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Abstract 

Random Perturbations of SRB Measures and Numerical Stu4ies of 

Chaotic Dynamics 

by 

Kevin Kwei-Yu Lin 

Doctor of Philosophy in Mathematics 
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l 

Chaotic behavior occurs naturally in a variety of physical situations governed by determin:­

istic equations of motion. Deterministic chaos is characterized by the exponential separa­

tion of nearby initial conditions. Thus chaotic systems are intrinsically unstable, and this 

intrinsic instability makes the equations of motion computationally intractable over long 

times. In contrast, the frequencies with which a solution visits different states is generally 

stable under small perturbations of the solution and of the equations of motion, so the 

corresponding statistical averages can be extracted from long time numerical simulations. 

, - This thesis proposes a number of simple algorithms which compute statistical 

averages of observables by adding noise to deterministic chaotic systems. The results of 

this study show that the addition of noise can be beneficial in nurrierical studies of the 

statistics of chaotic systems: in addition_, to covering up numerical artifacts which arise 

from round-off errors, a moderate amount of noise can help accelerate the convergence of 

computed time averages of observable quantities: A simple scaling argument is used to 

derive a rough error estimate and the unique ergodicity of the perturbed process is proved. 

The effect of noise on the statistical properties of the Kuramoto-Sivashinsky equation, in 

particular theLy;;tpunov exponents and the statistical dependence of Fourier modes, is also 

studied numerically. 
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Chapter 1 

Introduction 

Chaotic behavior occurs naturally in a variety of phy$icalsi4J.ations governed by 
. . 

deterministic equations of motioni ranging from the dynamics of molecules [Gas98] tb the . .. ' 

motion of planets [SW92]. Ch~os in determinis~c systems is -characteriZ:~d bf the e~p()­
nential separa_tion of solutiohs with nearby· initial con:dl.tion:s. Thus chaotic systems, ~ni 

. . ·. ..· ' ·./ ' . :. . ... ' ' 

intrinsically unstable, and this intrinsic instability makes the_equations of motion com-

putationally intractable over moderately long time' scales hetause of the h'urt~ation and 

round-off errors inherent in floating point calculations: In contrast, the fr~quen~ies with 
.. . .•"J 

which a solution visits different states is generally ;tabie under §mall perturbatiol'is-gf the 

solution and of the equations of motion, so these frequencies and the $tatistical averages 

of observables can be extracted from long time mimerical simulations. 

This thesis proposes a number of simple algorithms which computestatisti~:al 
averages of observables by simulating random perturb~tioris of clete;mitj1stic chaotic sys­

tems. -The results of this study show that the addition of noise can be be!leficial in rm­

inerical stUdies of the statistics of chaotic syste~: in addition to cov~riilg up numerical 
•, ., . 

artifacts which arise from round-off errors, a modef:ate ani.ountot'noisecanhelp accelerate 
' ' 

the convergence of computed time averages ofo_bservablequantities. 

This chapter provides an informal ~verview b£ the Iil(l4t ideas-in this thesis. Pre- -

cise definitions can: be found in <;:hapter 2. Chapter 3 introdute$ the random'p~rhirbation 

algorithm for dissipative chaotic systems, providfu'g- a discussion (based on e~plicit n~­
merical examples) of algorithmic issues. -Chapter 4_ di§c:usses error esti~ates, and Chapter 

5 applies these techniques to an infinit~ dimensional system, ~the ~uramoto-Sivashinsky 
. , ·, r. . . 

equation. 
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1.1 Examples of random perturbations 

Let us begin by considering the map 

[ 

2e (mod 21r) l 
F(e,r,s)= t: 1 cos.(e)+t:zr 

E1 sin( e) + EzS 

(1.1) 

and its iterates on the domain X= { (e, r, s) : 0::::; e < 21r, r2 + s2 ::::; 1 }. The map Pis usu­

ally called the "solenoid map" for a reason which will become clear. It is easy to check 

that when e i=- e', then-fold iterates Fn"(e, r, s) and Fn(e'; r', s') will separate exponentially 

until the distance between them becomes""' 1 regardless of the values of r, r', s, and s'. 

On the other hand~ if e = e' then Fn(e, r,s) and pn(O', r', s') will converge exponentially, 

again regardless of r, r 1
, S, and S 1

• Thus, while mostpairs of initial conditi()nS will separate 

exponentially fast, some special initial cohditions will instead converge exponentially. It is 

natural to define the stable m~ifold of ( e' r' s).tq l:>ethe set{ ( e'' r'1' s') : e' = e} and to call 

the directions transverse to the stable manifolds the unstable directions. (See Chapter 2 for · 

precise definitions.) 

