg the flow by a ‘random dlsplacement A large’ class of the random perturbat1ons -

~studied here fall into ‘this category For s1mpl1c1ty of nota’non, almost all of the remamder

of this chapter concerns ‘maps.

2.1 2 Invarlant measures

Letubea Borel probablhty measure on the mamfold X and suppose we are g1ven '
avector field f on X. The measure y is 1nvar1ant under ¢t if p,(qbt 1 (A)) (A) for all Borel -
sets A C X. Equlvalently, one can say that the flow . & preserves the measure /. If instead
of a flow, we have a map F : X — X, then p is said to be F-invariant if u(F~(A)) = u(A)
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for all Borel sets A. It is-‘easy to check that the support of an invariant measure is an

invariant set. The converse is not quite true: invariant sets do not always support invariant

probability measures. Compact invariant sets, however, do support invariant measures.

For example, suppose T is aPeriodic point of F with period N, so that_FN (zo) = xo.

Then the measure + Y2 7' 8, 1 invariant measure of F.'As a special case, every fixed

point of ' supports an invarian sure

Recall that the space of prob ;1ty measures wrth the total variation norm is iso-
metncally 1somorph1c to the space of bounded hnear functlonals on the space Cy(X) of
bounded continuous functxons with the sup norm. T}us fesult is the Riesz Representation

Theorem, sometimes also called the Rlesz-Markov Theorem [Fol84]. One consequerice of

the Riesz-Markov Theorem is thata measure pis 1nvar1ant under the flow ¢ if and only if

‘ / g°-¢t'-'ﬂu = / g dp | \ (2.2)

for all bounded continuous functions g and ¢ € R. In later sectlons we will discuss invari-

ant measures of Markov chains, which can be deﬁned in a similar way: a measure p, is
invariant for the Markov chain (z) if E [ [ 9(xn) d,u] [ g du for all bounded measurable
functions g and all'n > 0. :

Pomcaré sec’aons also have a probablhstlc mterpretatlon they prov1de visualiza-

tions of the support of mvanant measures condltroned by a given constraint. For example,

the picture in Flgure 2.2(b) shows the support of an invariant measure of the Lorenz flow

conditioned on z3 = 2. As explamed in the Introdiiction, part of the motivation for this .

work is a desire fo understand the apphcablhty of ophmal predlctlon methods to highly
nonlinear PDEs. Thus condrtlonal probablhty measures, and by extension Poincaré sec-
tions, will be of intrinsic interest in later dls_cussxo‘r\s of the Kuramoto-Sivashinsky equa-

tion. ‘ ) S

2.2 Hyperbolic dynamics

A common (though not universally accepted) deﬁmtlon of chaos is that almost

- all tra]ectorles with nearby initial conditions diverge exponentrally fast as t — oo. The

Lorenz syss_ter_n:rs( chaotic by.this definition, as was shown by the results in Figure 2.1.
However, despite the apparent simplicity of the Lorenz equations, it is very difficult to

prove rigorous results concerning the properties of invariant measures and invariant sets
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-of the Lorenz flow. Forthis reason, a simpler class of deterministic chaotic systems called

: hype’rbolic ‘dynamical“system_s‘has come to occupy acentral-place in mathematical studies

- of: determlmstlc chaos.

The simplest example of a hyperbohc dynamlcal system is the dlffeomorphlsm
F: T? — T? defined by

2 ;
Fouloi,m2) = [ zﬁxQJ (mod 1) @3
- T1+ X9 ,

where the 2-torus ’JI‘2 is the unit square [0,1] x [0,1] with periodic boundary conditions.
The map Fcat is the Arnold cat map and the simplest example of a ”hyperbohc toral auto- -

morphism.” It has a very 51mple dynarmcal behav1or First, note that the ]acoblan matrix

of F,, is simply
L e s e 2‘1 . :
DEQ‘(il,fé) = l: : :I . - (24)
- Ithas "éig’env*a’lués : -
a3 12-‘/5 2.5)
andnormahzed 'eiger‘{\’/'é'cto.i"s“ o
to 1 . 2.6)
. 4 A= A2 | , : :
Foreach z € 'JI‘2 define
| W“(a:) {:l: eT?: ( —z) < et (mod 1)} ’ 2.7) .
and o o
={z' € T?: (2’ + z) x e (mod 1)}. (2.8)

As 0 < A~ < 1 < A%, if two nearby but distinct points «’ and z” belohg to the same set
W*(z), then d(F cat(x’ ), F2 (")) will.increase exponentlally until it is of order 1, while two
nearby points on W¥(z) will converge to each other exponentially fast. The set W*(z) is
naturally called the unstable manifold (and W*(z) the stable manifold) of F,,, at z. Note
that the sets W¥and W are invariant under F.,, in the sense that F (W¥(z)) C W¥(Fu(z))
and F(W*(%)) C Ws(Fcat(x)) this is why they are commonly referred to as invariant

manifolds or invariant “foliations.”
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. =X ‘a smooth

»More generally, let X' be'a compact smooth n-manifold and F::
» diffeomotphisi. Suppose K C X is invariant under F.The tnap F 1§ s4id: t6 be uni-
formly hyperbolic on K if there exist two contmuous famlhes of vector': spaces EY and E*

satlsfymg the following conditions:

1. The relations E* ¢ T, X and B C T..X hold for all eK

2 The tangent space T, X .of X at Tis equal to the sum of the vector spaces E} and E}
forallz € K.

3. For all; zE€ K DF(:U)E“ E}é(x) and DF( )Es

4 There ex1st constants c > 0 and O < A < 1 such that HDF "(m) E'u” < c)\" and
HDF"(x) Es|| <cNforallze Aandn > 0.

An F-invariant set K on which F is hyperbohc isa hyperbolic set for F. If there exists an
open nelghborhood U of K such that F maps U mto itself and for all zeU,d(FY(z),K) —»
0asn — oo, then K is an attractor. A hyperbolic attractor of F such;that‘ theset of periodic’
points of F are dense in K is an Axiom A attractor. In the special case when F is uniformly
hyperbolic on the set K = X, the map F is said to be an Ano§qv’drffeorn6rphism.

r

2.2.1 Stable manifold theorem

Suppose K is a hyp"e’rB’oli(: set for F. The global stable set W¥(z), for z € K, is
defined to be the set of peints 2’ such that lim sup,,_, _ d (F"(2), E™{(z")) = 0. Slmllarly, the
global stable set Ws(x) is the set of pomts z’ such that lim. supn_, oo A (F™(z), F" (m’ ) =0.

Theorem 2.1 (Local Stable Mamfolds) Let X be a compact manifold and F : X — XacCr '
diffeomorphism. Suppose K C X -is a closed invariant set-and F' is uniformly hyperbolzc on K.
Then there exists an € > 0such that the sets v _ ‘

Wez) = {2’ € X :limsup;_, 1o d(F"(z) “F"(m’)):‘ 0, d(F™(z), F*(2))) < e,n > 0} |

Wee) = {e' X Immup o dUE" (@), ) =0dF" (@), FP() < i <0}
: 29

are embedded C’-submamfolds of X. Furthermore W”(x) i dzﬁeomorphzc to Euclzdean space,
dim W”(x) = dim EZ, and W"(a:)‘} depends continuously on .. {.I'Ige‘_._dndloggysﬂresdlt',holds for
. stable mamj,‘qlds. If the metrgc. |||} on X is adapted so that there is a constant 0 < A <1 such that

IDF 1|, IDF ™ [gall <A, (210)
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then forall z € K,y € W¥(z),and z € W* (:c) the followmg holds:

SuPn>0 (A "d(F "(ﬂv) F "))
SUPy>g ()\ "d(F _"(x) P "(Z)))

< d(z,y)
< . (2.11)

d(z, z)
Note that we can always construct an_ adapted metric satisfying (2.10); 'see Shub
[Shu87] or Young [You95] for details.

Theorem 2.2. The global uns’tﬁlil_e and stable sets W“'(:i:) and W*(z) satisfy

W@y = UpnsoF+" (W (F-"()))

| 2.12)
We(z) - = UnxoF ™ (W¢ (F(2)))

That is, the-global unstable and stable sets defined earlier have the property that
they are locally submanifolds of X with the same regularity as F'. Thus, we may speak of

stable and unstable mamfolds 1nstead of mere sets

Theorem 2 3. If K isa hyperbolzc set for F, then the stable and unstable subspaces E° and E* are

Holder continuous vector bundles on K. .

_ Theoremn 2.4. Suppose K is a hyper’bolﬁ: set for F. Then for every sufficiently small ¢ > 0 there
exists 6 > 0 such that ‘d:(a:'y): <é iﬁ1plies‘ tha‘t Wu(z) intersects W3(y) transversely at exactly

- one poznt {denoted by [a: y]). The map (:1; y) [x yl is contznuous o its domam

These results 1mply that on every hyperbohc invariant set K, the stable and un-
stable manifolds form local coordinate systems (called the local product structure of K )-
‘These local coordinate systems are usually not smooth except in special cases — they are
at best Holder cotitinuous in general ' . '

The structuré of hyperbohc attractors is intimately connected with the geometry
of stable and unstable manifolds: a hyperbolic attractor K is thie union of the unstable
mamfolds W (z) for T € K and the union of the stable manifolds W#(z) forms a set
of positivé Riemann measure. “For prec1se statemerits and proofs, see Shub. [Shu87] and
Young [You95] In any case, “the Holder continuity ‘of the local product structure is the best
one can expect in general; for Ano's,oyvmapshm two dimensions, one can prove that the
local product structure is as smooth as F. The Holder continuity result means that while
stable and unstable manifolds are locally as smooth as the map F itself, they do not fit

together in a very regular way.



‘Figure 2.3: The construction of holonomy maps.

For later analysis, a different formulatioh of the precedirtg result is needed. :'Letr
© Dy and Djbé two k-diniensional discs'embedded in X hear a point pin’d Hyiji‘ifbolic set
K. Suppose they are embedded insucha way that they both mtersect thé stablé manifold v
Ws(p) transversely, and that k = dim X — dim W*(p). Then the stable. mamfold defmes

. amap ! 2 D1 — D called the holonomy map, as ﬂlustrated m Flgure 2.3. The Holder

contlmuty of the stable subspace E? is equivalent to the statement that the’ holonomy map
& is Holder continuous. A stronger result is true: recall that if v is a measure on Y, then

_ B ‘<I>* 1 is absolutely continiious- w1th respect to v if there exists a funcnon he L1 (1/) such that
C (L) (B) = fEth .’ v '

.Theorem 2. 5 Let D1 and D, be embedded dzscs tmnsverse to the stable manzfolds, and let the

. _}_holonomy map P D1 —.D be deﬁned as above. Then it is absolutely continuous in the sense

e that zf m; denotes the zntrznszc volume measure of the embedded dzsc Dy, then the measure P.mqis

_absolutely contmuous with respect to the measure ma. Furthermore, the Radon-Nikodym derivative-

, bof <I> +My wlth respect to mg satzsﬁes the znequalzty |d‘1’—*ml 1] <e¢ < 1for some constant ¢

| _ .dependzng only on the map F and the distance (in the ct metric) between the discs D1 and Ds.

. See _Bar'reir‘a and Pesin [’BPOZ] for moré géneral versions of this resuit.
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 Example 2.6. Consider the solenoid map from the Introduction:.

260 (mod 27r)'
F(0,r;8) = | eycos(@) +ear |, - . (2.13)

- €1.5in(0) + €25 -

where 0 < 6 < 27, 72 + 5% < 1, and 61,62 are constants such that 0 < 62 < e < 1/2.
Differentiation yields ' Lo : co

| 2 0 0 |
DF(6,r,5)=| ~asin(6) e 0 |, o (2.14)

,elcos(O) o0 62 '

SO that the. subspaces Es of the tangent space T, X spanned by and .are invariant
in.the sense that DF(2)E; = Ef,y and DF is uniformly contracting when; restricted to
Ej. Similarly, DF is expanding on the.subspaces. E};, which aretransverse to Ej (see
[KH95} or [Shu87] for details). Now, the discs W*(z) = {2’ : 8(z) = 6(z')} (8 denotes the
angle coordinate map) are clearly-invariant in the_ sense that F(W$(z)) ¢ W*(F(z)) and
the contraction property-above implies;that.d(F™(z), F*(z')) — .0 as n.— 400 whenever
z € X and 2’ € W*(z). The discs W*(z) thus form the stable mamfolds of F and the

subspaces Es the assoc1ated stable subspaces

"2.2.‘2 Other models of dyna“mical'systems '

Before continuing, note that not every hyperbolic dynamical system arises as a
diffeomorphism F on a compact manifold X there aré many natiiral examples of dynam-

ical systems which do not fall ifito this category These include:’

1. Con tinuous- tzme dynamical systems: As explamed before, ﬂows arise naturally in phys-
ical problems. The definition of hyperbolicity given above can be applied to flows.
However, in studying ergodlc propertles a flow {qSt te R} ona compact manifold
X, it suffices to study the maps at discrete intervals’ { nT :n € Z} for some fixed
T > 0. In particular, if p is an invariant, probability measure of the continuous-time
system ¢, t. € R, then it is also an invariant measure of the discrete-time system
{#%.,k € Z}, and if p is ergodic with respect to the flow, then it is also ergodic with

respect to the discrete-time dynamics. Furthermore, if the flow has an SRB measure
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(SRB measures aie défitied below); then so does its discrete-time’ vVersion, and the

SRB measures coincide.

2. Non-invertible maps on. manifolds with bouridary: Many mathematical and physical ex-
amples of dynamical- systémis are nhtuially described on domains with boundaries
and defined by maps, which are m]ectlve but not. sur]ectlve Most of the definitions
g1ven here will work with little modlﬁcatlon in this setting. The soleno1d map is a

good example of a non-invertible map on a manifold with boundary

3. Flows defined by 'vector fields on ]R"' The Lorenz flow from the introduction is an exam-
pleof a flow with part1al hyperbohc behaV1or Such physically realistic examples are
generally defined by ordmary differential equations on Euclidean n-space, which i is

' ‘uribotinded and hence.non-compact. Thé interesting’ motlon, However, often takes
pla'ce ot and near a cotpact attractor K. Orie can often find a bounded open neigh-
borhiood U-of K such thatU-is mappéd-into itself by the flow (i.e: the defining vector

. field point inward at every point'of dU) aiid every poirit-of U generates & trajectory
which converges to K 'éxpéﬁentially'fa"st“‘ The flow map ‘¢ then defines aninjective |

) (but not sur]ectlve') mappmg of the closure U of U init6 itself.

4, Systems wlth smgularztzes Dlscrete tlme systems modeled by dlffeomorplusms F or
injective maps with nonsmgular ]acoblans DF(x) are the sunplest to analyze. This
condition can fail even in the simplest examples, such as the quadratic map ¢ —

: 43:(1 - 3:) on the unit mterval [0 1]

Wh1le all. these other classes of dynamcal systems are 1mportant a complete survey is
beyond the scope of the current work. Instead, the, focus here is on the sunplest casg, to ex-
plam the relevant theory and prov1de a language for descrlblng the structure of hyperbolic

- tsystems and thelr mvarlant médsiires.

“Sis Ayupand pgeniel i

' The preceding sectiétis focus on the geometric properties of dynamical systems.
This séction focuses on the metriéal 'asﬁects of dynamics, ='in'par'tic‘:ular'cirt‘ the construction
“of Lyapunov exponents, which measiire the ratés at which a dynamlcal system expands

and contracts phase space volume. -
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More precisely, let - € X be any point andv:€: T;X: a nonzero: tangeﬁt vector.

A, v) = hm —log||D(F")(a:) ol @)

For example, consider the.cat map F in Equation (2. 3) its ]acoblan DF is constant, so the
- .Lyapunov exponents are simply the elgenvalues A

More generally, Oseledec’s theorem [You95] guarantees that for every invariant

- .. measure u of F, the limit above exists for u-almost every z and v. The quantity A(z, v) mea-

sures the asymptotic eXponentia] rate of separation of two initial points near z, separated
infinitesimally in the direction given by v. Clearly, \(z, av) = A(z,v) for every nonzero real
number ¢ — the Lyapunov exponent depends only on the subspace from which v is taken.
Oseledec’s theorem further states that for each z, there exists an increasing sequence of
it vector spa'ees E*(z) and functions Aj(z), ¢ = 1, ...,n, such’that

| L BRc.cmwonk
and
T 1nf{/\(x v) : veE’(x)}—)\ (a:)
One can thus speak of the Lyapunov spectrum {/\1 (z):i=1,. .n} ofa map F with respect -
+ to'the invariant'measure . ' _

The quantity j¥(z) = log [|DF(z) [pu(z)ll is the local exparision rate of F at z. It

has the property that v

N-1 ,
tim. -le S FE) =M@ 2.16)
k=0 i ’

. for-almost: every z.

Lyapunov exponents are only defined for y-almost-every.z ‘€ -X..Thus, the Lya-
punov exponents of a dynarmcal system depend on both the map F and the mvanant
measure p. For convenience, their dependence on F and pis usually suppressed

It is easy to-see that the Lyapunov.exponents of uniformly: hyperbolicriaps are all
nonzero: However, in the setting of;.ﬂows-one___,must deal with invariant:manifolds, called
center manifolds, along:which the.flow is neither exponentially.expanding nor exponen-
tially contracting. That is, the flow has a zero Lyapunov exponent in directions tangent to
center manifolds. The reason-that center manifolds arise: naturally in:the setting of flows
is that every bounded solution ¢urve which does not coincide with the stable manifold of -

a fixed point must be a center manifold.
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234 ;E-n-tropy and ‘infoirnmtion’-theory P e

Intultlvely, the exponentlal separatlon of tra]ectones corresponds fo an exponen-
~ tial stretching of phase space volurne. This is: accompamed by a loss of information about -
“the uutlal condition’of a glven tra)ectory A} precise way to meastire this1oss of mforma’non
or generation of randomness is prov1ded by the: notlon of entropy from- 1nformat10n theory
[CT91;Sha48]. - ' c N

CLetQ = {wl, ,wN} be a finite set and let 1i'be a probablhty dxstnbutlon on .

The entropy of Iz is deﬁned by B o SR

H(p) = = Y p@dlogy(u@))-~ -~ @17)

Among other things, it is an estimate of the minimum number of random bits needed to
generate a “typical” element of (Q u) The functlon H (really a family of functions, one for

each N) has some remarkable properhes These propertles include:

. 1. The function H is symmetric in its arguments: permuting the entries of the probabll-
ity vector p does not change the value of H.

2. H(1,0, O,v...) = 0: the amount of information needed. to;simulaté the-absence of ran-

. dommness is 0.

3. H(0, u(wy), - ,u(wN)) = H(u(wl), . u(wN)) null events do not add to the random-

ness of a system.

4. H(u) < H(#%, ..., &), with equality if and only if p(w;) = & for all 7 this means that
- the uniform distribution'is thé most randoii:possible - - :

5. H is ndnn-e.gat;ive and contlnuous (for each ﬁxed N )
Furthetmore, Shannon proved that H is-the only’ functlon up toa posmve mult1p11c:at1ve
constant, which has theser iproperties. It-is ‘thus a natural’ measure of information. If Z :
2 — Risarandomivatiable, H(Z) can bé defmed by app]ymg the defisiition above to the
- :probablhty distribution of Z: _ ’
” £ Onesbasic property of entropyis that itis invariant under transformations. For

finite ‘sets; this. simply means that'if Z is a random variable'and is.a function, then
H (¢(Z)) <H (Z ), with equality if and only if ¢is injective on the range of Z. This has
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an amvu‘singv;i;mplication: let Zn be a uniform random variable with range {1, ..., N}, and
- let{(p1,p2,ps, -..) = (2,3, 5,...) denote the sequen_ee :of,pri,rne numbers: One can then define
random variables (F, Ez, E3, ...) implicitly through the prime factorization of the random
‘, integer.Zy: -

ZN p . pl2.

Since Zy < N, we must hav_é'_ ‘Ek' - 0 whenever k > %r(N ), the number of primes < n.

Thus_, by the c_onVexity _of the function z r—»__a: log,(z),

 logy(N) = H(ZN) H(Ey, ..., Ex(ny)
‘ V <H(E1)+ +H(E7r(N))

But Ek < Iog2(N ) w1th probablhty 1 so H (Ek) < log2(log2(N ))- Therefore
~logy(NV) < m(N) logy(logy(NN))
so that

5 2(1032(N)) ‘ o
/ThlS estlmate 1s certamly not sharp 1t is well known that 7r(N ) > > log2(N )

YA

. 7r(N) 5 lOglog2(N)

2.3.2 Kolmogorov-Sinai entropy

We now use concepts-developed in the previous section to-quantify the’amount

of randomness generated by a dynarmcal system. Let p be an F-invariant measure. A

p, partltlon is a collectlon = of measurable subsets of X such that © (X (Ugee€)) = 0

| and ,u(§ r‘l ¢ ) = O for all f 5’ €= such that 5 # ¢ leen two u-partltlons 1 and Ep,

the1r common refmement = v = is the partltlon {{1 ﬂ 52 5, € _,} Let F -1 (_) denote the
partltlon {F 1e) ¢ e E}. The entropy of a u-partmon Eis

H(u,u)—' D o a(®)logu®). | (218)

. e . E€E. R ¢

- Physically, we:can think of partitions as providing a .coarse-gratned description of the sys-
tem. Thus, each set £ € = specifies a coarse-grained state. The entropy H(u,E) then
measures the average ‘amount of information carried by-each coaise-grained state £ € =

when the system is in-the statistical steady state .
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Now consider H (,u, \/"_é Pk (”)) Thls measures the:amount of 1nformatxon'

"4, -carfied by ‘each length-n sequence (€oy&1, % ,§n SR coarse-gramed stites in'='when the

coa ke

~dent: Ruelle proved that

-system is-in the statistical steady state p. In chaotic systems, ‘this quantlty is expected to

grow linearly as n — +o0. Thus, one can measure the rate of entropy productlon by

7M3=lm-—<mVFk@O 3 1)

T 460
The Kolmogorov-Sinai entropy lalso called the ‘metrici entropy) of (F, p,) is then
hy =suphy(€). | (2:20)

The metric entropy and the Lyapunov exponents of a dynamlcal system are not 1ndepen—

h<2/#@ | @mf

holds for all invariant measures u of F, where g*(z) = max(g(z),0).

Again, the basic property of entropy is that it measures the intrinsic amount of -
1nformat10n in a random 51gnal For the Kolmogorov -Sinai entropy, thls means that h,
is invariant. ‘under bi- Llpschltz homeomorphrsms Ttis thus an example of a dynamlcal

invariant.

——

2.3.3 - Markov partitions and s‘ymbo'lic ‘dyni:imic’s:

It is possrble to choose u—parhtlons Wthh dramatlcally srmphfy the analysrs of

' umformly hyperbohc systems These mce partltlons are called Markov partrtlons Roughly

speaklng, a Markov partltlon has elements whose boundarres comc1de w1th stable or un-.

" stable mamfolds One basic use of Markov partltlons is to construct symbohc dynarmcs,

reducing many ques’nons in ergodlc theory to correspondlng questlons in the statlstlcal

> mechamcs of one-dimensional lattices'with rapidly decaying potentials. This approach

has certain limitations (Markov parhhons do not generally exist in nonuniformly hyper-

4 bohc;n-syst_ems)_andrr_s-._not necegsary in any -case.(one can develop:smooth ergodic theory

without symbolic dynamics), but.it:does provide a. useful conceptual link between hy-

perbolic dynamlcs and statistical mechanics. It:is presented here-in terms-of theicat map
exarn"pleintroduced earlier. Interested readers should see Bowen [Bow75] for the general

construction.
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Figure 2.4: A (generator for a) Markov partition of the cat map (2.3).

The basic idea of Markov par.ﬁfibns is illustrated in Fi'g"u'te' 2.4, where a Markov
partition fbf’thé cat mep (2.3) has been ’dfaWn 'Lét’ E = {¢&, '52’}' For each point p € T?
lets = (..., s_1, so, 31 , ...) be a bi-infinite symbohc sequence such that s; = 51 if & contains
Fk (p) Clearly, amblgultles atrise whenever p & 9¢; for some i, but such points form a set
of Lebesgue measure zero. Thus the map ®:psis well—defmed almost everywhe_re.
It is in fact inverfible, and its inverse is ‘given by &~ sy = ﬂk__”-oo _k(sk)’ The map &
identifies points in T2 with symbolic sequences in 'the space of bi-infinite sequences with
symbols taken from the set =; this space of bi-infinite symbohc sequences is denoted Z2.

Let o now denote the shift operator acting on symbohc sequences ZZ, so that
'» o(s)(k) = s(k + y, e
i.e: it shifts a symbolic sequence to the left. Then the following equation holds:
| FO‘I"I%@'—}‘.’."; | - (2.23)
Heuristically, the map & allows one to identify F-invariant measures u on T2 \&ith shift-
invariant measures on the sequence space ZZ. If we equip E with-the discrete topolog'y.

and. associate with the sequence space =% the corresponding product topology, then =2

is a compact metrizable space and the map ®~! is a continuous mapping of Z% onto X.
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Georn'étri‘c structures a‘\ssociated' with the action of F on X have natural counterpa'rts as-
soc1ated with the actlon of the shlft map o acting on the sequence space Z%.In partlcular

2

given a. sequence s, the set _
WrE {5 s(k) = J (k) for allk<n} (224)

is a local unstable manifo_ld of s: each sequence s’ in W2 agrees with ¢ to the left of the
nth position, s0 that d (0" (s), 07 "(s")) s 0asn — +oo Futthermore, eachlocal unstable
manifold of s contains W for all sufficiently negative n. ,
The constrtxction- above can be generalize(t to 'hyperbolic invariant sets. In the
general case, however,;the symbglic encoding & would 1dent1fy the restriction F [k of a
map Ftoa hyperbolic invariant set K with the acti,o"h of o on a shift-invariant su‘bépace of
EZ (instead of the full sequence space Z7).. |
2.4 Sinai-Ruelle-Bowen measures
This section is based mostly on Bowen [B’ow75] and'Young [You95}].
o LetX be a. compact manifold and F' : X — X a C™ dlffeomorphlsm A Borel
H‘measure pon X, is, 1nvar1ant if Fyp = p, where (F*u)(A) is defined to be WF 1(A)) for
all Borel sets A. The pair (F, u) is ergodlc if every F-mvanant Borel set A satlsfles u(A) €
,{0 1} The . pair (F,p) is mixing if l1mn_,+oo u(F "(A) N B) = ,u(A) ,u(B) It is easy to
. check that if (F, ) is mixing then it is ergodic as well and that the converse does not hold.
_ There are equlvalent formulahons of these cconditions: it is easy to check that (F ) is
| , lergodlc if and only if for every pair of Borel sets A and B.in X such that u(A) and ,u(B) are
_ both posmve, there exists an 1nteger n>0 such that u(F'"(A) N B) >0, and that (F, p)
is mixing if and only if for every pair of Borel sets A and B with positive u-measure, there
exists an ng such that p(F~" (A) a B) is posmve forall n > no.
~ By analogy, a map F is said to be topologically transitive if for all.open s sets A and
B, there exists an integer n > 0 such that E"(A)NBis nonempty. Similarly, a map F is
topologlcally mixing if for all open sets A and B, there exists an mteger np > 0 such that
F7"(A).N B is nonempty. for alln >.ng. R
‘ .. The fundamental theorem of ergodic theory is. the followmg
' "Th'eorem 2.7 ‘(Bli‘kh_(iff).‘ Let X ben l‘o"c‘dlly c0mpac’t'Ha’u_sdd’rﬁ’ spacé,‘ F X —>"‘}'X"’a5 continuous

‘map, aind p a Borel mensure. If u'is invariant under F, then for every function § € L*(u) and
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: k;,l_i,ivz‘l_;most-;everyépoint zg:€: X, the limit -

k
i Nzg(F (:vo» o, @2y

exists.

v -. Because.X is a compact metr-i_espace; fevery:»Borel_,;rneastjire;on-;X is.also a Radon
v ,.measure. Thus, the Riesz-Markov theorem applies and _-.the,re exists a bijective correspon-
v dence between Borel measures on X and bounded linear 7functions on C(X) [Fol84]. This
fact.and. Theorem 2.7. imply that for every diffeemorphism F,: there exists a plethora of

.. Borel, measures on X which:areinvariant under. F.

Some special dynamical systems have unique invariant measures. Most.systems,
however, have large families of invariant measures. For example the cat map (2.3) has
perlodlc orblts of all perlods, and each penodlc orbit supports an invariant measure,. For
'systems w1th umformly hyperbohc attractors, however there isa partlcularly natural class

of 1nvar1ant measures called SRB (Smal-Ruelle-Bowen) measures.

Let p be an invariant measure, K the support of u, and E a p-partition of K. For
each z € K, let =(z) denote the element of = containing z (this is well-defined for y-almost
all z.€ K). The p-partition Z is said to be subordinate .t,‘o the unstable foliation W if for
every z € K, E(z) C W¥%(z). As X is compact Hausdorff for every Borel measure y and

p-partition = there corresponds a canonical family of condmonal measures {p=()} such

‘that pe(z)(E(z)) = 1and for every Borel set B C X, the functlon ‘
T — p=()(B) o : (2.26)

_is measurable and
| | etaBiutae) = u(B). e

The measure p is absolutely continuous with respect to W* if for every p-partition = of K
and almost every z € K the conditional measure uz(s) is absolutely continuous with re-
spect to the normalized Lebesgue measure (mub)s(x) of £(z), and if there exists a constant

¢ > 0 such that _ "
= d(mus)= E(x)
for almést all z € K. Furthermore, we say that p is absolutely continuous with respect

to W* with Holder continuous densities if in addition to ‘the condition above, there exist



constants ¢; > 0 and 0 <‘ a<l1 Such that the Radon:Nikodym derivativesa’:‘.d'(.“

a-Holder continuous with ‘Holder’ norms bounded above by ¢;.

Y c E, the condlhona_ll expectatlon of Z w1th respect to ¥’ can be d_efmed rather generaﬂy
using the Radon-Nikodym theorem. One may be tempted to define conditionel measures
for elements of ¥/ using c’ortd'iti“onal"é)'(pectéiti‘()nf’s . To »fcf'on'st?rﬁfc:t:gérﬁi’ine’« conditional mea-
'sures (conditioned onisets of i-measure zero); however requlres $ome care. Thisis because
in order for each’ u; to be a-measure, we: miust choose versions of condlhonal expectations -
which ensure that the set futictions Ly are countably add1t1ve THis réstilts in‘an uncount—

able number of condltlons See Rogers and Wllhams [RWOOa] fora thorough disctission of .

~ thése'issues::

physmally relevant if K has a measurable nelghborhood U K w1th posmve Lebesgue mea-

' sure such that for every mo e U and every bounded contmuous functlon g: X 5R,
: S 1 TN ks AN o e . '
._&5‘300,'17 EQV‘T’T.“?).?;f[Xg-‘?H%“F' I

An SRB inieasure'is an ergodic 1nvar1ant measure ,LLSRB which'is physmally relevant and

. satisfies the followmg conditions:

1. The measure. ,uSRB 1s absolutely contmuous wrth respect to the unstable fohatlon we .
with Holder continuous densmes '
2. (F Ik, uSRB) has a positive‘ Lya'punov expon‘ent. B

Much is known about the propertles of SRB measures when they exrst To determine
~whether a given dynarrucal system actually possesses an SRB measure is much more diffi-

- cult. See Young' [You02] fot a'discuission of relevant issués: , B
It is not the case that evéry hyperboli¢ attractor possesses afi SRB meaSure. For
example;, consider the “figure 8” attractor in Figute 2.5. Tt is'8asy to séé that the physically
relevant invariant measure is a’Dirac' delta mass located at the hypérboli fixed point in
the center, which we identify with the or‘igin 0. The measure §; has one positive and one
negative Lyapunov exponent andis not absolutely continuous along its. unstable manifold.

vFlgure 25 aIso shows that not every invariant measure is, physically. relevant; a, & mass
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Figure 2.5: The ”ﬁgure 8;"aftractd'r.

supported by either of the unstable fixed points in the "ﬁgure 8 flow is invariant but not
_ physxcally relevant. .

Here is the main result concerning SRB measures:

Theorem 2.9. Let X be a compact Riemannian mamfold and F : X — X a C? diffeomorphism.
Suppose K C X is a uniformly hyperbolic attractor and F is topologically transitive on K. Then
there exists a'unique SRB measure jisrg supported on K.

. See Bowen [Bow?75] and Young [You95] for two different proofs of this theorem.

Rehmrk 2.10. Theorem 2.7 asserts that the limit in Equation (2.28) exists for. psrs-almost
every initial condition zo. Theorem 2.9, on the other hand, guarantees the convergence
of (2.28) for a set of positive Lebesgue measure. Thus, if one takes the view that sets of
- positive Lebesgue measure are physieally observable, then SRB measures are precisely the

physically relevant statistical steady states associated with hyperbolic attractors.

Remark 2.11. Ruelle’s inequality (2.21) becomes an equality when the invariant measure p

-x /X N dpiss. @)

This is Pesin’s, formula It gives a precise connection between the rate of phase space

is an SRB measure [You95]:

expansion, and the rate of loss of information about initial conditions. It is mstructlve

to check that Pesin’s formula is satxsfled by the cat map (F,,,, mm,)

-We have already seen examples of systems with SRB measures: the first is the
'solen01d map, ‘the second is the Lebesgue measure my. for the cat map. To be sure,
these are abstract mathematical examples. The existence or nonexistence of SRB measures

outside the mathematically pristine setting of Axiom A attractors is difficult to establish.
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Nonetheless, n151ghts gleaned from studymg SRB measures help 1llurmnate many ques-

tions of direct, phy31cal felevance;- 1nclud1ng sma noise hrmts of random perturbations

‘limits of dynarmcal systems There are. also some; physxeally observable consequences of

Maes [Mae99]) ‘
Even when-an SRB measure is known to exist; 1t is usually not p0551ble to com-
pute its density along unstable mamfolds For that matter, it is generally unposs1ble to

determine unstable manifolds exactly Itis relahvely easy, however, to compute the ratlo

of the probability density at distinct two points in the same unstable manifold [Dol01]:

Proposition 2:12. Supposé u is absoliitely contintiotis 4long the nistable manifolds of a C? diffeo-
morphism F and has Holder continuous densities. Let p denote the denszty of | [ ona local unstable
manifold W2 (z) and let J&(z) Ye the jacobian detérininant of Fon the unstable subspace E*(z).

Then ( ). (F ( )) T
L _?:___’fi_:_. o o
' p(.’r’) ( "(:L"))" . (2.30)

forall 2’ € W2(z).

Proof Let my, be'the measure on ¥ia k(Wu(fU)) induced by the metrlc of X and set pi dmk =
F7*(py'dmo). Then R o _

n@ =mF@) T
(o) =P (2) - Jp(e) - TEE@)

Pa{8) =polF™(z)) + TE(D) -4 %(Mﬂ(x):).»

Thus

(F "(z’)) Po( 1 P J“(F k(xf)) -3y

The unstable distribution E“(x) is Holder contintous and the ]acoblan DFis C1, so the

local expans1on coefficient J&(z)is also Holder contmuous As z and z belong to thesame -

unstable manifold, d (F™(z), F”(x’ )) ritust converge t6°0 when we lét 7 > 6. Therefore
the right hand side of (2.31) converges uniformly; which implies the 1éft hand side of (2.31)

~ also convergésand is a contintious function ‘6f + and =’.’ But the left hahd 'side of (2.31) is

. 1ndependent of 2’ as long as & and z’ belonig to'the same unstable mamfold Setting z’ = z

finishes the proof. - Lo T o O
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The quantity log J%(z) is called the’local expansion rate of F' We will also refer

to J%(z) as the local expansion coefficient of F at z.-

2.5 Trans,fer;operators

Before contmumg w1th a rev1ew of ex1st1ng small—nmse results on invariant mea-
 sures of dynamlcal systems, 1t 1s useful to take a httle detour through the theory of transfer
operators. This hnks ergodlc theory w1th statlstlcal mechamcs and ylelds insights into the
propertles of 1nvar1ant measures Almost everythmg here is taken from Baladi [Bal00],
Bowen [Bow75], and Sokal [Sok97]. The empha31s is on the parallel between dynarmcal

systems theory and the theory of discrete state space Markov chains.

2.5.1 F1n1te state space Markov chams

Letus begm by reviewing the theory of f1n1te state space Markov chains, as trans-
fer operators arise naturally in this settmg and a basic understandmg of Markov chains
can prov1de Valuable 1ntu1t10n abouit transfer operators in the dynarmcal systems setting.
B Furthermore, th1s theory forms the foundatlon for Markov chain Monte Carlo methods,
which is part of the subject of this thesis. '

‘Let S be a finite set, which will be called:the state space in what follows. The set S
may be, for example, the collection of all possible internal states of a digital computer or the
collection of all valid occupation vectors of a lattice gas. Without loss of generality, identify
S with the set of integers {1,2,3,...,m}. A real ™ X m matrix P is a stochastic matrix if all
its entries are nonnegatlve and each of its rows sums to 1. The latter condition is equivalent
to the statement that the column vector e = ( 1,1,1,...,1) is a right eigenvector of P with
eigenvalue 1: Pe = e. A stochastic matrix P'is irreducible if for every pair of indices z and
- z' such that'1 < z,2’ < N, there exists a nonnegative integer k such that the zz’ th entry

(P*)zq of P¥is positive; it is aperiodicif there exists a'k such-that (P¥)zer > 0 for all z and
z". ' B

Each stochistic matrix P defines a family of Markov chains with values in:S: Py,

-$imply specifies the transition probability from state 7 to state j.” The basic result is the

. following:

Theorem 2.13 (Perron-Frobenius). Every stochastic matrix P has a left eigenvector p with
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-« . nonitegative real entties and eigenvalue 1; and the eigenvector. occurs with muitiplicity 1 if and
only if P is irreducible. Furthermore, 1 is the only eigenvalue of P on the unit circle if and only if

P is aperiodic.