It is not difficult to prove that this map has an" attractor ": its domain X contains 

a compact subset K to which all trajectories converge as n --+ oo. Furthermore, it is easy to 

show that this attractor has dimension 2: 1. However, a naive numerical implementation 

of the solenoid map yields Figure l.l(a). A closer examination of the resulting immeri­

cal data shows that all numerically generated iterates of the solenoid map converge to a 

vnique fixed point though the system has no stable fixed points. This problem is easy to 

understand: The first coordinate of the solenoid mar SiD;lply iterates the one:.dimensionql 

map e f-+ 2e (mod 21r). Clearly, in finite precisiol} arithmetic, iterating this map wiU even­

tually produce a sequence ofzeros. 

There is an easy solution to this problem: At every step, add a small amount 

of noise to the angle e. The resulting pictme is shown m Figure l.l(b). The addition of a 

small amount ofnoise helps cover up the fact that digital comput~.rs ccm only manipulate a 

finite amount of information. Moreover, this simple example.points out another important 

property of chaotic systems: noise added in th~ direction of the stable manifold is simply 

damped out, while noise injected in the unstable directions is fed backinto the system, 

making more efficient use of randomness. It is therefore not necessary to add noise in 
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Figure 1.1: Two ways of computing the solenoid attractor. 
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Figure 1.2: The Lorenz attractor. 

all directions. This observation becomes important when we consider dynamical systems 

defined by partial differential equations, as the addition of noise may impose constraints 

on the efficiency of numerical integrators . 

A second reason for adding noise to a dynamical system can be illustrated by the 

Lorenz equations: 

(1.2) 

X3 - bx3 + x 1x 2 

Let us assume, for the moment, that a= 10, r = 28, and b = i· It has long been observed 

[Lor63] that with these parameters, almost every initial condition generates trajectories 

converging to the "strange attractor" in Figure 1.2). Recent work of Tucker [Tuc99] has 

shown decisively that the Lorenz attractor really exists and is not a numerical artifact. 

As will be explained in Chapter 2, the existence of a robust compact attractor 

corresponds to the existence of a well-defined statistical steady state (invariant probability 

measures). To extract statistical information from the equations of motion, it is natural 

to perform long time numerical simulations and compute time averages of the results . 

The decay rate of autocovariance functions plays a fundamental role in determining the 
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Figure 1.3: The autocovariance functions C1,1(t), C2,2(t ), and C3,3 (t) for the Lorenz system 
(1.2) . Two of the curves (C1,1 and C2,2) practically coincide and cannot be distinguished in 
this plot. The third curve C3,3 decays much more slowly than the other two. 

accuracy of this procedure. Roughly speaking, a faster decay rate means that one can 

obtain more "effectively independent" samples per unit of computation time. (See §2.5.2.) 

The autocovariance functions of the coordinate maps of the Lorenz system are 

shown in Figure 1.3. One can see that correlations decay much more slowly along one 

axis than along the others. This is because vertical motions along the attractor occur on 

a fundamentally slower time scale than motion in the other two directions. This slower 

rate of decay limits the efficiency of time average computations. In high- and infinite­

dimensional systems, this problem is expected to be worse. 

Suppose now we can estimate the unstable directio;,_s for the Lorenz flow, and 

periodically kick the system in such directions with a uniformly-distributed noise of am­

plitude E. The corresponding average values of the X3 coordinate is shown in Figure 1.4. 

Clearly, the expectation value of the third coordinate X3 in the perturbed system converges 

smoothly to the expectation value in the unperturbed system as E ___, 0. More importantly, 

the correlation decay times are affected by the perturbations as well, as shown in Figures 
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Figure 1.4: The expectation value J X3 df...LE(x) as a function of the noise amplitude E. 
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The spectral densities become more smooth as the noise amplitude E increases. 
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1.5 and 1.7. These results suggest that one can decrease the correlation times of a chaotic 

system with the introduction of noise, while incurring only small and controllable errors 

in the desired expectation values. 

1.2 Why chaotic systems? 

The idea of using random perturbations to reduce correlation times is very natu­

ral and is apparently applicable to a wide range of deterministic and stochastic dynamical 

systems and their invariant measures. Nevertheless, the effectiveness of random perturba­

tions in numerical simulations depends strongly on the dynamical system and the invari­

ant measure under study. 