The proof can be found in Katok and Hassélblatt [KE95] Thé Pérron-Frobenius
theorem guarantees the exxstence of mvanant measures for finite state Markov chains,
‘ and g1ves condltrons for their umqueness One umqueness proof for 1rreduc1ble apenodrc

cha1ns 1s of partrcular relevance here, so 1t 1s reproduced below N

i S leen two probablllty measures ul and uz on S defme a new cham a: :

(xl @ %) on

- .S X S as follows
1. Set &y = (zg, ), where the initial conditions are drawn from the measure ul X [hg.

2. For each k > 0, if xk # z2, then let :ck and :ck evolve 1ndependently to obtaln Thia

and $k+1

3 If mk = :ck, then let xl evolve accordmg to P and set xl = xl for all l > k The time
kc,,up is the couphng t1me of the cham itisa, random var1able (and in fact a stoppmg

time since it is the ﬁrst hlttmg time of the dlagonal in 5 x S)

‘Now let g: 8 — R beany obsetvable, and suppose 111 and p dre invariant measures of P. -

|f9dm Sodus| = [E[gad) - 9(aD)]

|1E [g(xk) Q(Ik)lk < kcoup] I P(k < kcoup)
E [g(2h) = g(xk)lk > kmp] | Pk > kmkup)
2sup{[g(s :s 6 S’} P(k < k:mup) '

A

(2.32)

(Note that g(z1). = g(z2).for -k > kcoﬁps.) Since the chain is.irreducible and aperiodic,
Plkiy < 00) =1, which irnpli_es that P(k-< kep) — 0 as k.— o6. Thus pp = p.

-———P Uk kconp) yields a lower bound on the rate of ex-

Furthermore, an upper bound on limg_,
‘ponential decay of correlations. This proof illustrates the coupling method [Gri78], which
has been applied to dynamical systems in recent years as well. See.[Bal00] and [BL02] for

examples:
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2.5.2 Monte Carlo algorithms

The computer 51mulatlon of Markov chams has become ublqmtous in computa-
tional physms and computer science. Typlcally, one beglns w1th a measure p of interest
and designs a stochastic matrix P (equlvalently a Markov cham { xk}) which preserves
p, and which is irreducible and apenodlc One can then use the stochastic matrix P to.
generate sample paths {mk} of the correspondmg Markov cham with smtably generated
initial conditions zo, and compute empmcal averages ~ Z g (xk). As NS o0, this is
expected to converge to the welghted sum Zze s g(x) p(z), where the probablhty vector p
plays the role of a probability measure:: This way of. estlmatmg averages is known as the
- Markov chain Monte Carlo method. : e o :

Typically, the initial state 29 in a Monte Carlo calculation is, elther chosen from an
easily accessible-distribution or a deterministic state. The important task is to ensure that

P preserves p. That is, u = u ¢ P, which means

W)= Yp@) P @39
Clearly this condition is implied by
- " A(:c') Py = u(e) P (2.34)

This is the detailed balance condition, and is equiva‘lent to the statement that P is a self-
adjoint operator on the space L2( ). Givena probablhty Vector p, an easy way to construct
a stochastic matrix P Wthh preserves p is to start with an arbxtrary irreducible aperiodic

matrix Q = (Qy) and set

| — < (=) Qpry
Azp = min ( H@)Quq ? 1) ’ (2.35)
’ Px:c' = Qx:c"v" A:m:"- o

In fact, it is easy to check that P satisfies the detailed balance condition with respect to
p- The matrix Q is the proposal matrix. To estlmate averages w1th respect to p using P

' constructed as above 31mply follow this rec1pe

: Algo‘;ithm 214 ,(Metlijop.oli_s).

Input:

proposal matrix Q
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" matrix A = (A,.) constructed as in (2.35)
o initial state Ty ': ‘
o _ rmteger N (we wzll generate N + 1 steps of the Markov chazn)

| ﬁi.v".l:;fork = 1 toNdo L A
| . 2 | generate a new state T wrth probabrllty Qm/ _ ,
» ) 3 = w1th probablhty A za, and Tk = = z with probablhty 1— Az
'4: end for ...

Output: ‘{xq, ,xN} (N +1steps of,’t_l,ze_l;\/I_arI;c_ov cham)

- That is, to, generate e'achf’st'ep of the chain, one begins by'gené;r‘aﬁng;a new sam-

ple using the proposal matrix @ and applying a $imiple test (2.35) to decide whether to

"+ ‘accept the proposed -new state:.d‘r-té’-fke'"ep the old one. This Markov' chain Monte Carlo

~ algorithm'is called the Metropblis algonthm Note that the Metropohs algorithm requires

only the relative probability p(z’)/ p,(:r) not the probab1hty itself.: This property is essen-
tial in applications: since it is. d1ff1cult to eshmate the part1t10n function accurately in most -
'problems of statistical mechanics, one can only compute relative probablhtles p(z')/u(z), |
not the absolute probabilities u(z) and p(z’).

It is easy to give an upper bound on the errors in any Monte Carlo calculatlon It

is given by
2-C (0) ‘Tim(g), -
g(xk) < \/ 800 WA (2.36)
HN o L2(,l) N -
| Where N is the number of samples used
Tint(g) Z ng(n)/ ng(()) - @37

n——oo

is the integrated autocorrelation tlme of the observable g,
Coy(n)=Ey [‘g(ﬂfn)g(éva)] = Eyulg(zn)] - Enlg(zo)} - - (239)

" is the autocovarlance funchon of g, and E, [h(mn)] is the expectatlon value of Tn when
zg is chosen from the measure /. That is, the error is roughly the standard dev1at1on of
g divided by the square root of the number of effectively independent samples: This is.
consistent with the intuition one derives from the Law of Large Numbers. The rate of

dec_ay of correlations thus determines the convergence rate of a Monte Carlo calculation.
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This is clearly related to the spectrum of the stochastic ma_trix P. Note that the discrete- -

. time Fourier transform :

Gyolf) = Z Cyon) gomg @39

n=—00
must be real and positive for all frequencies f; it is. the spectral power density.of Cy,
[Helo1]. | -
' A telated issue is the rate of relaxation to equilibritim: suppose the stochastic
matrix P is irreducible and aperiodie and we choose a iﬁroﬁaﬁility rhé%sufé mip which is not
'equal to the unique invariant measure . Lét (z, : n > O) be the Markov chain generated
by P and my, and let m,, denote the distribution of Z,. Then the meastires My, converge to
7 exponen’aally fast. More prec1se1y, there exist constants C > 0and 0 < p < 1 such that
[lmn — ul] < cp™ (The choice of the norm || || is irrelevant as the state space 1s ﬁmte here

_ and probabrhty measures are s1mply vectors. ) "Ihe constant p is glven by
- —supﬂAI Aeza(P)\{l}} S (240)

A simple calculation shows that

log (Cge(n)/Cyqe(0))\
e gg) ey

~log(p) < Jim (-
for all ; the quantity on‘the right hand'sidé'is the exponential ‘autccortelation Hme 7., (g).
Furthermore, it is easy to.chéeck that p = sup e~T»(9). The exponen’aal autocorrelatlon
time thus determines the rate of relaxation to'equilibrium. ' '

The exponentlal and integrated autocorrelation times play important roles in the
analysis of Monte Carlo’ algorithms. "In numierical studies ‘6f chaotic $ystems, the con-
vergence of time averages is also determinied by these autocorrelation times. - There is,
however, a third factor which affects the convergence of long time averages -this is the
rate‘at ' which an initial condition converges to the relevant attractor. This is denoted by
T,« in the present discussion. Note that both 7,,, and 7, are properties of irivariant mea-
suree, while 7,, is related to transient'phenomena which differ dramatically-from system
to system. Some systems. can exhibit metastability, that is, the system may. stay near a
: bounded region of phase space for a long time before converging to an attracting set. This
.canarise, for example; for.systems in parameter regimes near some types of bifurcations
[GHS83, Ott00]: Numerical methods which work with one or a few trajectory at a time can

only obtain local information about the phase space structure of a dynamical system and
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has tio hope ‘of detecting imetastabﬂrityfdr" estimatingr.iin gefieral: Global methods, such
as the ones described in [DH97],*can obtain such information; but-ate computationally

> intensjve and impractical" 'for'-sy’ster'ns with more than a_few degrees of freedom.

2 i 3 “Tranisfer operators of dynamlcal systeins o

~ Analogously, one can analyze deterrmmstlc hyperbohc dynanucal systems using
transfer operators, Wthh generahze stochastlc m trlces to the settmg of dynarmcal sys-
tems, Let F:X— X] be a map with- an. mvarlant measure o The covarlance functlon of

two observables 9, h: X —, R is .

Coiln) = / (g0 ™) h = - [oaw’ e

\

Covarlance functrons are s1m11arly defmed for ﬂo v s. When F 1s hyperbohc, u 1s an SRB
measure for F, and g and h are both Holder continuous w1th a sufﬁaently large exponent
- @, it can be shown that Cg(n) decays exponentially as n — oc0. Furthermore, the Fourier
transform i ' |

Og},<w>f— S Cpme (2.43)

| ’I'L—--—OO

of Cyp, can be extended toa meromorph1c functlon 1n a stnp about the real line [Bal00].
The poles and their mult1p11c1t1es depend. only on. the map. F and; do not depend on the .
+ functions g-and k. These. poles are Ruelle-Pollicott resonances. They determme the decay -
rates and oscrllatlon frequencres of, covariance, and correlahon functions, and the set of
. resonances is called the, correlatlon spectrum g (F) of F. Numerlcal ev1dence clearly
shows that the.exponential. decay of correlations;can continue to hold. in nonuniformly
++ hyperbolic systems, as shown by Figure 1.3. In that figure, the autocovariance functions for
. .+ the coordinate functions z, 3, a_{ld z3 of the _I_,‘,oren_z' flow are seen to decay _exponentially.
.  Tounderstandwhy Con(n) ;de,caysexpénenﬁally;f.ast. asn — 00, let us introduce
- the operator S e G o :
L R A (TF g)(z) g(F(w)) S (2.44)
That is, (Tp - g)(a;) can be int‘éi'_pfefe‘déa’s‘ 'the‘-valiie}of' the obsetvable g-when the system is in
‘the state F(z); so the operatot: Ty €volves-observables g forward in time. ‘Without loss of
:-'gen’era“‘lity-"-le’tfﬁ'S'assurfr"ré" that g = hand ['gdp =:0: Thenv-‘C'gy(n) = [ g+ TEgdp, and one
‘might hope“to mifhie-the theory of finite'state Markov chaitis by fmdmg an approprlate'
Banach space B w1th the fOIIOng propertles ' ' ’
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-1 The operator T is bounded on B..
o 2 The spectral radlus of Tp B — B is equal to 1.

3:.0 (Tp) consists of a 51mp1e elgenvalue atland p = sup{|/\| A€o (Tp) \ {1}} is
strlctly less than 1.. - . y :

The condltlons above would 1mply the exponentlal decay of correlahons for the dynarmcal
system in queshon ' ‘ '

The spectrum of a bounded operator T:B - B can depend strongly on the

- "ch01ce of the space ‘B, and the ch01ce of an appropnate function s space on which to study

'TF is a nontrivial task Some seemmgly natural choices, for example, will not reveal infor-

- matlon on correlahon decay ‘Consider the operator Tr acting on the Hllbert space L2(u) it

: :‘ is easy to check that TF is umtary and hence its spectrum is a subset of the unit circle. (Tp

isa non-umtary 1sometry if P preserves the measure  but is not mvertlble ) “This means

V "that one cannot deduce the decay of correlations from the spectrum of Tr' as an operator on

' Lz(u) Note that this choice does yleld some mforma’aon about thé dynarmcs - for exam-

ple, applymg the spectral theoremi-to T : L2(j1) — Ny () tells us that for every ge L2(u)-

in the orthogonal complement of {h € L?(u) : ho F = h}

/ AEP(dN)-- g
o(TF)

/ /\’“P(d/\) 9
HTE\ 1} .

_ 1. : _ )\N+1
- N Jomen{1} 1"— A

since Tris unitary and its spectrum lies in the unit c1rc1e As N — oo, the nght hand side

1 —1
N Tpg =

-1

A2
"2

2|.')—|

o
1l
o
Il
o

0

2

PN g,

converges to 0. Thus the limit

L N2 ' ' '
im | — k : : (24
m(Fer) e
_always exists in the sense of L2 and equals the orthogonal projection of g onto: the sub-
space of F—mvarlant functions. This. beautiful result, the Mean Ergodic Theorem was first
proved by ]ohn von Neumann [F0184] However, the decay of correlations is a more subtle

‘property and cannot be deduced this way.
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Recent work of Blank, Keller, and Liverani [BKL:02] shows that for Anosov sys-
tems, i.e. maps F which are umformly hyperbohc onall of the man1fold X, one can‘indeed
construct a. Banach space so that Tp has propertles (1) through (3) lrsted above “The space |
they cornistruct consist of funetions which are simooth along utistable mamfolds and are
allowed to be much rougher along stable manifolds. The spectrum and elgenfunctlons
of the operator Tr then give detalled mformatron about the decay of correlatlons and the
existerice of SRB measures. Earlier work on the exponentlal decay of correlahons in dy-
namical systems relied on welghted” transfer operators and symbohc dynarmcs to reduce N

_ ‘hyperbohc dynamrcal systems to to purely expandmg systems Roughly speakmg, this

,corresponds to choppmg off half of each b1-1nf1mte symbohc sequence S0 that it becomes a
one-sided sequence The one- srded shrft map 1s then non-mverhble but purely expandmg,'

which srmphfles the ana1y31s and allows one to prove the ex1stence of a smooth invariant

- measure. This measure is then transferred back to the orlgmal hyperbohc system via the

symbohc codmg In contrast the approach of Blank Keller and Liverani is more d1rect and .
- ’natural The welghted transfer ‘operator techruque does play a cruc1al role in the S0~ called
thermodynamrc formalism [BalOO Bow75] and i in constructmg large dev1at10ns functlonals’

for dynarrucal systems [Tak84]

2.6 Zero-noise limits of unifo’rﬁtly-hyperbo;lic systems

Let F : X - X be a map, and let {pe x, cxe X } be a family of transition
probability measures on X depending oh a parameter ¢ > 0. Let (z,) satisfy z,41 =
F(xy) (with a possrbly.random initial condition o), and define the measure Fipe(z,") by '
setting F,p(z, A) = p; (z, F~1(A)) for all Borel sets A. Let (z5) be the chain with transition
probabilities F.p.(z,-) and initial condition z§ = zo. The chain (z,)is then then,a‘-randornb
perturbation of (z,,). This interpretation is particularly meaningful if, pE (z;°) isin some
sense small when ¢ is small. Now let g : X — R be a continuous function. Then it is

_‘natural to ask whether C . : _
" tsg [ gdsc = [ g do | (246)

€0
'where /re is an mvanant measure for the chain (:vn) and ,ug is an mvanant measure for F.

The followrng srmple result provrdes a partral answer (see [K1f88])

Propo_sltro_n 2.15. Suppose the transition measures p(x, -) converge to 0 uny‘ormly in probabil-
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- ity, i.e forall a>.0,. R T

“Let {uc} dénote a famzly of ‘mvarzant measiires for F. for €>0. Then any weak limit o of {ue}

'as € — 0is F-mvarzant

e

‘ .Proof Choose a subsequence ek — 0 such that Her T Ho weakly as k — 00. As X i is com-

- pact Hausdorff every Borel probablhty measure on X isa Radon measure and it sufflces

. . toverlfythatfgoFd/ro _fg d;ro foreverygeC(X)

| [ 9o F duo~: f:g.dpo| . = ~limg; |f:90 Fdpe— f g dﬂ'ekl
= :llm.kf:lfig oF due, —FE f'g 0 .Fy d,ue;;‘l v
< limg Ef|goF —go Fe| due, ‘ (2.48)

Jimi (B (arm, <oy (190 F = 9.0 Fo| dpie,)
e E(d(FFSk)>a) (flgo F - 9°F6kl d“fk)] :

Choosmg a small eough’t so that | g(x) g(y)l <b whenever d(x y) <a ylelds

/goquo /gduo

“The sécond term vanishes by assiumption'and b > 0 was arbitrary, so pg is'invariant. O

<b+, hm 2P (d (F Fek) > a). o (2.49)

Thus, the real problem is to frgure out whrch mvanant meaSures of F can arise as
weak hrmts of { ue} as €— 0. There 1s one specral case wh1ch is well understood mathemat-
1cally Suppose the unperturbed map F has an Ax1om A attractor on wh1ch it is topolog- _

1cally transmve and the random perturbatlon 1s glven by transrtron probabxllty measures
N w}uch have contmuous probabrhty densrt]es Then the perturbed systems have umque in-
| varlant measures e and the hmrtmg measure uo must be the SRB measure of the original

map F [K1f88] More prec1sely

Theorem 2.16. Let F': X = X bea smooth dzﬁeomorphlsm on a.compact Rzemanman manifold
X and {p(z,-) : = € X} a family.of measures.. Suppose. the following con_dgtzons hold:

1. Foreach g € C(X,R), [ 9(y) pe(z, dy) coﬁverges uniformly to g(z) as € — 0.
2. Foreach € > 0, pe(z, -) is absolutely ‘contintious with rtzSpé'c't'tO the Lebesgue measure of X.

Then-the Markov chain defined by the transition probability density Fipe(x; -} has a unique invari-
ant measure yi, and the weak limit of y. as ¢ — 0 is a convex combination of SRB measures of
F.
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Kifer proved: that by showing that the weak limit Ho- must be absolutely continu-
ous w1th respect to pigrs. The ergod1c1ty of fisks then shows that [0 = lise-
. The absolute continuity of transition probablhty measures, means that the dy-

namics is perturbed in all spatial dlrectlons (though in a p0551bly mhomogeneous way).

However, as exp]amed in the Introduction, it is frequently desirable to use random per-

- ﬁturbatrons Wthh are hrmted to the unstable dlrectlons only In the solen01d example we

~ '¢an check’ d1rectly that perturbatrons in'the stable dlrectlons (spanned by or andé £ 3s) do
not perform any useful function in the computatlon A small amount of noise (umform
noise on the order of 10%) in the unstable direction 2 2 suffices to produce a much reliable
picture of the attractor. Precise theoréms in the case of smgular random perturbatlons are-
not known to the author. '

It is easy to show that if y is an 1nvar1ant measure for the perturbed system, then
any weak limit of y, is invariant under F' (see Chapter 4). The bulk of Kifer’s proof is
involved in showmg that any weak limit is absolutely cont1nuous with respect to-the SRB
measure psg. The ergodicity of s then 1mp11es that the weak limit must comc1de wrth
psre itself. The key pomt is ‘that this strategy can only show that the hrmtmg measure is
a.probability measure; it does not glve rates of- convergence "[here are;.in. fact, very few
such eshmates )

B The use of noise in numencal studies of chaotrc systems is not a new 1dea, ad-
d1t1ve n01se isa natural way to ensure that sunulated orblts v1srt drfferent parts of the at-
E"cractor more qulckly with approx1mately the correct frequenmes The fundamental math-;.,
ematlcal results date back to the work of Klfer [K1f74 K1f88] and Frerdhn a{'d Wentzell_
.[FW98] Bulldmg on Klfer S theorem Hunt [Hun96] Klfer [vK1f97], and De

[D]99] have suggested the use of random perturbatlons as the ba51s o rehable numen—

cal algorlthms However, these papers consider only perturbatrons which Have absolutely
‘continuous (with respect to Lebesgue) transition® probablhty ineasures. ‘THé analy31s of

degener‘ate perturbatlons is much more challenging.” .~ - - S
2.7 The limits of hyperbolic theory
- Itis important to remiember that real physical s'ysté:fns'-f‘rarely.;?s‘aﬁs‘:fy the axioms of

uniform hyperbolicity. Most real physical systems have 'parametér-regimes-in'Which they

experience intermittency, alternating between chaotic and periodic or quasiperiodic behav- v
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Figure 2.6: The Hénon attractor.