For example, the Langevin equation 

dx(t ) = - ax(t ) + Edw (t ), 

x( O) E N(O , E) 

(1.3) 

has a unique invariant measure: it is the standard distribution with variance E. This Ito 
stochastic differential equation defines a stationary Markov process whose autocorrelation 

function is 

C(t ) = E . e-altl . (1.4) 

This clearly has a decay rate independent of the noise amplitude E. 

Remark 1.1. If we think of the Langevin equation as an effective equation of motion for 

finite-dimensional system coupled to an infinite-dimensional heat bath, then the decay 

rate a and the noise size E are related through the Einstein-Smoluchowski relations, and an 

increase in noise is accompanied by an increase in decay rate. 

1.3 Motivation and related work 

As stated above, one motivation for computing statistical properties of chaotic 

dynamical systems is their sensitive dependence on initial conditions: only statistical prop­

erties are effectively computable. Familiar geometric structures associated with chaotic 

dynamics, such as strange attractors and invariant manifolds, are naturally related to the 

statistical description of dynamical systems as well. 
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A second; Jonger~range, motivatiort is that 1nany physical• problems' ihvolve an 

extremely large number: oLdegrees ,of freedom; :only a small:·subset ·6Lwhiah:·is of real 

scientific interest. However, the "uninterestfug"-·:degrees of freEidoinc:may involve such 

small time and length scales as to make direct numerical simulations difficult. Thus, 

there is a great need for dimension-reduction,te~.Jmiql1~S whic.l,l; ,cap p~edjct the,dynam-
. . ' -7~·,··. -,. . ,, . . ,.. ,. \ .. ,,• ·' ·~· " 

ics of a system using only partial knowledge of its state. A simple approach is to com­

pute the conditional expectation .of the future behavior ,of a' systehi: u~iflg known initial 

data: this is the ·minimum mean-square err~r estimator 'and !s 'oplimal m the sense of 

' least squaresi This problem of optitrta1 predicti0hilivolves'tlie ttahsi~ht statisfibil behav­

ior of :physiCal systems and is' thus· dosely t~lated·to nonequilibr'itim statisti'ecil m~chanics 

[CHK02, Cho02]. It presents a far more challenging set of mathematiealandcofuplitational 

problems than those outlined in the pr~ee(Jin.g·:p;atagraph;: and "<rdeep~r understanding 

of statistical steady states is necessary for solving the problem of optimal prediction in 

dissipative systems. This .is because such statistics supply the prior information needed 

for computing conditional expectations, and beda.use the effectiveness of existing optimal 

. pred.icti()p algorithm~ depends pn the statistical struc~re of,the dynamical system under 
• • •· • ; ,; , • • . ' •. -·;.. ''· . • . ,r 

study. 
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Chapter 2 

Review of Hyperbolic Dynamics and 

,Ergogic_ T~_eory 

'-· •/ 
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. This, chqpter reviews some pa~kgrorm,d: m'!t~rial needed in: the rest of the thesis. 
· .. · , : ' .- · .. ; . · c· ' · · : · : ; · · ' · ·: · · · ~ : ~ ' ' ' ·· · .. 

W.~th.th~ excepilon of §2.5.2, most Qf this mat~rialconsists of Btan.da,f4;results ~d defini-

tionsJrom dynamical syst~~ t1lepry, with a special focus on the statistical steady states 
. . - • ' ' ] . . . . . • . . . ~ • ; •• • . . ' - ! 

ofhyperbolic sy~tems. For mor~.l?alanced introductions to this subject, see Eckm<tnn and 
• . • • • . :- . . • . : ••. ~ . : -. 1 . . ~ • ' . . . •. ' .. ' . \. 

R!lelle [ER85l,i;lnd_yo~g [You95]. See alsp the text by Katok. and Hasselblatt, [KH95] for a 

th<?roughdevelopment of the geometric theory of hyperbolic systems and Guckenheimer 
.. , • • ',; ,: 'v••' ,' > ''• •,1 ! '•' > -' ·,, • '<• 

anci.Holm,~s [GH~3] for applicati()ns of geometric methods to concrete ~Xpmples. Section . . . . . . .. . ~ 

2.5.2, which proyides a quick introduction to Marko~ chain Monte Carlo methods, follows 
. . .. ·; . . , .. 

Sokal [Sok97] closely. 

The following discussion assumes ·sorrie familiarity with the basic concepts of 

differential geometry [Spi79] and measure theory [Fol84], in addition to some knowledge 

of elementary probability theory. 