-jor! [Ott00]. Even very simple mathematical models can exhibit nonuniform hyperbolic
behavior and become very difficult to analyze. For example, consider the Hénon map
a— 23 + bzo
Fron(Z1,22) = , (2.50)
x1

with @ = 1.4 and b = 0.3. It has two hyperbolic fixed points and an apparent attrac-
tor; it is shown in Figure 2.6. The strange attractor has well-known self-similar structures
" [GHS83]. If the attractor were uniformly hyperbolic, the unstable manifolds of the fixed
points would be dense inside the attractor. But the attractor folds back on itself ever more
densely, so it is impossible to have stable mam'fblds which are everywhere transverse to
the unstable manifolds with angles bounded away from 0, as is the case for hyperbolic
attractors [KH95]. See Guckenheimer and Holmes [GH83] for a more extensive discussion

of strange attractors.

'Tam grateful to Dr. Tom Weaver of the Hertz Foundation for pointing this out.
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Desplte its lmuts hyperbohc theory do' :w_?‘y1eld quahtatlve 1ns1ghts and quantlta— . f
tive predlctlons for physmally reahshc models There has also been: much progress in the”"

rigorous’ theory of nonumformly hyperbohc systems in recent years [You95]
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Chapter3

Random Perturbatlons in Numerlcal

Slmulatloaaes. |

'Ihls chapter explores the use of n01se in numencal algorlthms —for computmg
statlstlcal averages of observables Most of thls dlscussmn is based on numerlcal studies
of the Lorenz system (1.2) [GH83 Lor63] and other low-drmensronal systems Analytlcal

results remain far from optimal and have been summarlzed in Chapter 4.

3.1 Asympto'tical-lzyv unstabile s‘,ubsp'a'*c;es & T;yapu-nov exponerits -

The calculations descrlbed in thls chapter focus on the computation of Lyapunov
~ exponents because of thelr intrinsic interest as dynamlcal invariants. Furthermore, in order
to compute Lyapunov exponents, we need to first compute the invariant subspaces E'(z)
(see §2:3), and the computation ofthesemvanant subspaces provides.valuable insight into
the local geometric structure of dynamical- systems:

The easie_s:t way to estimate E¥(z) s to try to lift the flow to the orthonormal
frame bundle. .M-concrete'terms,-this means that given a solution . : [0,+00) — X of the

equations of motion

5(8) = F(z)
- 2(0) = o,
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we want to find equations of motion

#() =f(2(0),
01() =61 (01(0), - 0a(2)),
i(t) =(01(0), -, n(t),

n(t) =&(v1(E), .- vn(2)),

FEE Y

so that the vectors (v1(t), .., v(t)),1 < k < n, form an orthonormal basis for the subspace

E*(x(t)) associated with the k largest Lyapunov exponefy In fact itiis possxble to find

the desired equations in a “triangular” form

£(t) =f(z(t)),
(t) 61 (vl (t))
(t) 62 (v1 (t) vz(t))

bn(t) =§2(Ul (t)’ ceny vh(t))’

so that if one is only interested in computmg E"(a:(t)) for some k < 7, then not all n?4+n
equations are needed T . »
~ The vector field for the orthonormal ba31s (vl (t) vk(t)) of E’c (a;(t)) is easiest to

.explam in the form of a sunple algorithm:

Algorithm 3.1 (Flow Field for O”rthb”ﬂbrmal"Frdﬁies); B

Input: .
vector field f
point x € X (system state; dimension of X is n)
integer>k B
L = f(a)
_for i:=1tok do
v == Df(z) - vi
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4 forj:=1toi—1do
5 i =05 = (V- v + v vJ) v;
~ o607 - end-for .
70 =0 — (U0 S /"
8: end for |

Output: vectors %, 01, ..., 0 (time derivatives)

The algorlthm is a straightforward consequence ¢ of the orthonormality conditions-
and the requirement that v1, ..., v span E*. The inner loop enforces the orthogonallty con-
dition, while the last statement enforces. the normality of the basis vectors. In hyperbolic
flows, the vector v (a:)lwill_converge fairly quickly to the maximally unstable direction
E*(z) associated with the largest Lyapunov exponent. Because vy () is kept orthogonal to
v1(x), it will not point in the direction associated with the secorid largest exponent. The
vectors v1(z) and va(z) together, however, span the subspace E?(z) assocxated with A\; and
Az2. A simple induction argument establishes the correctness of this algonthm

We can compute the largest k¥ Lyapunov exponents using Algorlthm 3.1. We only
need to compute the long-time averages of the partial traces of the ]acoblan Df along the
spans of (vy, ...,v;) fori =1,. k [WSSV85]: since ' )

A+ A = lim % ( /0 i (Df(:v(t)) rEk(z(t))) dt>.,
_ TIEEOT (Z / w(®)" - D (2(2)) - vs(2) dt)

it follqws that r

A= Jim % [ (v Df () - ute) dt. (3.1)
(The row vector v* is the transpose of the column vector v.) ‘

In practice, we cannot simply insert Algorithm 3.1 into an ODE solver and expect
it to work. This is because Algorithm 3.1, when implemented as part of an ODE solver,
contains a vicious feedback mechanism: because of numerical errors, (v1, ..., vg)-will be-
come slightly nonorthogonal after a finite number of steps. This forces the ODE integrator
to take ever smaller steps to maintain orthogonahty Eventually, the computatlon grinds
to a halt. Thus we must penodlcally reorthonormalize (v, ... vk) This can be quite ex-

penswe to do for hlgher d1mens1onal systems. If one is only mterested in computing the
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Lyapunov exponents {1, ..., \x} and not the invariant subspace:E*(z), then it is more ef-
ficient to simply remove the constraint that the basis (v1; ... vg) stays orthonormal. This is
equivalent to computing the Lyapunov exponents for the time-T map#7: forafixed T > 0
instead of directly for the flow [BGS76, GPL90] More precisely:.: ‘

Algorithm 3.2.

Input: _

flow map ¢r: X—»X o

point z.€ X (initial condztzon)

,mteger,k:,,-. .

gintegerz,N (running tlme)

orthono_rrna-l vectors {v1, ..., ur},. ( initial frame)._ .
1: fori:=1to k.don 4'
A =0 (initialize)

2:

3.endfor - |
4: forn_ltoN do. . |

5: fori:=1tokdo

6: v; := Dér(z) -v;

7. end for

8: forj =1tokdo

9: forj:=1toi—1do

10: v; o= v; — (v; - v5)v; A(reorthogonrzlize)

1:  end for ;
120 A= N+ log [[ui]|/(Naw - T)

13: v; := v;/||vs]| (renormalize)
14:  end-for:’

15: - z:=¢r(x) (continue with the next step)
16: end for
- Qutput: { Xy, ..., A } (estimates of Lyapunov ex'po"nén’ts)

Ttus 1s the standard algonthm one fmds in [GPL90] and references therem
Algonthm 3.2 can also be used to compute the Lyapunov exponents of an arbi-

trary map F' by replacmg ¢T with F. Algorlthm 32 effectlvely performs a QR factorlzatlon
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of the Jacobian DF ‘using Gram-Schmiidt orthiogonalization Theré is‘a rioré‘sophisticated
‘variant of this method whxch uses’ Householder transformahons in place of Gram—Schrmdt

‘ orthogonahzatlon, see [GPL90] and references therein.

'3:2. Time averaging

Jraditionally, the }computat_iorxtpf the average .value of .an .Observable: g with re-
spect to an ergodic.invariant measure. proceeds‘by performing long-time simulations. of
the system.in question. and.computingtime averages. This simple procedure is formahzed

below in pseudo code:
Alg-aﬁt'm 33 (Time Averaging). -

'Input ,
function g X3R! (observable of interest)
“hapF o+ X =5 X (dyna-mzcs). -

pointzg € X ( initial condition)
‘integer Ny (initialization time) -

‘intéger Ny f running: time)

{
[ . .

1: z:=1x9 ) ‘
2 forn :=0to N — 1do

3  z:=F(z)

" 4:-end for - -

CBagi= 0 o - '

6: forn :=1to N,, do -

7. z:=F(x)

8 §:=§+9(z)/Nun

9: end for TP S P

Output real g (an estimate of f g d#sm;)

Note that the 1mt1ahzat10n loop is nearly 1dent1cal to the averaging loop. For the
_sake of clanty, descriptions of algorithms in later sections of this chapter will abbreviate
the uutlahzatlon loop. ' :

In order to apply Algorlthm 3.3 to realistic problems reliably, we must be able to
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estimate the numerical error in the result. As

. 2 Cg(0) 7,
’g—/gdllasma £ ——QQEV) t(g),

where 7,(g) is the integrated autocorrelation time (see §2.5.2), the choice of the initializa-

tion time N,; and the running time N,,, depend on knowledge of the decay rate of the
autocorrelation function of the observable g. In exceptional cases, it is possible to obtain
analytical bounds on this rate of decay. In most cases, however, analytical estimates are
unavailable, and we must calculate the decay rate from empirical data.

A practical problem which arises frequently is that the autocorrelation function
may decay very slowly, either with a small exponential time constant or even subexponen-
tially. This corresponds to |o (Tr) \ {1}| ~ 1. This is rather common in statistical mechan-
ics and quantum field theory, as correlation lengths in lattice models diverge to infinity
near phase transitions. For classical dynamical systems, a similar phenomenon exists. For
example, polynomial decay is often expected in systems with nonuniform hyperbolicity or
intermittency, such as the intermittent interval maps (see §3.5 and [LSV99, Ott00]). These
difficulties will be addressed later in this chapter.

Figure 3.1 illustrates the result of applying Algorithm 3.3 to the Lorenz flow to
compute Lyapunov exponents. As can be seen, the time averages {XZ(T)} converge to

well-defined limits as T increases. In the figure, the estimates

: 1L

i
D) =7 [ DO

are plotted against the time interval 7. The initial condition is taken to be a small (~
1071%) perturbation of the origin. The estimates A;(T") will converge almost surely to the
Lyapunov exponents as 7' — oco. Furthermore, A\3(7") will converge to 0 as T' — oo, since

flow lines are center manifolds (see §2.3).

3.3 Random kicks in unstable directions

At first sight, Algorithm 3.3 may appear to be the only practical way to com-
pute the expectation value [ g duss Of an observable g with respect to uss. However,
when the number of dimensions is sufficiently small, one can apply the subdivision algo-
rithm of Dellnitz and coworkers [DH97, DHJR97, DJ99] to discretize the transfer opera-

tor. In many cases, it is also possible to apply periodic orbit theory and cycle expansions
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Figure 3.1: Estimates of Lyapunov exponents as a function of simulation time interval 7.

[CCP97, Dor99, Gas98]. In moderately high dimensions, these alternative methods be-
come less efficient and their implementation requires overcoming a host of theoretical and
algorithmic challenges.

Notice that the Metropolis algorithm 2.14 extends naturally to continuous state
space Markov chains with probability densities instead of probability vectors. Its imple-
mentation requires only that one can compute the relative probability of two different
states. But Equation (2.30) provides a formula for the relative probability of two states
lying on the same unstable manifold. Is there a way to use Equation (2.30) to construct
a Metropolis algorithm for SRB measures? Specifically, can we perform Metropolis sam-
pling by proposing moves z’ along W*(z) and then comparing the probabilities of z and
z' by evolving both points forward in time and computing the local expansion rates along
each trajectory?

Let F' denote a map with a hyperbolic attractor K and an associated SRB mea-
sure psgs. Let x be a point in K. Fix € > 0 and let m’;) be the normalized surface measure

on W (z) induced by the Riemann metric of the phase space X. In order to construct a
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Metropolis algorithm using (2.30), we need to understand the behavior of proposal mea-
sures as they evolve along unstable manifolds. Let ¢;(-), then, be a probability density on
W (z) (defined with respect to m}) and let p, denote the density of prs on W¥(z). Then
the acceptance ratio A,(z, z’) associated with the family of proposal measures {¢, } is
/
Az, z') = min <&M, 1) a 3.2
o) :(2") - po(@) 52

Now, for each z we can define a new proposal measure qg(gl) by
_apam(F(2)

(1) (o

The measure qg(gl) is obtained by taking the distribution g, on the local unstable manifold
WY(F~!(z)) and pushing it forward to W (z) using the map F. Equations (3.3) and (2.30)
imply that

Ay (z,2') = Ag(FY(z), F~1(z')). (3.4)

But this means that if we repeat the construction and define

() (') — QF*”(:c)(F_n(I/))
w) = T @)

By induction,
Ay (z,2') = Ag(F (), F"(2")).

Since z and 2’ belong to the same unstable manifold, d (F~"(z), FF~"(2’)) — 0 as n — oo.
It follows that pushing a proposal distribution forward under the map F improves the
acceptance probability. Heuristically, then, we expect to be able to accept every proposal if
we use the family of measures {qéN)} as our proposal measures for sufficiently large N.

The discussion above leads to the following algorithm (for simplicity, set ¢, (-) = 1
and N =1):

Algorithm 3.4 (Random Perturbations in Unstable Directions).

Input:
function g : X — R (observable of interest)
map F': X — X (dynamics)
real number € > 0 (noise amplitude)

point zg € X (initial condition)
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integer N, (initialization time)
integer N,., (running time)
vector subspace K (approximate unstable direction represented e.g. by basis vectors)
1: &= xp
E" := random orthonormal frame
do initialization loop for N, — 1 steps (this is nearly identical to the averaging loop below)
§:=g(z)
forn:=0to N,, — 1do
E* .= DF(z) - E®
x = z+0x (dx is a small uniform random sample drawn from uniform probability measure
supported on the ball B*(z,¢) = B(z,€) N (z + EY).)

B: x=F(z)
9 §:=g+g(z)/Nun
10: end for

Output: § (an estimate of [ g due ~ [ g djisrs)

Note that this is not, strictly speaking, a Monte Carlo algorithm. One may be
tempted to use backward iterates of F' to really implement a Monte Carlo method with the
proposal measure ¢{™). That is unlikely to work because the unstable manifolds of F'~! are
the stable manifolds of F', which (when F'is dissipaiive) generally fill up a set of positive
measure, so iterating F'~! is an extremely unstable process. Note also that it is generally
impossible to propose moves that lie exactly on the unstable manifold; Algorithm 3.4 pro-
poses moves along approximately unstable directions E*. The action of the map F' then
pushes the proposals closer to the unstable manifolds.

Algorithm 3.4 is extremely simple: it applies periodic random perturbations to
the flow under study. The correctness of Algorithm 3.4, then, is equivalent to the stability
of SRB measures under small random perturbations in the sense that the invariant mea-
sures . of the perturbed chain (zf,) converge weakly to jss as € — 0. Unfortunately,
Theorem 2.16 does not apply here, as the random perturbations used here were directed in
(approximately) unstable directions and cannot be absolutely continuous unless F is ev-
erywhere expanding (i.e. dim £ = dim X). However, results appearing in the next chap-
ter imply that Algorithm 3.4 is consistent in the following sense: if we first let NV, — oo

and then let € — 0, then the output § of Algorithm 3.4 converges to f g dpsgs- Also, as noted
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Figure 3.2: Estimates of Lyapunov exponents as a function of simulation time interval 7.

in the Introduction, the random perturbations introduced in Algorithm 3.4 may help re-
duce the correlation time of the perturbed Markov chain.

Let us now combine Algorithms 3.2 and 3.4 and compute the Lyapunov expo-
nents for the Lorenz flow with the standard parameters o = 10, b = g—, and r = 28. Figure
3.2 shows the partial sums J\;, defined in Algorithm 3.2. The flow is sampled at intervals of
T = 0.02, and after each sample the state variable z is perturbed by uniformly distributed
random variables of amplitude ¢ = 0.01 in the estimated unstable direction £*. As in
Figure 3.1, the initial condition z is a small (~ 10~!%) perturbation of the origin.

Because zg is near a hyperbolic fixed point, it takes some time for the computed
trajectory to leave the vicinity of the origin and explore the rest of the attractor. This is
the reason for the appearance of the “plateau” in the top curve of Figure 3.1 for ¢t < 5. In
contrast, in Figure 3.2, the addition of noise helped the partial sums converge much more
quickly. One may object that the choice of zg is unnecessarily pessimistic, but it is im-
portant to remember that frequently, the phase space of a dynamical system is partitioned

into multiple ergodic components. Choosing initial conditions near a known fixed point is
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a simple way of ensuring (with high probability) that the statistical information we com-
pute pertain to a single ergodic component rather than a convex combination of ergodic
invariant measures.

Figure 3.4 shows the estimated Lyapunov exponents, computed by sampling the
perturbed Lorenz flow at intervals of T = 0.02 for 10° steps, as a function of the noise
amplitude e. Figure 3.5 shows the corresponding empirical decay times 7.,, of the auto-
correlation functions for the local expansion rates. The empirical decay time 7,, is defined
here to be the time required for the correlation function to decay to 5 of its value at ¢ = 0.
Figure 3.6 shows the empirical estimate 7, of the integrated autocorrelation times as a
function of ¢; 7, is computed by numerically integrating the normalized autocovariance
function from 0 to 7,,, using the trapezoid rule. Finally, Figure 3.8 shows the variances of
the local expansion rates.

The exponential decay time decreases with increasing e, as expected, though 7,
increases with increasing e. These observations are confirmed by the spectral power den-
sity C(f) = [*° C(t) e®"/* dt, shown in Figure 3.7: as € increases, the spectral densities

(1) become more smooth, which reflects a faster decay of correlations; (2) the peaks be-
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come broader, which reflects the movement of resonances away from the real axis; and (3)
6 (0) = 7 increases slightly. Note that the numerical computation of 1., can be somewhat
subtle; see Sokal [Sok97] and references given there for a more detailed discussion. The
qualitative features of Figure 3.6 do not depend sensitively on the numerical quadrature
scheme or the integration limits. The roughness of 7;, as a function of ¢ may reflect the
instability of parts of the correlation spectrum with respect to random perturbations, as
suggested in [BK98].

It is possible to extract some resonances from the correlation data, for exam-
ple using Prony’s method [MSW89, WMS88]. However, a straightforward application
of Prony’s method to the numerical data produced only an estimate of the dominant,
slowest-decaying resonance, which can be extracted by the more naive means described
above. It is an open problem to develop numerical algorithms which can reliably estimate
fast-decaying (“broad”) overlapping resonances, either by processing correlation data (or
equivalent their Fourier transforms) or by other means.

In statistical mechanics, the integrated correlation time 7, is usually expected to
be comparable to the exponential decay time 7, except when the system is near a phase
transition [Sok97]. In contrast, we see here that the 7,,, is much larger than 7;,, when no
noise is added. With the addition of noise, 7.,, quickly decreases while 7,,, increases slightly.
Thus with a suitable amount of noise, we can decrease T.,, without increasing the already-
small 7,,, or changing { 5\1-} too much.

Covariance functions can be expanded as

Con(n) = Y agn(@)e™ + R(n) (3.5

wEUcorr(F)
where R(n) ~ A} is an exponentially decaying error term with decay rate Ag > Im [w] for
all w € 0. (F). The exponential decay time ,, is therefore determined by the element
of 0. (F') with the smallest imaginary part. In contrast, the integrated correlation time is

roughly equal to

1 1 A
5+ ;Cgh(n) =g+ D am@e™

n=1 UJEUcorr(F)

agh(w)e™
+ Z T == eiw "
wWEOTcorr (F)

DN | =
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Thus, while 7,,, depends only on the part of o, (F) closest to the real line, 7;,, depends
on the rest of the correlation spectrum. Since 7., and 7, differ so much when ¢ = 0 and
respond to random perturbations in qualitatively distinct ways, it is likely that random
perturbations have a much larger effect on resonances which lie near the real axis than
on those which lie farther away, and that the correlation spectrum of the Lorenz flow is
concentrated away from the real axis but contains a few resonances with small imaginary
parts. Whether this effect of random perturbations is true for other dynamical systems is
unclear, but it appears to be consistent with the results of Blank and Keller [BK98]. The
conclusion we can draw from these figures and from Table 3.1 is that for the Lorenz flow
and other systems with relatively strong mixing properties, the addition of noise can help
decrease the exponential decay time but not the integrated autocorrelation time. In fact, the
standard deviations of the estimated Lyapunov exponents (see Table 3.1) actually increase
with increasing e.

In Monte Carlo studies of lattice models, the exponential decay time 7,,, is usually
associated with the amount of time needed for equilibration. The integrated autocorrela-
tion time, on the other hand, determines the number of steps we need to simulate the
Markov chain before obtaining a new effectively independent sample. For dynamical sys-
tems, standard results about transfer operators (see §2.5.2, §2.5.3, and [Bal00]) show that
this understanding of 7.,, and 7, is still correct, though if the initial condition z is far from
the support of pszs then we also need to take into account the attréction time 7.

In order to compute Lyapunov exponents using Algorithm 3.4, one must work
with the orthonormal frame bundle lift of the flow (see Algorithm 3.1). This is because
the calculation of Lyapunov exponents requires information about the jacobian D f. Thus,
a straightforward implementation of Algorithm 3.4 for computing Lyapunov exponents
may appear to require D? f. However, it is easy to see that the bundle degrees of freedom
are enslaved to motion in the base: for subspaces E; and F, in general position, with
dim £y = dim Fy, d(DF"E;, DF"E3) — 0 as n — oo. Thus perturbations in the bundle
degrees of freedom are unlikely to have a significant effect on the decay rate of correlations.
We can thus modify Algorithm 3.4 when computing Lyapunov exponents to perturb only
the state variable z, not the orthonormal frame E*. This requires only f and Df, not D?f.
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€ A€ T f | [AE =AY
0.0 | 0.906 +4.8 x 103 | 5.334 [ 0.013 | 0.000
0.5]0.828+5.6 x 102 | 6.208 | 0.017 | 0.077
1.0 | 0.902+7.0 x 1073 | 3.398 | 0.028 | 0.003
1.5 | 0.966 + 7.8 x 1072 | 2.009 | 0.037 | 0.060
20| 1.018+83x 1073 | 1.341 | 0.045 | 0.112
25| 1.057+9.0%x 1073 | 0.968 | 0.056 | 0.151
3.0 | 1.063+9.0 x 1073 | 0.734 | 0.059 | 0.157
35|1.057+9.4x 1073 | 0.594 | 0.067 | 0.151
40| 1.0524+9.8 x 1073 | 0.487 | 0.076 | 0.146

(a) Estimates of largest exponent Xi

€ A= Top | T | [XE—20
0.0 0.00+3.1x10"3° |3.164 | 0.018 | 0.000
05| 0.035+5.9x 1073 | 0.787 | 0.068 | 0.036
1.0 | —0.114+6.0x 1073 | 0.247 | 0.072 | 0.112
15| —0.28 +5.8 x 1073 | 0.200 | 0.066 | 0.288
20| —047+6.0x 1073 | 0.193 | 0.065 | 0.470
25| —0.68+6.2x 1072 | 0.173 | 0.063 | 0.680
3.0 | —0.89+6.7x 1073 | 0.166 | 0.062 | 0.896
35| —-1.10£7.2x 1073 | 0.160 | 0.061 | 1.102
40| —1.33+7.7%x 1073 | 0.160 | 0.061 | 1.339

(b) Estimates of second largest exponent A,

€ A s Fog | |AF— AR
00| —14.5+2.6x 1073 | 7.470 | 0.004 | 0.000
05| —14.5+3.5x 1073 | 7.210 | 0.008 | 0.041
10| —14.4+42x 1073 | 4012 | 0.012 | 0.116
15| —14.34+49x 1073 | 2.256 | 0.018 | 0.227
20| —142+6.0x 1073 | 1.475 | 0.025 | 0.358
25| —14.0+8.0x 1073 | 0.988 | 0.044 | 0.529
3.0 | —13.8+9.0 x 1073 | 0.741 | 0.051 | 0.739
35| —13.6+1.0x 1072 | 0.600 | 0.063 | 0.951
40| —-13.3+1.1 x10"2 | 0.487 | 0.077 | 1.192

(c) Estimates of smallest exponent s

Table 3.1: Correlation times of the estimated Lyapunov exponents of the Lorenz flow peri-
odically kicked by uniform noise of amplitude € in the asymptotically unstable direction.
Estimated Lyapunov exponents are stated with their standard deviations.
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Figure 3.10: Estimated Lyapunov exponents for the Lorenz flow kicked by perturbations
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3.4 General random kicks

Our attempt to construct hybrid Markov chain Monte Carlo algorithms for SRB
measures has led to Algorithm 3.4. The results in the previous section show that this al-
gorithm can be rather effective at reducing the initialization time (at least for the Lorenz
system) while introducing only relatively small errors in computed averages. Algorithm
3.4 is, however, rather expensive, as it requires estimating the asymptotically unstable di-
rections. Are there variations of Algorithm 3.4 which can be more efficiently implemented?

One natural idea is to simply use random perturbations of F' with absolutely
continuous transition measures. This class of perturbations has the advantage of a firmer
mathematical foundation and has been advocated by a number of authors [Hun96, Kif97].
Theorem 2.16 implies the consistency of random perturbation algorithms based on abso-
lutely continuous transition measures in the limit ¢ — 0, and it is fairly straightforward
to establish the existence of a unique ergodic invariant measure when e > 0. Figures 3.10
- 3.14 and Table 3.2 contain the corresponding results. The data is qualitatively similar to
those of the previous section.

However, as we are interested in applying these algorithms to nonlinear evo-
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€ A€ P T | A5 =AY
0.0 | 0.906 +4.8 x 10~ | 5.841 | 0.012 | 0.000
050749 +7.5x 1073 | 2.029 | 0.034 | 0.156
1.0 | 0.748 +8.8 x 1073 | 1.121 | 0.051 | 0.157
1.5 0.762+9.5 x 103 | 0.747 | 0.058 | 0.143
20| 0.752+1.1 x 1072 | 0.507 | 0.078 | 0.154
25| 0.708+1.1 x 1072 | 0.380 | 0.085 | 0.197
301]0631+1.1x10"2|0.273 | 0.081 | 0.275
35|0.580+1.1x10"2|0.186 | 0.068 | 0.326
400498 +1.1 %1072 | 0.180 | 0.065 | 0.408

(a) Estimates of largest exponent X

€ X5 o Pt | AT —20
0.0 0.00£29x10"3 |3.665]0.016 | 0.000
0.5 0.022+6.1 x 1073 | 0.413 | 0.078 | 0.022
1.0 | —=0.15+5.9x 1073 | 0.393 | 0.074 | 0.153
15| —0.37+6.1 x 1073 | 0.240 | 0.069 | 0.375
2.0 | —0.63+6.4x 1073 | 0.180 | 0.063 | 0.635
25| —0.88+7.0x 1073 | 0.173 | 0.063 | 0.889
30| —1.17+7.5%x 1073 | 0.160 | 0.060 | 1.177
35| —1.42+79x 1073 | 0.153 | 0.058 | 1.424
40| —1.69+8.3x 1073 | 0.146 | 0.056 | 1.697

(b) Estimates of second largest exponent s

€ A€ - Fe | |A5— A
00| —14.5+2.7x 1073 | 8.618 | 0.005 | 0.000
05| —14.4+5.0x 1073 | 2777 | 0.019 | 0.133
1.0 | =142+ 6.0 x 1073 | 1.355 | 0.029 | 0.310
15| —14.0+7.9x 1073 | 0.861 | 0.044 | 0.518
20| —-13.7+1.0x 1072 | 0.607 | 0.063 | 0.789
25| —134+1.2x 1072 | 0.387 | 0.088 | 1.086
30| —13.1+1.3x 1072|0280 | 0.087 | 1.452
35| —12.8+1.4x 1072 | 0.260 | 0.084 | 1.750
40| —124+14%x1072| 0.186 | 0.070 | 2.105

(c) Estimates of smallest exponent X3

Table 3.2: Correlation times of the estimated Lyapunov exponents of the Lorenz flow peri-
odically kicked by perturbations which are uniformly distributed over cubes of side length
€. Estimated Lyapunov exponents are stated with their standard deviations.
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Figure 3.15: Estimated Lyapunov exponents for the Lorenz flow kicked by degenerate
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lutionary PDEs, the use of absolutely continuous perturbations may increase the spatial
roughness of the solution and reduce the efficiency of numerical integrators. In many

physical examples, we are interested in differential equations of the form
& = f(z) = Az + f(=z), (3.6)

where f is a smooth vector field which vanishes quadratically at z = 0. If the relevant dy-
namics is localized near the fixed point z = 0, then it would be dominated by the structure
of the Jacobian matrix A. When A is hyperbolic, that is when it is diagonalizable and its
spectrum does not intersect the imaginary axis, the stable and unstable manifolds of the
fixed point 0 are tangent to the eigenspaces of A. These eigenspaces offer a convenient
substitute for the asymptotically unstable subspaces in numerical studies of flows. This
is especially relevant for numerical studies of nonlinear parabolic PDEs, such as reaction-
diffusion equations and the Kuramoto-Sivashinsky equations, whose linear terms can of-
ten be exactly diagonalized by the usual Fourier basis.

Figures 3.15 - 3.19 and Table 3.3 contain the results for such a calculation for the
Lorenz equations, where the flow is periodically perturbed by a degenerate perturbation,

uniformly distributed with amplitude ¢, in the linearly unstable direction of D fiowen:(0)-
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Figure 3.17: Integrated correlation times of the Lorenz flow periodically kicked by degen-
erate perturbations of amplitude e in a linearly unstable direction. The solid curve is A1,
the dashed curve )y, and the dashed-dot curve As.
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Figure 3.18: Variances of ), for the Lorenz flow periodically kicked by degenerate pertur-
bations of amplitude € in a linearly unstable direction. The solid curve is )\1, the dashed

curve /\2, and the dashed-dot curve )\3
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€ At T Fa | JAE— N
0.0 | 0.904+4.9x 1073 | 5.721 | 0.013 | 0.000
05| 0.778 89 x 1073 | 1.108 | 0.052 | 0.126
1.0 | 0.764+1.1 x 1072 | 0.400 | 0.089 | 0.140
15| 0.637+1.0x 1072 | 0.193 | 0.072 | 0.267
20| 0.398+1.0x 1072 | 0.193 | 0.067 | 0.506
25| 0.120+1.0x 1072 | 0.173 | 0.059 | 0.784
30| —0.20+7.2%x1073 | 0.060 | 0.027 | 1.105
35| —0.48+6.6 x 1073 | 0.046 | 0.021 | 1.389
40| —0.77+ 83 x 1073 | 0.080 | 0.030 | 1.680

(a) Estimates of largest exponent A,

€ Ae T Fur | |A€ = A9
0.0 0.00+3.0x103 [3.538|0.007| 0.000
05| —0.194+59 %1072 | 0.387 | 0.074 | 0.192
1.0 | —0.68+6.3 x 1073 | 0.180 | 0.063 | 0.689
15| -1.30+ 7.2 x 1073 | 0.146 | 0.057 | 1.300
20| —1.91+80x10"3|0.126 | 0.051 | 1.915
25| —2.44+ 6.7 x 1073 | 0.066 | 0.030 | 2.441
30| —2.80+6.9x 1073 | 0.060 | 0.027 | 2.891
35| -3.23+6.7x1073 | 0.053 | 0.022 | 3.239
40| —3.56+6.7x 1073 | 0.046 | 0.020 | 3.566

(b) Estimates of second largest exponent Az

€ A€ T T | |A€ — AD|
00 —-145+27x10"2 | 7.483 | 0.005 | 0.000
05| —14.2+6.5x 1073 | 1.241 | 0.034 | 0.318
1.0 | —13.74+ 1.0 x 1072 | 0.500 | 0.078 | 0.829
15| —13.0+1.3x 1072 | 0273 | 0.090 | 1.567
20| —12.1+1.3x1072 | 0.200 | 0.076 | 2.421
25| —-11.34+1.4x 1072 | 0.193 | 0.069 | 3.225
30| -105+1.3x 1072 | 0.166 | 0.059 | 3.997
35| —9.944+1.0 x 1072 | 0.086 | 0.035 | 4.628
40| —9.324+1.1 x 1072 | 0.093 | 0.034 | 5.247

(c) Estimates of smallest exponent Xa

Table 3.3: Correlation times of the estimated Lyapunov exponents of the Lorenz flow peri-
odically kicked by degenerate perturbations of amplitude € in a linearly unstable direction.
Estimated Lyapunov exponents are stated with their standard deviations.
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Note that the intuition behind the use of the linearly unstable directions is, strictly speak-
ing, not applicable to the Lorenz equations, as the behavior of the Lorenz flow is not clearly
dominated by its behavior near the unstable fixed point at the origin. Nevertheless pertur-
bations in the linearly unstable direction at the origin appear to be as effective as pertur-
bations in asymptotically unstable directions, possibly because all that is really neéded is

random perturbations which are transverse to the stable directions with high probability.

3.5 An intermittent interval map

The Lorenz flow is rather special in some ways: although it is nonuniformly hy-
perbolic and possesses a complicated strange attractor, it exhibits very robust mixing prop-
erties and strong dissipation. In this section we examine a simple family of maps which
have properties that are expected to cause more serious difficulties.

Liverani, Saussol, and Vaienti [LSV99] have studied the family of maps

zl4 (22)%, 0Lz<1/3,

Ga(z) =
¢ 2z — 1, 1/2<z<1

(3.7)
When a = 0, G, is the “angle-doubling” map = — 2z (mod 1) and is uniformly expanding
(i.e. uniformly hyperbolic with dim E* = 1 and dim E° = 0). When o > 0, something more
complicated happens: Figure 3.20 shows a plot of the map G, for a = 0.999 superimposed
with a plot of the identity function z — z. The map is tangent to the diagonal at the origin
and fails to be expanding there. Fix z¢9 and a so that 0 < zp < a < % and let n be the
smallest positive integer such that G7%(zg) > a. Linearizing yields

Ina — Inxg o Ina —Inzg
In(1+ 1+ a)(2a)®) ~  ~ In(1+ (1+ a)(2z9)?)"

A straightforward numerical calculation suggests that, in fact, n ~ O (:rg “. (=In :ro)), SO
that the amount of time required for the system to escape from a small neighborhood of
the origin is much larger when o > 0 than when a = 0.

Liverani, Saussol, and Vaienti proved that for 0 < a < 1, the map G, has an
absolutely continuous invariant probability measure. Autocorrelation functions will not
decay exponentially fast, however; they can only decay at the rate O(n~1/**+!). When
a < 1/2, the covariance functions of G, are absolutely summable and one can prove a

central limit theorem. This map provides a simple example of intermittency coexisting
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Figure 3.20: The intermittent map G, for oo = 0.999.

with an absolutely continuous invariant measure. Note that the main idea of the proofs in
[LSV99] is to use random perturbations of G, to establish results on mixing rate, etc., in
the zero noise limit.

In Figures 3.21 - 3.25, numerical estimates of the Lyapunov’ exponent of G, is
shown for @ = 0.49. As can be seen, the addition of noise significantly decreases the
correlation time, as one might expect. Note that while 7,,, = co when € = 0, 7,,,(¢ = 0) is
finite because of its definition. It is also not surprising that in this case, 7.,, and 7, have
similar behavior as the noise amplitude ¢ is varied: the correlation functions of GG, unlike
those of the Lorenz flow, are simple decaying functions and do not appear to oscillate. This
corresponds to a pure imaginary correlation spectrum o, (Gg ).

‘ More dramatically, if we set 7o = 10712 and o = 0.99, z,, is only on the order of
1079 after 10° iterations. These calculations suggest that the addition of a small amount of
noise can help avoid some problems associated with intermittency in numerical simula-
tions of low dimensional maps, at the same time perturbing the desired averages by only a
small amount. A word of caution: this conclusion may not hold in more complex systems
in higher dimensions, as realistic physical models are likely to have more complicated

mechanisms for intermittent behavior.



72

0.67|
0.66
|

exp

0.64 S —— ,.‘i cosissbiboi

0.02 0.04 0.06 0.08 0.1
epsilon

Figure 3.21: Estimated Lyapunov exponents for the intermittent interval map with a =
0.49 kicked by uniform noise of amplitude .
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Figure 3.22: Decay times of the intermittent interval map with oo = 0.49 periodically kicked
by uniform noise of amplitude e.
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Figure 3.23: Integrated correlation times of the intermittent interval map with o« = 0.49
periodically kicked by uniform noise of amplitude e.
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Figure 3.24: Variances of \; for the intermittent interval map with o = 0.49 periodically
kicked by degenerate perturbations of amplitude e.
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Figure 3.25: Approximate errors for the estimated Lyapunov exponents of the intermittent
interval map with o = 0.49 periodically kicked by uniform noise of amplitude e.

€ A€ Ty fae | [N =29
00 [0621+7.1x10%]4573|6.298 | 0.000
0.01 | 0.655 +2.4x 10~% | 3.004 | 1.105 | 0.033
0.02 | 0.661+2.0x 107% | 2.336 | 0.910 | 0.040
0.03 | 0.665+1.9 x 10~* | 2.002 | 0.806 | 0.044
0.04 | 0668 +1.8 x 107% | 1.669 | 0.782 | 0.047
0.05 | 0.670 £1.5x 10~* | 1.669 | 0.598 | 0.049
0.06 | 0.672+1.5x107* | 1.669 | 0.592 | 0.050
0.07 | 0.673+1.5x 107% | 1.335 | 0.586 | 0.052
0.08 | 0.674+ 1.4 x 107* | 1.335 | 0.544 | 0.053
0.09 | 0676+ 1.4 x 1074 | 1.335 | 0.541 | 0.054
0.1 | 0.676+1.4x10~* | 1.335| 0.538 | 0.055

Table 3.4: Correlation times of the estimated Lyapunov exponents of the intermittent in-
terval map with oo = 0.49 periodically kicked by uniform noise of amplitude e. Estimated
Lyapunov exponents are stated with their standard deviations.
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Figure 3.25 suggests that E ‘5\(6) - A‘ = O(€%) for some §# > 0 as e — 0. The

analysis in Chapter 4 may offer an explanation for this behavior.