Some notes on notation: 
.. :• 

1. Follow1rig standard practice In differential geometry, tangent vectors· are' identified 

with differential opera.tors. Thus, a ~t vector tangent to a.s~bmarufold 6f JRn in the 

direction' of XI is 'written:' ~S <,0 ~ 
uX1 

2. Let X_alld. Y be measurespaces, let J.L be a measure on X, and let F: X --7 Y be a 

measu,rable map. Then the p:ush-forward F*J.L o(.J.L byF is the measure on Y given 

byA 1--t J.L(F-1(A)) for all meas~able sets A c Y. 
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3. We will frequently need to consider the n-fold composition of a map F with itself · 

This is denoted by pn. 

2.1 Basic theory of dynamical systems 

2.1.1 Flows and maps 

Let X be a coo manifold and f a smooth vector field on X. Consider the initial 

... :V:i:llue problem· '· 
x(t) = f(x(t)), 

(2.1) 
x(O) = xo E X., ., , . 

_;. ~ •• • _, :· > ._·.. •• :·-_-/'- ~-,'1·:.:. ' : ~--
. Under suitable conditions, for example when X is compact and has no boun'dary, Equation 

(2.1) has a unique solution for all timet 2: 0. Equation (2.1) thus defines a map¢>{ (xo) via 

¢>{ (xo) = x(t). (The superscript fin¢>{ will be dropped whenever no confusionis likely to 

aH~~:) Th~·m:~p ¢{{to)' is a srhooth function' of tt, fo) and salikfi~s 4>l(xo) = Xo. Replacing 

j with'~{sh8ws'th<it¢{isdefined for all t E JR, that~{ is ihvertibi~ with srn'oolHinverse, 

arid thit cifJ{Y~1 -~ ¢Lt. This family of diffeomorphi~rh5 £orin¥ a. one-pat~ineter group: 

¢{~~· =; /j){'o ¢>{.The solhtioh map¢>{ is also called the Hnie-t fioW;map, arid'ffik~e~tor field 

/is said' to gen~l'ate the flow fp{. Asubset K 6£ X1 is'ii\~~riant if ci>{(k), ';Jj;( fcit·~iFt E JR. 
. , . 

bynatnit~l systems theory focuses on' g~6Iiietrlc and topological' stiticfures in-

dut~d by i:i: flow iPt on its phase space X rath~r than O'n ;the analyticafptdp~rti~~ of indi­

vidt.iahbiutions~ As ~ri exkmpi~;corisider the'L6rert~ system (i.!i)from t~~;fntt6dtiction: 
!!'·· .'(_ 

.. \" 

±2 r,x1 - ;r;f ~- ~1X3 

X3 -bx3 + x1x2 

For suitable parameter values like u = 10, r = 28~ and b == i' almost every initial condi­

tion produces a picture like Figure 1.2. Trajectorie~ :t:!lpidly ~pproach a b;utterfly-shaped 
• ' c • ,· " < . ' . . . . ! ·.' - ·' ; -. ,: ; ·': ·, ,. . .-...... ' ; _;- ' . ~-' . ~ ' . ~ ' 

compact set known as the Lorenzattractor, denoted here by KLorenz· The set KLorenz and a 
., ·.: •' ! ~ . ' . ' .~:. ' . . . . '.. ' ' - . ' : :."-_ . i ' . . .' ' _. .- .. :' :. ,-.. ' . ' '' . - ' 

small neighborhood around it thus contain all the informc:tti.on r~~e~~t;tt to :the long-time 

behavior of the Lorenz system. On the other hand, Figure 2.1 demonstrates.that nearby 

solutions of the Lor~llZ systeln tend tb diVerge exponentially fast in tiin~ '(the :veiticaJ. scale 

shows the natural ·logarH:hm of the distance). 'Thust ihdividtial trajectories ·of the Lorenz 

sy~tem are unpredictable over moderatelflohg time intervals, even thotigh the existence 
! 
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;of the attractor ·and an associated invariant probilbility;meastire'~invariant measures are 

defined later in this chaptet)'constl-aints trajectories lo visit -regions of phase space with 

definite frequencies, facilitating the definition and computation of statistical properties of 

trajectories over long time intervals. 

Let P(z) d_enoteJ:lle set r: ... 

(.' 