3.6 Scaling and white noise

When Algorithm 3.4 is applied to flows, there are two parameters in addition to
the choice of the form of the random perturbation: the noise amplitude e and the pertur-
bation period T'. Let us again compute the Lyapunov exponents i for the Lorenz flow,
this time periodically kicking the flow with period T" using isotropic gaussian perturba-
tions of variance e. Figure 3.26 shows the estimated exponents J\; as functions of the noise
amplitude ¢, for various values of the perturbation period 7. As one can see, there is no
apparent relation between the curves corresponding to different values of 7. However, if
we rescale the curves to plot S\i against In \/e/—T, then we obtain the plots on the right col-
umn of Figure 3.26: the curves collapse onto a single curve. Figure 3.27 confirms a similar
scaling for the exponential decay times.

Thus the estimated Lyapunov exponent A is a function of In \/€/T. This scaling
behavior is not really surprising, as the Markov chain generated by adding periodic gaus-
sian perturbations to the Lorenz flow, in the limit whene — 0, T — 0, and ¢/T — € €

(0, +00) converges to the solution of the stochastic differential equation
dZ = fioren(T)dt + €1dw (3.8)

where w denotes standard Wiener process [KP92]. A similar scaling behavior is expected
when the periodic gaussian perturbations are directed in asymptotically unstable direc-
tions, though only when In 1/¢/T is very small. An immediate implication of the existence
of this limit is that when we apply period-T' random perturbations of variance € to hy-
perbolic flows, we must have ¢/T" — 0 to guarantee the weak convergence of invariant
measures as € — 0.

Computationally, it is much easier to apply Algorithm 3.4 and its variants to the
Lorenz flow than to solve the stochastic differential equation (3.8). This is because SDE
solvers are generally more complicated than their deterministic cousins [KP92]. There is,
however, a theoretical advantage in relating periodic random perturbations to white noise:

there exists a substantial machinery for manipulating and analyzing stochastic differential
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Figure 3.26: Estimates of Lyapunov exponents as functions of ¢, for various values of T'. In
the second column, the data points marked by squares come from solving the SDE (3.8).



7l

1.0 2.0 340 4.0 5.0 6.0 7.0
epsilon (rescaled)

Figure 3.27: Exponential decay times for the autocovariance functions of S\k, Again, the
data points marked by squares are computed from the SDE (3.8).

equations, ranging from the stochastic calculus [RW00b] to a well-developed large devia-
tions theory [FW98] and the methods of modern PDE theory [Eva98]. We do not present

these connections here as they are part of on-going work.
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Chapter 4

Convergence and Related Problems

Chapter 3 demonstrated the use of random perturbations in numerical compu-
tations of statistical averages. The main effect of random perturbations is a reduction in
the amount of initialization time required for long time simulations. In a low dimensional
family of maps with a simple intermittent behavior, random perturbations also help nudge
the system out of the non-expanding region into domains where phase space expansion
dominates.

In order to provide a solid theoretical foundation for the use of random perturba-

tions in numerical studies of SRB measures, the following questions must be answered:

1. Let (zf,) denote the trajectory of the perturbed system and g : X — R an observable.

Does E [g (2£,)] converge to [ g dusgs as n — oo and € — 07?
2. What is the effect of random perturbations on the decay rate of correlation functions?

As was pointed out in previous chapters, Kifer’s Theorem (see 2.6) provides an affirmative
answer to the first question but only when the perturbations have absolutely continuous
transition measures. Furthermore, Kifer’s result provides no information on the rate of
convergence and does not apply when the transitions have singular transition measures.
This chapter provides a simple, alternate proof of a special case of Kifer’s The-
orem along with a rough error estimate on the convergence rate. The main result is an

upper bound in the form of a power law: there exists a constant v € (0, 1) such that

‘/gdue—/gdusm

=0(), (4.1)



'where Le is an. mvarlant measure of the perturbed system and pgg is the SRB measure
of the unperturbed system. For technical reasons, the proof-only works for absolutely"
continuous transition measures of convolution type, but the result is likely to be true for
the more complicated transition measﬁres'considered in Chapter 30

The estimate (4.1) is not hkely to be sharp: even in the ca

hyperbolic system like the Lorenz flow, perturbed 1nvar1ant measures appear to'converge '

with exponent v > 1 as € — 0 (see Figure 3.1). The harder problem of determining the -

on the correlation spectrum of h bol; terr__rs is left

4.1 Rate of mixiﬁg in Anosov systems

First, we need to review some standard définitions and:results::See Bressaud and

.o Liverand JBLO2] for: detalls and proofs. -

ket X Be a compact Riemannian manifold and F: X = X -a° topologically tran-_

: »sitive Anosev:diffeomorphism (see §2.2). For z ‘and iz’ .in X, let d° (:r,.a:’-) ‘be therdistance

between z and z’ measured along the stable manifold containing both:z and: z/(we set

AdS(xyxl) = oo, if 'vd:_':and‘.‘z'_' +do not lie on- the same stable »ménif‘oid);:‘ Fix § > 0 and
o Briex(0;1). Forg v X ;ﬁ R, define

du( x II)(& du (1’ fE’)

lg(x) gzh. . 42
| lg' ds(:c:c')<6 ds (CL‘ iII’)’Hs - . o ( . )
ng||s—|1gnoo+tgis, - o (4.3)

S ||gnu-ng||1+ sup M ) @«

it

e x;:(The metric.d*i is the exact analog of ds on unstable manifolds.) Let-C; (ﬂs) denote the set of
+all:measurable. fun,c;honsg»such.that lllls < o0. The following is the main resul_t of- [BLOg].

'{»Theorem 1. There exlst p051twe constants C and 6 <1 such that for all ﬂs e (O 1] g ¢ C (Bs),
‘ and hll;'hg E Ca(X R) wzth fhl dm = fh2 dm = 1 '

'/(9°F") hadm = /(QOF") ha dml<CHgHsmaX(thllu,Hh2llu) e (45). |

This theorem tells us how ;quickly an absolutely continuous initial distribution

relaxes to a statistical steady state:
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Corollary 4.2. The map F possesses a unique SRB measure yiszs. Furthermore, there.exist positive
constants C and 6y < 1 such that for all 9 € Cs(Bs) and h € C*(X,R),

| / (9o F™)hdm — / 9 ditss / h dml < Cliglha* Il 82 @6)

Ifwe take h > 0, [ h dm = 1in Corollary 43, then (4:6) tells us that

dist (F(h dm), dusss) < C||h]|.07
where - S .
dist (duq,dug) = sup

/gdu1—/9du2 .
liglls<1

Thus the exponential decay of correlation functions implies exponential relaxation to equi-

librium, as claimed above.

4.2 Error estimates

This section centains the proof of:(4.1): The basic ingredients are-a scaling ar-
gument due to Shardlow and Stuart [SS00] and the results stated in the prev1ous section.
For 51mp11c1ty the d1scuss1on is restrlcted to the 31mplest case of Anosov d1ffeomorph1$ms

systems on general manifolds.

Proposition 4.3. Let F : ']l‘d — Td be a transitive Anosov diffeomorphism and let pSRB be the
SRB measure of F Suppose pe(x ) isa famzly of probabzlzty measures sutzsfymg the following

condztzons
1. The measures p.(x,dz’) have the form :qe'(x,m;x_f);dx_f, that is.they are translation-invariant.
2. The distributions qe have standard deviation ¢. .

Let F, denote the corresponding random perturbation of F, and let mg be an absolutely continuous
measure. Set z;, \y = Fe(z3,) with initial condition o drawn from mg. Then there exist constants
C = C(my) (depending only on mg and F), B > 10g || DF||e, and v > |o (TF) \ {1}| such that

for all Lipschitz-continuous functions g : X — R, the estimate

Elo(e)] ~ [ 9 dusu| < Cllile) + Ll 17)
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- wholdswith exponent. L
. o Jogr
= oer =3 i, S . (4.8)

— loge+B .
Whenevern > 'n, = E-é’l‘%"l o
Proof. First, define the following Markov chains with initial condition zo drawn from mo:
xn—l-l = F (mn),

:xi+1 —F(zn)

e, |E[g(x5)] = [ g dpsre], can be split up in the following

(4.9)

way:

e ’E[ g(x; NES / g dficgs

'5";75-[@:(&;)]—;E‘:[g(fg;;)]m;- @

E [g(zn)] — / g dpiszs) - (4.11)

The rest of the proof consists of showing thatasn — +o00,~ = |
: 1. ._fthe.right,hand.-s_idde of:(4:10) grows at most 'exponential;ly fast; and .

2 the term (4 11) decays at least exponentlally fast

.v;«To estimate (4 10), observe that IIE[ n)] - IE [g(:vn)]l < L1p(g)lE [d (zn,mn)] Choosmg B

sufficiently large (on the order of log ||DF(a:)||oo) yields E [d (‘:cn),;x_n)],} < Ce. Jeﬂ’,‘, which
implies that '
) IIE [g(fvn) - lg(wn)]]l £C. Llp(g) e B (' )

4To estlmate (4 11) we can use Corollary 4 2 there ex13t posmve constants C’ and r<l such
that Cgp(n) < Cllglls - ||h||u -rI7l. As the initial measure mq is absolutely continuous, it has

* adensity'hy with respect to the Haar medstiré m: This means that
[£lotan)i - [ g | = | f 555 o [ g i

< Clliglls - llhoffu - ™.

,It' follows that

'. [E[g(zz-ﬂ’— [ odua| < € Lipla) + lall - lboll) - (e +77). 419)
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~We nieed to chiooseng ‘and ~ so that
e-efr<er (419

forallm <my+1land . ,
mee L (4.15)

for alln > ng, It is easy to check that the choice

_loge+8 .. o
_ Ibgr S ‘
Y= ogr—8 S S (417)
" -works. So , : B ' | | ‘.
| I E{g(z5)] - / 9 disso| < C (Lip(g) + llglls - [lhollu) -€” (418)

if no < <n<mny + 1. As no and «y do not depend on mo, the argument can be repeated with

f'mo replaced by the law my, of xfc for k > 1

-‘E-v[g.(mﬁl%)] / g dpisgs|

‘forno+k<n<no+k+1 Now -
)= / 0z~ P hr(e) m (@)
" / el — 2 (F4(&) de (DF'()) m (do')

/qe(:c Yhg_1(F~ 1(m—ac))det (DF x)) m(da;')

<C(L1P(y)+llglls hklu) - €7 T (419

The map F behaves like an expanding map along unstable manifolds." @ifi‘ereﬁti‘}a”ting in
the dlrectlon E“(x) shows that there ex1st constants a € (0 1) and b > O such that

Hhk+1|lu < aHthu + b. ST (4.20)
‘1t follows that
supllhk||u<+oo S 3 )

and the factor C||hg]|, in Equa'non (4 19) can be replaced by a constant dependmg only on
ho (or equivaleritly mg) and the map F. This ylelds ’ ‘ '

l'[gm)] / ¢ ditess <c<L1p<>+ng||>e'f @)

whenever n > ng = %. . O
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Corollary 4.4. Suppose the randomly perturbed map Fe has q, unzque invariant imeasure: € e Then

under the assumptions of Proposztzon 4 3,

/gdue—/g'du'sxz; =

As mentioned above, the argument should work in the more general setting of
Axiom A attractors. It should also work’ when X is 4 bourided éubset of R’ although in

'su'p
- g€lip

o). . (4.23)

the Euclidean case one must also take care to ensure that the probabrhty of escape from
the basin of attraction is sufﬁcrently small When the transition measures p.(z, -) are not of
convolution type, more effort is requrred to make the argument in the proof of Proposition
4.3 work. Specifically, more care is requlred in checkmg that sup,, Hhk| |l < oo0. Nevertheless
" the estimate is hkely to be true Also,. as pomted out earher (4: 1) is not likely to be sharp.
See Flgure 3.1 .
R Becausér < 1and 8> 0, the exponent y= _ dogi_ o generally falls between 0 and

logr -5
1. Thus the O(e?) error can, in principle, be rather large This rather pessumstlc predrctlon

- is not reflected in' numerical expefiments: errors: generally decay much more quickly as

€ — 0. It is an open problem to develop a perturbatron theory which can adequately
explain the results of numerical experiments on hyperbolrc systems, perhaps along the
“liries of [CCP97]. It would also Be very niceto havé sorhe 1dea of how to handle situations
where hyperbohc1ty is not uniform, especially in. systems exhlbltlng some mterrruttency

This is left for future work as well

43 Umque ergodrcrty

Proposmon 43 says nothmg about the umque ergodlcrty of the Markov chain zf,
for € > 0. It does say that even ifE possesses ‘several invariant measures, none of them
can be more than O(€") away from pisps when € is sufficiently small. In some cases, it is
p0581ble to establish unique ergodicity. d1rectly One case is when the transition measures

_ pE (a: ) is absolutely contmuous Another case is descrlbed below

Theorem 4.5. Let F X - X be a dzﬁ‘eomorphzsm possessing.an Axiom:A attractor K. Suppose
L F [kgis topologzcally transitive and let Hsrp be the SRB measure of F lk. Suppose pe(z,-) is a
" family of probability measures satzsfymg the followmg conditions:
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- 1. Thereexistsa C* family Y. (x) of smooth subrmariifolds of X:of diameter-X -:stich thatpe(z, -)
is absolutely continuous with respect to the Riemann measure of Y. (a:)‘ The dimension of
Y, (z) is assumed ’f6;5é57diiﬁ'W U Let us denote ’the de'ﬁéity ofp6 (:z: ) orn Y (z) by %e(z,)-

2. The family of manzfolds Ye(x) are everywhere transverse to the local stable mamfolds of FF -

with an uniformly bounded angle.

3. The transition densities q¢(z,2') are liniformily positive and are smooth- functions of x and

RN

2 eY. (z) wlth unzformly bounded derzvatzves

T 3. st \_.f; :

Then the random map F has a umque mvarzant measure for all suﬂiczently small €> 0

Proof The proof reliesa ‘coupling’ argument The mam idea-i 1s ‘due to Mattmgly [Mat02]

and is quite close to the work of Bressaud and leeraru [BLOZ]

v Let us. choose two. probablhty measures m. and ma and fix € > 0. .The proof relies
on constructmg a Markov chain (:cn, z ) such that z1 and z, are two reahzatlons of the
Markov chain with ‘the transition measure p (F(z), ) that is at each .step we apply the

deterministic map F and then perturb the result. The initial, condltlons 3:0 are drawn from

m fori = 1,2, and the joint process (z7, z2) will have the property that d (z;, ) almost

surely converges to0asn — oo.

BT

coupling inequality (see §2.5.1) to this setting. More precisely, fix h > 0 ar}d' let np, be the
‘smallest integer such that for all n > ny, d (z1,22) < h. Then

.IIE,:[g(az%g):—m'g(x%)][ﬁv S [E{gler) ~g(zh)in< nal P(n < ni)+
- |E [g(z}) = g(a2)in 3 nx]|-P(n > np):
< 2-||glleo - P(n<nh)+h

As n — oo, the first termv vanishes. .Since h was arbltrary, this shows that any two realiza-
tions of the Markov chain,with the same transition rule z. > Felead l.go‘,_th_e:s‘ame steady
state distribution, which must be the (umque) invariant measure. '

The coupling construction is easiest ‘to describe in the form of 4n algonthm Be-
.fore describing the algorithm, let us select 4 > 0o that the ;}oealiproduct, (z, aﬁ:()r [ [x, z']
‘makes sense whenever d(z,2') < 8. (Recall that-the local product [,-] maps.(z, ') to the
unqure point in the intersection of the local unstable manifold of z and the local stable
manifold of 7. See §2.2.1.) |
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i Algb_i-l"thm 4_.6;(coupling’for'sm‘éﬂlfe);-.f

FEer o , P R ot oy T X S RIS SPRRRELE S TR L

Y 3 Seth =P (41 )) fori =1, 5"

oLk sample 1n1t1al pomts xo from mi, for i=1,2 mdependently | Coep
'.2forn—12 d ) ' ' o
if d (a:,i, 22) > & then (there is no chance forcouplmg) SR
-.setz = F. (2 ;) fori=1,2 vindgpenggntly;,
‘,else ,
let®: Y, (z,) — Ye ( 2) be the stable holonomy map and let J <I> be 1ts ]acoblan

selact sample pomt & from e ( ) (wé will try to draw a sample from qe(:zn, - by

: . rejection sampling, using qe(zs,, -)- and,the holonomy map ®)...

9: set ¢ 1= sup "“j@%;‘_‘j(;)):qégin;’,j DRETTR
i if UNIFORMRANDOM() £ é‘l Jq)(x?; S:E‘zg <)1>(z')) ‘then (coupled for one step’)
CITe : seta: =z B '
12 setd?i=@ (x" )

3 else’ (no luck, try agum) ‘
g - setac =z

e

15: set 72 := F, (a:n 1) mdependently
16 endif ‘
T i7 endif
18: end for

To show- that this étlgofithrrf'pfodﬁc?es a joint procéss. (L, #2) with the desired
properties, weneed to show that as n ~006,id (2},22) — 0 almost sﬁrely. This is implied
by the following: o : | | '

“1: Every ‘time £y drid 2 come w1thm a"distance of ' of each other there is'a finite .

probablhty that they would couple for all future tlmes
... 2. The event (d. (a:n, z; ) < 6) occurs mﬁmtely often |

‘The probébility 6f coupling is‘determined by lifie 10‘»of~A1:g6'r‘l‘ithm 4.6. This-is-equivalent to
 the probability of sticcess of Tejection sampling (see [Mac98]): This probability is bounded
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below by

‘ | o qe( /)
P (a97) = inf | ( 7 J@(zl) e @(zf)))

e (21507 Ma))
J<I>(<I>, 1(ar:)) ge (z%,@) |

B 2 AN

c sup

" The ]acoblan J i is a-Holder’ contmuous for'sémea > 0 and the densitiés vary smoothly
 with #! and 22 Furthermore, the difference J& — 1 is bounded away from 0 and its Holder
norm is proportlonal to the C' distance between the manifolds Y (:cl) and Y.(z?) (see
[BPOZ]) If &t and z? afe coupled at step m, then they will li¢ on the ' same stable mani-

‘ fold At the next step, the apphcatlon of the map F w1ll contract the dlstance along the
The Holder contmulty of J & and the smoothness of the dlstnbutrons q€ (x ) ensure the

ex15tence of & p051t1ve constant ¢ such that

. pmin,...(ac;lr;x:?\) >emed®@ ) E L . (4.24)

Thus the probabrhty that a;lﬁand ¢? remain coupled to_r all time 1sbounded below by

[ e o dlohsh)® > gmei®/060 5 0. (4.25)
1=0. .. o .
So each time the processes couple there is a finite probability that«they will remain ¢oupled
forever. '
To see that z! and z2 will have 1nf1mtely many opportunities for coupling, fix z}

and define : :
'}1+1 [F(xn)7 n+1]

(4.26)
x(l) =z}.