H the constant z; is chosen appr<:>priately, P( z) and K Lo"'F_ .~W- ~~er~e:ct inA ;way whiFh guar-

antees that almost every trajectory of the Lorenz flow intersect~._.,e(z) ~telymany times 

(see Figure 2.2(a)). Poincare realized that in such a situation, one can reduce the dimension 

of the dynamical system by recording only the intersectio!l!' ~fWqi'id.ual traject(_)ries with 

the plane P(z). This-defines a return inap (or Poincare map) RJ,z .= P(z) -+ P(z) and a 

retuin time function T1,z : P(z) ~ [0, +eo], so that 
. ·J; 

TJ,z(x) = inf{ t > 0: qyt(x) E. P(~)}, 

Rj;z(x) = ¢>r1,z(x)(x). 

I I 
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The result is Figure 2.2(b). The two segments in the center represent downward crossings 

of the section; the segments on the left and the right side of the figure represent upward 
( 

crossings. 

This simple andpowerful idea is called the Poincare section [GH83, OttOO, SWOl]. 

It is a valuable tool for understanding the structure of invariant sets. Poincare sections are 

especially usefulwhen the dimension of the phase space is relatively small (rv 3), although 

sometimes sections can be constructed for low-dimensional invariant sets embedded in 

high-dimensional phase spaces [CCP97]. 

An additional benefit of Poincare sections is that they reduce problems involving 

flows to problems involving maps, and maps are sometimes easier to analyze than flows. 

Furthermore, some properties of flows, such as the existence of natural invariant measures 
. . 

and ergodidty (these concepts are developed below), can be deduced from the Poincare 

map. Finally, itis possible to start with a map F .: X -+ X and construct a manifold Y 

and a vector field! on Y such that X can be identified with a subset of Y and F arises 

as the Poincare map of f. This construction is called a suspension. It is not needed here; 

interested readers can consult [KH95]. 

Another way to obtain maps from flows is by sampling a flow at periodic inter~ 

vals. That is, simply fix a constant T > 0 arid set F = </Jr. Maps define discrete-time 

dynamical systems in the same way vector fields define continuous-time dynamical sys­

tems: 

Xn+t = F(xn). 

Let us denote then-fold composition of P with itself by pn, so that Xn = pn ( x0). Ob­

serve that random perturbations of the time-T ~ap ofa flow correspond to periodkaiiy -

"kicking" the flow by a random displacement. A large class of the random perturbations ·-
. . 

studied here fall into this category. For simplicity of notation, almost all of the remainder 

of this chapter concerns m~ps. 

2.1.2 Invariant measures 

Let fl. be a Borel probability :measure on the manifold X and suppose we are given 

a vector field f on X. The measure fl. is invariant under <Pt iffl.(<Pt1(A)) = Jl.(A) for all Borel 

sets A c X. Equivale~tly, one can say that the flow <Pt preserves themeasure fl.· If, instead 

of a flow, we have a map F: X-+ X, then fl. is said to be F-invariant iffl.(F-1 (A)) =fl.( A) 
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for all Borel sets A. It is easy to check that the support of an invariant measure is an 

invariant set. The converse is not quite true: invariant sets do not always support invariai\t 

probability measures. Compact invariant sets, however, do support invariant measures. 

For example, suppose x0 is acp~t:;iodic point ofF with period N, so that FN (x0 ) = x0 . 

Then the measure k L.f:::C} bxk\~- ~!}invariant measure qf F. As a special case, every fixed 

point ofF supports an invariaJij¥ff~asur~_.,,, ·. 

Recall that the space of ffbb:~l~fftfy measures wlth the total variation norm is iso­

metrically isomorphic to the space.bFBbtmdediiri~ar fUnctionals on the space Cb(X) of 

bounded continuous functions with the sup riortn. Thisitesult is the Riesz Representation 

Theorem, sometimes also called the :Riesz-MarkovTh~()rem JFol84]. One conseguen:ce of 

the Riesz-Markov Theorem is that a measure pAs inva;i~nt under the flow <Pt if and only if 

. J g 0 <Pi··ilp = J g dJ-L (2.2) 

for all bounded continuous functions g and t E JR. In later sections we will discuss invari- · 

ant measures of Markov chains, whiCh can be defined in a similar way: a measure J-L is 

invariant for the Markqv chain (xn:)iflE [fg(xn)dJ-L] = J g dJ-L for all bounded measurable 

functions g and ail n ~ 0. 

Poincar~ sec'tipns also have a probabilisti~ interpi~tation: they provide visualiza­

tions of the support of irh;ariant measures conditiongd by a given constraint. For example, 

the, picture in Figure 2.2(b) s~ows the support of ah invariant measure of the Lorenz flow 

conditioned on x3 = .z. As explained in the Intto~uction, part of the motivation for this 

work is a desire to understand th~-~pplicability of optimal prediction methods to highly 
' . . ' ~ . 

nonlinear PDEs. ,Thus conditional probabil~ty m~a.sures, ahd by extension Poincare sec-

tions,_ will be of ihtrinsic interest in later disdi~sions. of the Kuramoto-Sivashinsky equa­

tion. 

2.2 Hyperbolic dynamics 

A common (though not universally accepted) definition of chaos is that almost 

all trajectories with nearby initial conditions diverge exponentially fast as t ---> oo. The 
' 

Lorenz sy~tt~m is, ~(}otic by this definition, as .was sl}own by tile results in Figure 2.1. 

However, despite the apparent simplicity of the Lorenz equations, it is very difficult to 

prove rigorous results concerning the properties of invariant measures and invariant sets 
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, , .· of the Lo:renz flow. ,For this reason, a shnpler class of dete~sP<:. ch<!otic systems called 

· . , hyperbolic -dynamical system_s has come.~to occupy a ·centraFplace in mathema1ical studies 

; ~ . 

The simplest example. of a hypeibolic,:~y:ba:mical.systerri. is the diffeomorphism 

Feat : 11'2 
-+ 1!'2 defined by 

(2.3) 

where the 2-torus 1!'2 is tile unit, squa:re [0,1] x [0, 1] with periogic boundary conditiorts. 

The map Feat is the Arnold cat map and the simplest example of a "hyperbolic toral auto­

morphls~." It Ka~ a \ieljr simple dynamical behavior. First, note that the jacobian matrix 

of Feat is simply 

·--It has-eigenvalues. 

A±=3±J5 
. 2 

and norm~llzed eigenvectors 

For each X E 1!'2 , define 

Wu(x) = {x' E 1!'2 : (x'- x) ex: e+ (mod 1)} 

W 8 (x) = {x' E 1!'2 : (x' -c- x) ex: e- (mod 1)}. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

As 0 < A- <: 1 < A+~ if two nearby but distinct points x' and x" belong to the same set 

Wu(x)I then d(Fc~t(x'),Fc~t(x")) will.increase exponentially until it is of order 1, while two 

nearby points on W 8 
( x) will converge to each other exponentially fast. The set wu ( x) is 

nat'utally called' the unst~ble manifold (and W 8 (x) the stable manifold) of Feat at X. Note 

thatthesets wuiiind W 8 are invariant under Feat in the sense that Fcat(wu(x)) c wu(F'cat(x)) 

and Fcat(W8 (±)) c W 8 (Fca:(x)); this is why they are commonly referred to as invariant 

manifolds or invariant "foliations." 

I 
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··' •· )More geheral1y;letX:hea coinpactsmoothn-mahifold and P::-X. ~·X'asmooth 

.•·· 8iffeornorphism. <Slipp'Me K c X is in:varhihLt:ihder F.: ·the 'map· iF :is ·said; tO be Uni­

formly hyperbolic on K if there exist two continuous families· of ·vett6r 'spa<tes':!EJu and E 8 

·satisfYing' the following conditions: · · · ·' , · · 
) ·.'" 

1. The relations E'!; c TxX and E~ c TxX hold for all x E K. 

2. The tangent spaceTxX of X at x is, equal to th~ $Uffi of the vector spaces E'!; and E~ 
I 

for all x E K. 
. . . 

3. Fdr all x E K, DF(i)E'!; = EF(x) and DP(x)E~ = EJ;(~)· 

4: There exist ~or,t.Stai).ts c >. p .and 0 ;< ~ < .1:,~~<:~ .~~t IJD,f-n{x)J]E~II ,::; CAn and 

IIDFn(x) IE~ II:::; CAn for all x E A and n 2: 0. / 

An F-invariant set K on which F is hyperbolic~~ a hyperbolic set for F. If there exists an 

open neighborhood U of K such that F maps U into itself and for all x E U, d(Fn(x), K) ~ 

0 as n ~ oo, then K is an attractor. A hyperbolic attractor ofF such.thaHl:teset of periodic 

points ofF are dense inK is an Axiom A attractor. In the special case when F is uniformly 

hyperbolic on the set K = X, the map F is said to be an Anosov diffeomorphism . 
• ~ 1 : •. ' ·' . • ' . . "; • '"• .. , ' :·, ' .I • ' f ' . ' 

2.2.1 Stable manifold theorem 

Suppose K is a hyperbolic set for F. The global stable set wu(x), for x E K, is 

defined to be the set of points x' such that lim supn-+-oo d ( pn (x ), .Ji'.n{ x')) == 0. Similarly, the 

global stable set W 8 (x) is the set of points x' such that limsupn-++oo d (Fn(x), Fn(x')) = 0. 