Thus, :7:}, +1is a projection of z}, onto the unstable manifold of F(z}). Let d,, = d(3},21).
Then '
gzl ol
dnt1 = d(Tp11,Tni1)
= d ([F*@h), FE})]  FE(zh))
d ([F*@h), FE@h)|  FF(2h)) + d(FH(3}), FE(23)) + d(F¥(2}), F¥(a}))

< Ce* + Bd, + e
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By induction,
. Ce® +¢
dptp < — .
SLTle{ n} < 5

The images of a local unstable manifold under the action of the map is densein"

(4.27)

the attractor K in the following sense: for every open set U "_suCh that UNK # o, every >
0,and every z € K there exists an integer n large enough that F™ (W“(x)) nU %+ o Tc see
this, one only needs to check that the den51ty result holds for the correspondlng symbohc :
dynamlcs, and hence is also true for F : X — X. (The proof i is: fairly stra1ghtforward and .
is ormtted here.) '

Let S, denote the support of the dlstrlbutlon of 7L As :cl is the pro]ectlbn of xl
onto a the unstable manifold: of F(z}) and the trans1t10n measure ‘which defines our. ran-. -
dom perturbat1ons has a umformly posmve density on the- mamfold Y (F(xo)) it follows “

4 that the support of the distribution of Z itis thei 1mage of Y (F(xo)) pro]ected onto the unsta- .

‘ ble mamfold of F (aco) Because the manifolds Y, (a:) are transverse to the stable dlrectlons, |

. this projection must contain a small open nelghborhood of F(zo) in its unstable mam- ’

fold By induction, and by the density of i 1mages of local unstable mamfolds explalned,_'_‘
_ above, there exists an N such that P(z}, € U ) > 0. Applymg the same construct1on to'z2,
we see that for each & there is an N large enough that P (d (8%,7%) < 6/2) > 0. Hence

(d (z},2%) < 8) > 0if N is large and e is small. By the compactness of K and the con-
' t1nu1ty of pe(z, ) there exists a single N which makes. thls work. Thus there isa smgle ;
constantp’_. > 0 such that ' )

P(d(zh,7%) <8) 2 Vo | (a28)
for any (fixed) (x3, x%).‘ The rest is straightforw'ard:

d (shy, o2y) 2 6 almostalways)
Usno Mz (¢ (b, 22n) 26)).

<3 P (Orom (o) 29).

m=0

P(d(zl,z ) > § : almost always)

Since

0

P (@ (b ) 2 6) - TL P (4 (b By ) 2 by dln) @290

n=m
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- and Equation (4.28) implies that

P (d (‘T%n+l)N’$%n+l)N) > 5|$‘}1N’x3iN) S1-pw<l,

we find that
P (d (x},22) < ¢ : infinitely often) = 1.
O

This proof also works if the supports Y.(z) of the transrtlon measures have di-
mension strictly larger than d1m W, but the notation'becomes-a b1t messrer Note that-a
more detailed analysis of the probability distribution of the coupling trme ny, would yield
estimates of the decay rate of correlation functions for the'pertur'bed system;" tlﬁs-hhe of
attack is.part of on-going work. Note also that for technical rea‘sonS,-,P'ropositions 4.3 and
4.5 apply indifferent situations. They will both apply as stated only when thé Convelution-
type drstrlbutlons in Proposmon 43are everywhere transverse to'the stable subspaces (It
should be p0551ble to replace everywhere b‘y almost everywhere ”) 7 ‘

See Balad1 [BalOO] Bressaud. and L1veran1 [BLOZ] and Young [You98] for other

uses of the couplmg method in the study of hyperbohc systems Dav1d Grlffeath s thesis
[Gri78] offers a beautifully lucid introduction to the coupling method- for Markqv chams_.
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 The Kuramoto-Sivashinsky Equation

Preceding chapters: explo‘red the: éffec"ts"'ﬁf rioise inhyperbolic-dynamical systems

:;through numencal and; analytlcal techmques This chapter.describésitwo sets ofhizmerical

- :experiments on'the Kuramoto—Swashmsky equation(KSE):. - - -~ = 7 ot
-;atuw%,uazu+a821z+ﬁa4u =0 B 5 )

where the soluhon U= u(t T) s assumed to be perlodlc iz with pericd L and ‘a, B are

EEDE L

The KSE ongmally arose as a model of interface phenomena in classical contin-
uum phy51cs (see [KPZ86] and references therein). It also played an important role in the
tudy of infinite dimensional dynamics [Tem88]. This chapter describes the calculation of

some statistical properties of the KSE and studies the effects of noise on these quantities.

5.1 Properties of the KSE

In [Tem88], it is shown that the initial value problem (5.1) is well pos'_ed‘for te
[0, +00) with initial conditions in an appropriately chosen Hilbert space H and that solu-
tions remain bounded for all time. Furthermore, as a dynamical system in the an infinite-
dimensional Hilbert spaee H, Equation (5.1) possesses a finite-dimensional inva’riant man-
ifold A C H, called the inertial manifold, Wthh attracts all tra]ectones exponentlally fast.
The implication of this result is clear: even though the phase space H has mﬁmtely many

dimensions, the dynarmcs of the KSE can be prescribed by a finite number of vanables as
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it:becomies large:: PDES with inertial: manifolds. prov1de a relatlvely simple settmg in Wthh
\ ‘to extend the: statls’acal theory: of - dynamlcal systems to irifinite-dimensiofal problems
" Let ek(g;) = ¢i2mkz/L denote the usual Fourier basis, Hy the span of: (e ...,en),

-ahd Py projection onto IHIN - Then-in additien‘to the existence of inertial manifolds, one

. _orthogonal complement such that

o
R .

ER

Ev HuA(t) lP’Nu(t) - <I>N(IP’Nu(t))||m1 — 0 / (5.2) .‘

” exponentlally fast ast — oo. That is, asymptotlcally, we can‘write:
u(t,z) ~ Pyul(t,z) + @N(Plvu(t)); L e (5.3)

Furthermore, it is possible to approximate the maps 3 numerically [NTW(ll] The exis-_-

“térice ‘of inertial mamfolds 1mphes that any invariaht measire i of (CE 1yis supported ona

' "-ﬁmte dlmenswnal §iibinanifold of H'In the language of. optlmal prédlctlon see §1.3), the

“o - Gondifional Heasures of b condltloned ori Pjju are trivial if'oné takes N large enough they

are Dirac § measures positioned at oy (Prw).

P :l?e_wr_l,tm_g (5.1) in Fourier spectral variables yields .. .. = ;
- wok o
uuy_2° E:umm%m+wﬁm m%%W@, (5.4)
kK1 +ks=k- - . .

w=2m/L. - . SRR

Lmeanzmg about the fixed pomt w=0 ylelds

) . %wmzwﬁ@ m@%wm) .. (55

Thus, those modes with wave number

kN =L e 5.6)
wlV B8 .

are linearly unstable, while those modes with wave number k > N, are linearly stable.
- The trivial solution v = 0 is thus a hyperbolic fixed point of the KS flow. This linear
analy51s also. shows that the dimension of the inertial manifold is at least Nc,,,, since by
definition the inertial mamfold must contain all unstable degrees of freedom In addition,

we see that the map <I_>N :Hy — lI-]I exists only if N > Nclm_.
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v In the, opp051te hm.lt Ne & N physu:al scalmg arguments predict that the dy-
"namlcs of iy can be. modeled by-a: stochastrcally—forced Burgers equatlon [For75; KP286 '
- Yak81]:- , D dan, e et gt o TR
LS e ek e 6 6iu=+:-u6§u =V6§u+ Fifwne e e (5Y)

" wheré v i§ dh efféctive Viscosity constant and 7 is' 3 Whité ndisé forcing tfm. In view
of these facts, it is natural to ask if one may de‘frveEquéﬁon (57)from jﬁiiiiatibn' (5.1)
using a systematlc optrmal pred1ct10n procedure, such as the one recently suggested by
Stinis [Sti03]. In addition, there are other 1nterest1ng questrons regardlng the long-termv

.predlctablhty of the KSE:~  ~ fiiiois st et iy 1] : s L

1. As we increase N past the ‘cri_"tical‘:.,\{aljue; N_;;:how does (u — Pyu) become more

predictable in terms of lP’Nu? '

L2 To answer. the questlon above, it is, natural to begm by perforrrung numerlcal ex-.

‘penments But ‘how do we. tell 1f the systemlhas ‘relaxed” to equlhbnum in'such

experiments? What does one do in-the présence of multiple atiragtors (and hence

multiple invariant probability n‘lea_s‘ur_'es);fb SR

3. How can we quantify theuncertamlyleftm (u—]P’Nu) siven knowledge of lP’Nu? .
- One candldate is the relatlve entropy H (Y[X );»which measures the amount of in-
formahon in one random varlable Y wheft one has knowledge of another random’
variable X [CT91]. The amount of computational iresources reqmred to compute

Hu-P Nu|lP’ Nu) drrectly is proh1b1t1vely large, though

Thereisa long history of numerlcal 51mulatrons of the KSE W1th a partrcular empha51s on
the statistical propertles of solutlons and the® Verlﬁca’aon of (5.7) [SK]+92 Za189] How-
ever, it is difficult to assess the reliability of these early studles There is, 1 in contrast Very
detalled work-on the geometry of the KSE in recent years [J]KOl] '

Note that the KSE is mvanant__ under translahons in the_senSe thatif u : T x

[0, +oo) — Risa soluhon then s0 is

@) = o). 69

Furthermore, ifSy:H - lH[ denotes thé solutron map 6f the’ KSE then TZOSt(uO) =

: 'St (T230 ). Hence two solut1ons which are translates of each other rémain translates of each

' other under the KS flow. The umtarlty of the ‘translation operator TguO : lHI Ly H'and the fact.
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Flgure 5 1 The exponentral separatron of nearby initial condrtrons in the Kuramoto-
Slvashmsky equatlon fora =1and’8 =0. 085

B

_that soluhons are bounded for all t1me means that there are center mamfolds -associated

' wrth the translatnon mvarrance

: I".J

5.2 Parameters & initial conditions
*In studymg chaotrc dynarmcal systems, one of the most ba51c problems is the
| 'stabrhty of dynarmcal features under vanatlons of  the system s pararneters For the KSE, if
we f1x a =L =1and vary the ”hypervrscosrty ﬂ, the system erl undergo a sequence of
, blfurcatlons (See []]KOl St103] and the references there ) ‘The KSE exlublts very dlfferent

' behavror for drfferent parameters, and not all mterestmg features of this system are stable

B under small perturbatrons of the parameters For concreteness, the numencal expenments

‘in thls chapter focus on the parameter values
L= 27r a=1 ﬂ 0.085. . (5.9)

" For this set of parameter values, the KSE*exhlblts ‘exponential separation of nearby initial

conditions (see Figure 5:1). ‘As the KSE may potentially have infinitely ergodic compo-
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nents, the experiments use initial conditions of the form

up(z) =a-Re [(cos(&o) + isin(fp)) eiwom] .
‘a =ag- (1+107% . UNIFORMRANDOMY()),
ap =103, '

=I
6o =1

(5.10)

‘The initial condition (5:10) is a small long Wavelength excitation near the origin and may
o g1ve usa better chance of obtaining unamb1guous statlshcal results assoc1ated with a single

ergodic component

5.3 Lya'_punov exponents: comparison with existing results

‘The first set of experiments lnvolve calculations of Lyapunov exponents esti-
mated using EquatiOn (3.1) and Algorithm 3.1. The exponents Were computed using both
~ periodic (gaussran) k1cks in asymptotically unstable directions. Frgures 5.2 - 5.6 show the
results computed by per10d1c random perturbatlons in asymptot1cally unstable directions. .
In these calculations, the perturbed KS flow is sampled at intervals of T = 0.01 for 5 x 105
steps and plotted as a function of the noise variance e. The empirical decay time 7., 1S
defined here to be the timé requ1red for the correlation funct1on to decay to 5 of its value
at t =0,and the emp1r1cal est1mate Tint Of the 1ntegrated autocorrelatlon times is computed
by numer1cally 1ntegrat1ng the normahzed autocovarlance functlon from 0 to Texp usrng the
trapezo1drule : ' - ' A _ O

_ _As] in the case of the Lorenz flow, the exponentlal decay tlrne decreases w1th in-
vcreasmg € and T Temains more or 1ess statrc with i 1ncreasmg € (see Flgures 5.7 - 5 9.and

Figure 5. 10) Tables 5 1-5.3show that the standard dev1at10ns of the Lyapunov exponents

- do not decrease w1th 1ncreasrng € thls is also 51m1lar to the behav1or of the Lorenz ﬂow P

Note that the algorrthm did not produce the Lyapunov exponents in order of magmtude,
this phenornenon is explamed in [GPL90] In agreement w1th Frgure 5.1, the Lyapunov.':
: 'exponent data show that this cho1ce of - parameters produces (weakly) chaotlc dynam1cs.'. "
w1th very. strong contractlons and only two small positive Lyapunov exponents |

- The distribution of Lyapunov exponents may be compared with those computed
by Chr1st1ansen, Cv1tanov1c, and Putkaradze [CCP97] usmg more soph1st1cated per1od1c
. ;orb1t techmques Note- that they con51der the restriction of the KSE to the space of odd-
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000 | 0:488 - 0.000
0543:!:14><10 2 0.054
)it 057 3:x10-2 "1 0.090
0.606 +1.3 x. 1072102 0.117

00100 ] 0604£ 1.3 x 1072 65 | 0416 |

€ | Azﬁ - IAs — A9
{70:0000-|-0.001 T10% 1072 [ 1.159 |-0.033 | 0.000
0.0025| 0.175 + 1.5 x 102 0.238" 1| 0173

110.0050.|.0.169 £ 1.5 x 1022 |0:230..0. 0.167
10.0075 | '0.192 4 1.5 x 102 [.0:234 | 0.061 | 0.190
0.0100 {-0.185.+ 1.5 x 1072 | 0.230 | 0.059 | 0.183

R R : A5 | Texp Tint |)\€ )\g|
- :0:0000-70:00 2 1:3:x 1072 :1:150 {-0.038::-*:0:000 -
1010025 1| -=0:04 % 1.5.x 107 ~21| 0482 '0:046 | 0.048
0.0050 | —0.07+ 1.6 x 1072 | 0.204 | 0.048 | 0.070
0.0075 | —0.08 &= 1.6 x 1072 | 0:191 | 0.047 | 0.082

1 0.0100 | —0.11 +1.6 x 1072 | 0.182| 0.047 | 0.111

€ | A4
0.0000 { —0.11 +1.5 x 1072
0.0025 | <0.43+1.7x 1072 | 0.
0.0050 | —0.51 +1.7 x 10~2 | 0.23
0.0075 | —0.57 +1.7 x 102
0.0100 | —0.65 4 1.7 x 102

e .—”,
L AR

0.0025 | —2.72 +£ 1.7 x 10 10. :
: 1 0.0050 | —2.68 1.7 x 1072 | 0182 | 0. 060 | 0108
L 100075 | —2.70 £1.7 x 10~2 { 0.182 | 0.059 | 0:129
10:0100 | —2.69 £:1.7 x 10~2 -0,1;:78 0. 059 0 122

Table 5.1: Correlation times of the estimated Lyapunov exponents of the KS flow peri-
odically kicked by gaussian noise of variance ¢ in the ‘asymptotically unstable d1rect10n
Estlmated Lyapunov exponents are stated thh thelr standard dev1at10ns
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" '{-0.0000- —3 56+ 1.2 x 1072 |-1.163 | 0.038.] : 0:000
-} 0.0025: | -~3.57+ 1.5 x 1072 | 0:195 | 0.057- - 0:011
-1 0.0050: |- —3.55 & 1.5 x 1072 [ .0.191 | 0.056:| ~0.012
.+[.0.0075 | ~3.52+ 1.5 %x 1072 | 0.186 | 0.056' |. - 0:035
-]1.0.0100}: —3.54 £ 1.5 x 1072 | 0.186-| 0.055 | 0:021
e [T % T | e [N
".] 0.0000:}-—3.83 4.1.4 x 1072’ 0:338 1:0.054:]--0.000
.| 0.0025:{+~3.88 +1.4 x 1072 |.0.325 |-0.053:| 0.047
- 1.0.0050: |-—3.86 & 1.4 x 1072 |.0:321|.0.053; |- 0.028
4| 0.0075 (. —3.87 £1.4 x 1072 | 0.325 |-0.053:{- .0:035
. 0.0100-| —3.89 + 1.4 x 102 0312 ]:0.054 | - .0.050 .
S T | Tm | ]N§ =AY
+:/.0.0000. ] =4:03 £1.2 x 10~2 | 1:211 {:0.039 [. .- 0. 000
+1|-0.0025-|. =410+ 1.4 x 102 | 0.334 |:0.056 { 0.079
0.0050 {- —4.09 + 1.4 x 10~2 | 0.330| 0.056 | -0.060
10.0075 { -—4.08 1.4 x 1072 | 0.334 ‘,_;Q.056 {-.0.057
L0 0100 =41+ 14 x 1072 | 0.325 5‘0.0,5:6.; 0 086 ,
NET NS Top | T | 1A — X9
..+70.0000.] =257+ 9.8 x 10~3 | 4.9421.0.341 | -0.000
.| 00025} —25.7+ 9.6 x 10-3 | 1.980 |.0.317 |. .0.087
.. .[0.0050| —25.7+ 9.1 x 10~ | 1.394 | 0.319 . ,0.670
.|.0.0075. —25.7 £ 9.0 x 1073 | 0.838-|,0.293 | ":0.072
1/0.0100.| -—25.6 + 8.7 x 10—3 0.8121,0.277 |... 0.104
N - Ao Texp T | [A0 — Aol
- 70,0000 | =25.8+ 9.4 x 10~ | 3.899 | 0.331 | _.0:000
.} 0.0025| —25.7 9.2 x 1073 | 1.993 | 0.310.{- . 0.092
-:{ 0.0050 | —25.7 8.8 x 1073 | 1.402 [:0.318 |.- 0.071
0.0075.| —25.7 + 8.8 x. 1073 [.0.838 [ 0.292 |  0.078
0. 0100.;- ,._25 7+85x 1073 |-0. 820. io 278.: 0. 109

. Table 5.2:; Correlatxon times of the estimated Lyapunov exponents of the KS flow peri-
fodxcally klcked by gaussian noise of variance ¢ in the asymptotically 1 unstable direction.
Estimated Lyapunov exponents are stated with their. standard dev1at10ns
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€ A Texp T | |AS: ,\91|
10.0000 | —63.0£3.1 x 107 [ 3.904 | 0.335 [  0.000
0.0025 | —62.7 +2.9 x 1072 | 1.923-| 0.299.| 0.296
0.0050 | —62.7+2.8 X 1072 | 1.385 | 0.303 |  0.249
0.0075 | —62.7+£2.7x 1072 [ 0.829 | 0.280 |  0.252

0.0100 | —62.6+2.7x 10°% | 0.803 | 0.267 |  0.364

€ . Ay | Tep Tint_ ]A12 AL, |
0.0000 | —63.0 £3.1x1072 | 3.904 [ 0.335 | " 0.000
0.0025'| —62.7+2.9 x' 1072 | 1.923 | 0.299 | ~0.296
0.0050 | <62.7+2.8 x 1072-| 1.381 | 0303 |  0.249
0.0075 | —62.7£2.7 x 1072 | 0.829 [ 0.280 |  0:252
10.0100 | —62.6 £2.7 X 102 |'0.803 | 0.267 | 0.364

€ R - Texp_ | Tint I/\ls—)‘l?,l
0.0000 | —148.0 £2.2 x 107> | 5107 [ 0.356 | . 0.000
0.0025 | ~147.04 1.9 x 1072 { 1.906 | 0.288 0.196
0.0050 | ~147.0+1.9x 1072 | 1.376 | 0.281:| 0.164 |-
0.0075 | ~147.0.+£ 1.8 x 1072.| 0.803 | 0.255 | . 0.171.. |:- "
0.0100 | —147.0 £ 1.8 x'10~% | 0.751 Ao‘.zssi '?0-._246'

v €. D T N Te | T l/\14 /\14l
-0.0000 | —148.0 £2:2 x 10~ | 5.107 | 0.356 [~ 0.000
10.0025 | —147.0£2.0x 1072 | 1.463 | 0301 | 0:196
0.0050 | —147.0+1.9 x 1072 | 1.376 | 0281 - 0.164 -
1.0.0075 | —147.04+1.8x 1072 | 0.803 |.0.255 |~ 0.171
0.0100 | —147.0 i_i-.s-_x 102 | 0.751: | 0.238 0246

e | 15 +exp Tt | |>\ _)\15|
~[0.0000 [ —11.4 +2.4x 102 1.168.10.088 |  0.000 | .
0.0025°| =117 +£71.3x 10727 0.134.| 0.027 [ - 0.289 - |
0.0050°| —11.7 1.3 x 10~ { 0.130.| 0.026 |~ 0.283
1 0.00757| —11.7 £1.3 % 10" 2:___ 0.134 | 0.026 - 0.314.
0. 01001_ ~11.84£1.3x 1072 | 0125 0 ozsf B 0419;_

Table 5.3: Correlatlon times- of the: eshmated Lyapunov exponents of the KS ﬂow perl—-'
od1cally kicked by’ gaussian noise of variance e in the asyniptotically unstable dlrectlon
Est1mated Lyapunov exponents are stated w1th their standard dev1at10ns :
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Figure 5.8: Autocovariance functions for the local expansmn rates of the KSE. The flow is
periodically kicked in asymptotically unstable dlrectlons by gau551an random varlables of _

. variance.e = 0. 005.

50 100 - 150

Figure 5.9: Autocovanance functions for the local expansmn rates of the KSE The flow is
periodically kicked in asymptotlcally unstable directions by gaussmn random vanables of
variance € = 0. 01 '
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Figure 5.10: Spectral power densities C(f) associated with the 1’argés't estimated L_YaPtinjov_f
exponent \; of the KS flow, plotted against the frequency f; fore € {0.0,0.005, 001} S
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wave-number. modes because the relevant cycle expansions converge only for hyperbohc_ _
~periodic orbits:. while the center mamfold associated with the direction of the flow can
be factored out using a Pomcare:sechon, the center rnamfold assocrated with translation

invariance may cause problems for cycle expansions.

5.4 Mode-mode mutual information

The second set of expenments concern the statlstrcal dependence between Fourier
modes. Specifically, a pa1r of partitions =], " and = E}, of R is chosen for each wave numbers.
k. The partitions allows us to construct coarse gramed random variables ¢} k and & ‘whose -
probabllrty distributions are given by the- empirical. dlstrrbutlon of @ Uy over the partition
" ELxEL. Thatis, & is formally a Zp-valued random variable and prov1des a coarse-gramed
- description of. Re [Gg]. '

More precisely, this construction a551gns to each set E €'Ey the probablhty

P(E) d:e{/ XE-(ﬁk)f:"-d#s i

where  is a_n i‘nvariant measure of the KSE. Th‘is','in turn, allows us'to cornpu’te"the mutual

information between the coa‘rse—grained_random yar.iables'ékl_ and Eko:
1 (s 8ra) = H (66) + H (€12) = GACRENE Gy

(See-§2.3.1 for the definition of the entropy H.) The mutual mformatlon measures -the
amount of statistical dependence between two random varlables It is easy to check that

&, and &, are independent if and only if L (£k1,§k2-). = 0. .Natur_a_lly,_.rthe independenice .

of i, and 4, implies the independenceé of £k, and'fic'z', btit'the converse is false. What

is true is that if T (&, 8k,) = 0 for all ch01ces of the partltlons ( g

then 4, and 4y, are
* independent. o
The coarsé-grained mutual information (5. 11) prov1des a way to quantrfy the de-
gree of statistical dependence between the Fourier modes: of a: solution of: the KSE. This
gives us a starting point for addressing some: of t_he questions: _ralsed_ in §5.1. Because
of limits on computational resources, the experiments below*dse only partitions =, with
]Ekl = 4. That is, the histO‘grams used to construct the. coars'e‘-grained random Variabl‘es
pfk can use only 4'bins per (real; not complex) degree of freedom. The boundaries of the

md1v1dual bins are deterrmned adaptlvely by first s1mulat1ng the flow for0 < t< 100 to
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e T 100 00—
T2 e 100 | R0 ¢ 998X 10 L] v
19.94 %1071 | 9.96 x 101 1.01 9.88 x 10~1
102 19.93x107"]9.96x10""[9.19x 10-
102 52000 ] 9:81%: 30~ L 1a100.25 00
1.01 1.02 9.96 x 10T | 9.80 x 10~
. 3.08 . | .. 1.00- . 1.9.97x 10‘1..“ o100
103 _[9 91 X 10- ,_ _9 93 x1071] 105
L1 TR0 T TTI0l T 101
107 5 e 103 75 [oo 10T - ].9:00 %1074 ¢
e 108, 5 _59 96 X, 10‘ : z.9 87 X, 10‘ Lo LOL el
1.06 9 43 x 10— B 1 01 ‘

Table 5.4: The coarse-gramed entropy for each mode of:the KSE ﬂow -

ey i E

determine rough upper and- lower bounds on the real and i 1magmary parts of each mode

The mterval is fu.rther subd1v1ded to form a partltlon of R for each mode

Yias ugred

Tables 5 4 5 10 show the results of the computatlon Stat1st1cal errors in Tables
5.5, 5 7,and 5. 9 are computed by the formula \

érror = Z .Ap;C [gb pk)[ : ' » (5.12)

¢(:D) —plogz(P) - (513)

- “Here, py:isi the emplrlcal probablhty of the kth bin:irni the lustogram, and: Apk denotes the
~ estimated standard .deviation bf. the __empmcal,probablhty\.rcomputed,,_f‘,rom;the‘.lr,\tegrated‘.
autocorrelation times of the histogram:Note thatithe function:¢ isnot differentiable at 0

or 1, so this naive error estimate becomes meaningless when number’s’%véry‘«near the end

. f-pomts of [0, 1] arise: ThlS «does not happen-in these calculatlons

s T the KSE: possesses a unique invariant: measuré: ;- then the: translatlon Symme-
Ary of the KSE would imply that i is-also translation invariant. Thus:solutions of the KSE o

‘Wwithrandom initial.conditions drawn from js would fornia spacehme-statlonary stochastic

. .1process.. This, in: turn; would: nnply (see [Hel91]) that the modes aretuticorrelated random

 variables. Of course; the KSE is unlikely: to be.uniquely ergodlc; except_-p0531bly at_v_ery

special parameter values: Nevertheless the Fourier inodes would be statistically uncorre-
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19.14x 104
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Tablée'5:5 Error estimates for Table 5.4.

€1

L. | &3

vgl.

961 x 1071

0.00 [0.00

1€

10.00

71.05 | 0.00

{3

0.00-

0.00 | 1.12

€4' §5‘_

& | &7

&

0.00

0.00 |

0.00 | 0.00

&2

0.00 [.0.00

0.00 | 0.00

€3

~0.00

0.00 |

0.00 | 0.00

&

§ - | & | &

€ | 998 x10°T |

0.00°

. 0.'00 |

0.00

&4 000

9.94 %

10-1 | 0.00.

0.00

&6 -0.00

0:00

102

0.00

&1 0.00

0.00

1'0.000

£1.02

104

Table 5.6: The'coarse-grained mutual information the modes of the uni)erhirbed KS flow.
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’ AL AL A&

A& | 1.83x1073 | 857 %1073 | 8.83 x 1073
A& | 857x 1073258 x 1075 9.35 x 103

A¢; | 8.83x 1073 | 9.35 1073 | 1.43 x 10~3

A A A | A

A¢; | 6.37x107° | 6.61 x 1073 | 6.68 x 1073 | 7.24 x 1073
A& | 729 x 1073 | 7.05 x 1073 |'7.55 x 1075 | 8.00 x 103
Af3 | 7.37x107° [ 8301073 | 813 x107° [ 8.37 x 1073

Afy -] - A& | A& | A
| Aé, | 1.32'x 1072 | 538 %1073 | 5.63 x 107> [ 6.11 x 1073 |
1AL | 538 %1073 | 1.40% 107> 1 5.33 x 1073 | 6.27 x 1073 |
A& | 563 x 1073 5.33 x 1072 | '1.64 x 103 6.27 x 1073
Aé7 | 6.11 x 107° | 6.27 x 107° | 6.27 x 1073 | 1.77-x 103

Table 5.7: Error estimates for Table 5.6.

: RS & | o &

€[ 988x10~1 | 000  0.00
[& ] 000 |100] 000
&3 0.00; ]0:00 | 9.98 x 107!

L& | & | & | &
¢ [0.00 [ 0.00 |.0.00 | 0.00
¢ 1-0.00 |0:00 | 0.00 | 0.00
~[&10.00]0:00 | 0.00 | 0.00

& 100 000 | 000 |000
€5 | 0.00 | 988 x10"1 | 000 | 0.00 |
1% [000] 000 - |9.19x101 | 0.00 |
& 000 000 | 000 | 100]

Table 5.8: The coarse-grained mutual information the modes of the KS flow at noise level
€= 0.01. B SO |
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AL A A&
Ag | 768 x107%13.51 x1073]3.32x 1072
At | 351 x 103 {864 x 1077 | 3.06 x 1073 |
Ag [ 3.32x 1072 | 3.06 x 10°[632x107
A& A& | AL Ay
| A& [ 314'x 1073 [ 3.45 x 1073 | 3.35 x 10=3 | 3.23 x 103
Aéy | 286 % 10-2 [ 3.26 X 10~ | 2.98 x 103 | 2.99 x 103
| Ag3 266 x 1073 [ 3.06 x 1073 | 2.89 x 10 = [274x 103
, A&y Als Aég A&7
A&y | 7.06 x 1077 | 2.77 x 1072 | 2.63 x 107° | 2.55 X 1072
Ats | 2.77 x 1073 9.69 x 107% | 3.06.x 107> | 2.98 x 10~3
A | 2.63 x 1073 [ 3.06 x 10~ | 7.43 x 10~* | 2.80 x 103
A& |2 55 x 107% [ 2.98 x 10-3,] 2.80;><.10-3 6.80 x 107%
Table 5.9: Error estxmates for Table 5.8.
e | . 000 . . . 5.00x 1073 1.00 x 10~2
& | -1.53,1.80x 1071 - -3.01,-3.03x10°1 | = -2.73,3.26 x 107!
& | -277,1.05 x1071 -3.36,-8.57 x. 102 -3.35,2.33 x 10~1
& - 236,2.90 x 10T -3.75,1.15 x 1071 ~-3.96,-2.30 x 1071
& -1.72,1.46 x 101 - -2.26,-7.20 x 1072 -2.27,-831 x 1073
& | 7.94x 10" r ;5,19 x 1072 111, 707 x 1072 ~ -1.08,1.01 x 10!
& | -3.95 x 10~ T 167 x 1072 | -5. 10:x 107,339 x 102 | 524 x 107 1,9.34 x 102
& | -1.71 x 107,477 x 10-31 -2.59 x 10-1,2.73x 1073 | -2.48 >;<-_‘10—,1,1.70-x 10~2
€5 | -1.70 x 10 L,-1.13 x 102 | -2.48 x 1071,-3.02 x 10~° | 2,57 x 1071,2:10 x 102
& | -3.43x1071,1.07 x 10~2 | -5.68 x 10~ L7156 x 10~2 | 26.79 x 10-1,-0.52 x 103
€10 | -8.08 x 1071,-2.25 x 10 2 113,575 x 102 107,411 x 1072
1€ [ -173764><10_‘ ‘ 193,102 X 10°F 208801 x 102
€12 331,1.18 x 10 © -3.48,3.39 x: 10~ -3.95,-3.43 x 101
&3 -2.81,3.16 x 10T © -3552.02 x 10! -3.70,-3.62 X 10 1
14| -1515.18 x 102 -3.42,-3.51 x 107! -3.14,-9.67 x 10-2

Table 5.10: ;Parﬁtibns‘used- for this calculation.
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Log(C(1))

0.0 5.0 10.0 15.0

(a) unperturbed

Log(C(1))

(b) € = 0.01

Figure 5.11: Some autocovariance functions of the histograms used in the mutual informa-
tion calculation. The latter is quite noisy but does show faster initial decay.
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(a) unperturbed

0.0 10.0 20.0 30.0 40.0 50.0

(b) e = 0.01

Figure 5.12: Spectral power densities log1o(C(f)) for the correlation functions shown in
Figure 5.11.
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, J
lated if the KS flow were ergodic along the center mamfolds defined by orbits of the group

k actlon (ng o €T). ‘The numerical results above suggest that at least one invariant mea-
sure y may be translation- invariant. In partlcular Table 5. 6 suggests that the modes may
be nearly 1ndependent Incrdentally, though the srmple coarse- gramrng procedure used
‘hereis quite: crude it appears to be farrly effectlve at detecting the statistical dependence
of )omtly gaussmn random varlables, as one can see in sunple numerrcal experlments

Of course, any concluSIOns we may draw regardmg the statlstrcal mdependence
of the Fourler modes can only be. tentatrve because of the drastrc nature of the coarse—
gralrung As for the questions raised m §5.1, a more reflned version of thrs calculatron
would let us place a rough lower bound on the (coarse gramed) relative entropy of u—P NU

. with respect to Pyu.



. . effect of noise on the- correlatlon spectrum of a dynamical system. As global subd
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~ Chapter6

Precedmg chapters contam concrete, numencal examples and rough analyt1cal re- . - S |
’ ~.sults onthe effect of random perturbahons on hyperbohc dynamlcs The marn result is that T

'correlatmn functlons can be caused to decay much faster w1thout affectmg the expectah on -

values of observables w1th respect to 1nvar1ant measures. In order to understand fully t
' .,alg0r1thm1c usefulness of random perturbatlons, there is’ clearly much more to be done e
'bulldmg ﬁrmer theoretlcal foundahons and in performmg numerlcal exper1ments '

The first questron which arises from the dlscussrons in precedlng chapters is the" L

~sion techmques and Ulam-type approx1mat10ns of the transfer operator-are unhkely to 4

y1eld accurate estimates of eigenvalues inside the unit circle (see [BK98]), perhaps the
_approach is to d1rectly infer the correlation spectrum from the autocovarlance functrons . .';‘f
[MSW89 Man98; WMSSS] The question of how noise affects the correlatlon spectrum 15,
also: qu1te mterestmg from a theoret1ca1 pornt of view. In [BK98], it is suggested that tlle."

fb,fcorrelahon spectrum of general hyperbohc maps may riot be stable under certam types of-

grandom perturbatlons Nevertheless, it may be that for. suffrcrently smo th-random er- \ W

turbahons oné can develop a reasonably complete perturbatron theory for the correlat1 :n
‘spectrum perhaps along the lines of [CSP*+99]. Ore may also obtain rough bounds usmg IR
-rthe couphng method. It is-also of considerable practlcal and theoretlcal interest to- under-»- e

stand whether ¢ any stochastlc resonances may arisé from the types of random perturbatlons B

-.conSIdered here, parhcularly in the presence of 1nterm1ttency .
Another way- of approachmg small—norse problems is via the theory of large devi: B

atlons, Wthh studles the probab1l1ty of large deviations from the zero—n01se lmut Freldhn E
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.and Wentzell [FW98]vhave developed' a beautiful theory along these lines for stochastic
differential_ equations driven by avsmall amount of white noise. Their fesults, when_com-"
bined with the scaling rule observed in §3.6, may offer another approach to the analysis of.
Algorithm 3.4. '

Algorithmically, the discussion leading to the random; ertu bati 'a‘lgorithm |

suggests that it may be possible to develop analogs of Markov cham Monte o‘?;nethods ‘
for SRB measures. However, it is difficult to compute the local expansion coefficients J¥.

Nevertheless, _there may be specific situations where, with approprlate approx1matxons,

true Markov chain Monte Carlo methods may be implé res. Ttis par-'
ticularly interesting to explore analogs of other standard algorithms of statlshcal physms,
such as multlgnd Monte Carlo and Swendsen-Wang type algorithms. It is also 1nterest1ng
toltryito develop aﬂnumencal couphng algorlthm for- dynamiical'systems along the lines
- of-the “coupling: from thi past" technique-of Proppand Wilson [PW96~ ‘PW00]."Such an
- glgorithmwould: prov1de a'way:to dynam1cally estlmatlng the equlhbrahon tinieof a. long
“simulation: e s AR R T
- Mhiichof the work here éoncems.-d”issipativé Chaotie systems. The'effécts’of noise

oni' Hamiltonian (arid mote generally symplectic) maps and'flowsate miich imore dif-

v diciilt fo analyzetand understand. A particularly simple example which may provide

"elatsuitable startmg pomt for-iiumerical and -analytical exploratlons is-the'standard map_
“[SWOI ‘You98] ' ' : ‘

SK(I 9)

e I:?+ K si'nﬂ' : e '
(mod 27r) (6.1)
9+I+KSIII9 Py T

skamiple s ‘the cat's map (2.3), Wthh is ritich better’ understo"d‘and for

v 'whlch ons1derable progress has’ been made-on its quantiim: stahstlcal -miechanics in the
. sericlassicAl limit [FWO3 "Non03]. The effects 6f nioise on’ classmal and quantum ‘Hamilto-
h 'man systems present a fascmatmg sét of new challenges ' ‘ '
o Flnally, as explamed in’ the. Itroduction, thé original motivation for this work
WhS 6" understand the statistical steady states of d1551pat1ve ¢hactic systems froman algo— :
“rithrfiié- pomt ofview. In thé thiuch more difficult study of transient statlst1cal states, many

e 'mathematmal algonthrmc, and’ conceptual problems remain tifirésolved.
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