Theorem 2.1 (Local Stable Manifolds). Let X be a compact manifold and F : X ~ X a cr 
diffeomorphism. Suppose K c Xis a closed invariant set and F is uniformly hypefboUc on K. 

Then there exists an E > ·o such that the sets 

{x' EX: limsupii-++ood(Fn(x),F~(x')) == O,d(Fntx),Fn(x')) :S c,n 2: 0} 
{ x' EX: lixnsupn;__,~oo d{Fn(x), pn(y))""' o·, d(Pn{x), F"!'(y)) ,:::; E,n ·:::; 0} 

(2.9) 

are embedded .cr -S1fQ11Jflni[olds of X. Furthern;z.oye, ,;w£u(x) .~5 diffeo11?pfPhic to F;.IJclidean space, 

dim, W€u( X} ;= . dim ~'/:, ,and. W€u (X) dependS COn#nuOusly on X. • , Tlze pnalOg()U$, result. .holds for 
.. · • \"c· ,,. • ., ·' , ., , .. ]•' ;'i • •' .·, ., ' ., .·" ,l •· , e 

s.table manifolds. !f th£; '!letric 11·11 on X is adapted ~o that there is a,constatr:t 0 <,A < 1 such tliat 

(2.10) 
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then for all x E K, y E wu ( x), and z E ws ( x ), the following holds: 

SUPn~o(>.-nd(Fn(x), fn(y))) < d(x, y) 
-;;;.·· 

supn~O (>.-nd(F-n(x);-f"~n(z))) < d(x,z) 
(2.11) 

Note that we can always construct an adapted metric satisfying (2.10); see Shub 

[Shu87] or Young [You95] for details. 

Theorem 2.2. The global unsta~!e and stable sets wu ( x) attd W 8 
( x) satisfy 

wu,(x)' 

W 8 (x) 

Un~op+n (W~ (F-n(x))) 

Un~op-n (W: (F+n(x))) 
(2.12) 

That is, the global·unstable and stable sets defined. ·earlier have the property that 

they are locally submanifolds of X with the same regularity as F. Thll:s, we may speak of 

stable and unstable manifolds instead of mere sets. 

Theorem 2.3. IfK, is a hyperbolic Sftfor F, then the stqpl,e,an.tf unstpble sub,spaces E 8 and Eu are 

Holder continuou,s v_ector bundles on K. 

Theorelit' 2.4. Supp()se K is a hyperbolic set for F. Then jar every suffici~ntly s'mau E > 0 there 

exists 8 > 0 SUCh thahi( X, y) < b implieS tJuit ~u (x f fnterS~CtS W€8 (y) transversely at exactly 

one poinf(de~oted by [x; y]). The map (x, y) 1---Y [i, y] i~ contfhuous on its domain. 

These results imply that O!l every hyperbo¥c invariant set K, the stable and un­

stable manifolds form local coordinate systems (called the local product structure of K). 

These local coordinate systems are usually not smooth except in special cases- they are 

at best Holder coiitinumis fu general. . 
The structure of hyperbolic attractors is intimately connected with the geometry 

of stable arid ®stable m:arufolds: a hyperbolic attractor K is the union of'the unstable 

manifoids wu(x) for X E K, arid the union ofthe sta:bl~ rrl.anifolds W 8 (x) fonns a set 

of positive Riemann measure. For precise st'ittem~rits and proofs, see Shub [Shu87] and 

Young [You95]. In any case, the Holder continuity ofthe local product structure is the best 

one can expect in general; for AnOS()Y mapsiri twp dimensions, one can prove that the 

local product structure is as smooth as F. The Holder continuity result means thatwhile 

stable and unstable manifolds are locally as smooth as the map F itself, they do not fit 

together in a very regular way. 
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Figure 2;3: The construction of holonomy maps.· 

For later analysis, a different formulation of the preceding result is needed .. Let 

Eh and Di ibe :tWo k'dirriensioh<H discs 'embedd~d iri X n~ar a pdinl p in'~ hyp~rbolic set 

K. Suppose they are embedded in such a way thatth~y both mtetsect th~ stable manifold 

W 8 (p) trajl.sverse~y, apd that k = dimX- dimW8 (p}. Th{:m the,stab,le01~I\ifqJ~·defines 
. :''·.'·· 'i . .:.:._ ·.·,· .. ·. ' . ' ,· •'·: . ,.·,.:. ,. ·· .. ·-..• 

~map_{[> : p1 ~ D 2 call~d. the holonomy map, as illustrated in Figure 2.3. T,he Holder 
;. ._. ~ . . : : ' . . - ' .. ' . . .. ' . . . 

continuity o( th~ st~bl~ s,ubspace E 8 ip equivalent to the statement that the h0~onomy ma:p .· .... ·'' .. ' . . . ·.... ' . ' . 

<I> is Holder continuous. A stronger result is true: recall that if vis a measure on Y, then 

· ·.. ~ ti>i.'Ji is absdlutelfcdntmuous·with respect to v if there exists a functioil h E LI (v) such that 

(<I>;.1t)(E) =J'F;Hd!J: 

Theorem 2.5. Let DI and D 2 be embedded discs tr~n$verse to the stqble manifol4$, and let the 

. 1 ho?o':':omy map <I> : PI ~ .D2 be defined as above. The,nit, is qqsolutely COrztinuous in the sense 
. . ' . 

. ,,that if mi d,eno,tes tbe intrinsic volume measure of the.embedded disc Di, f/Jen the measure <I>*mi is 
,. ~ ' . l . • . . t ' . : . • ' . . •. 

al;splu,ely c.onfinucJUs w,ith re$pect to the measure m2. Furthermore, Jhe Radon-Nikod.ym derivative 

. '· . . 9/ <I>* m,,1 with ;espect to rr:t2 saHsfies th~ i~eql,lauty ;td,:~~l - 11 :::; c < 1 for some constant c 

deperzding only qn the map F and the distance (in th!J, CI metric) between the. discs PI and D2. 
; •• ' ii • I·· · · . . . .•,. ' . . ·. . 

See Barreira and Pesiri [BP02] for more 'genehil versions of this result: 
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Example 2.6. Consider the solenoid map from the Introduction: 

[ 

20 (mod 21r) ] 
F(O, r, s) = E1 cos(O) + E2r , . 

E1 sin( 0) + t2s 

(2.13) 

where 0 :::; 0 < 21r, r 2 + s 2 :::; 1, and E1, E2 are constant~ such thiH 0 < E2 < E1 < 1/2. 

Differentiation yields 

DF(O, r, s) =.[· -E1 ~n(O) EO: ~2 .]. , 

. E1 cos(O) ._ 

(2.14) 

so that the subspaces E~ of the tangent 1?pace TxX spanned, by g,. ~nd .~ are invariant 

i!l the. sense that D F (x )E~ = EJ..cx) and D F i~ uni~orm!y contracting when, restricted to 

Efx. Similarly, DF is expanding .on the,subspaces E~, which are tra:p.svE;!:r:se to E~ (see 

,[KH95] or [Shu87J for details). Now, the discs W 8 (x) == { x': O(x) = O(x')} ,(0 denotes the 

angle coordinate map) are dearly-invariant in the.sense th,atF(W~(x)) c W 8 (F(x)) and 

the contraction property above implies,that.d(Fn(x),Pn(x')) .~ 0 as n ~ +oo whenever 

x E X and x' E W 8 (x). The discs W 8 (x) thus form the stable manifolds ofF and the 

sub~pa~es E~. the as~ociated stable subspaces. 

2.2.2 Other models of dynamical systems 

Before continuing, note that not every hyperbolic dynamical system arises as a 

diffeomorphism F on a compact manifold X: there are many riatliral examples of dynam­

ical systems whiCh do not fa:lllrito this tategory. These include:· 

1. Continuous-time dynamical systems: As explained b~f()!~, flows ar;!s~ natura~ly in phys­

ical problems. The definition of hyperbolicity given above can be applied to flows. 

However, in studying ergodic properties a flow { cPt : t E lR} on a compact manifold 

X, it suffices to study the fuaps ~f discrete h{i~ivals :{ riT: n E Z} for some fixed 

T > 0. In particular, if JLis.an invariant,probability measure of the continuous-time 

system c/Jt, t, E lR, then it is als,o <Ul_~v~r~ant measure of the discrete-time system 

{¢~,k E Z}, and if JL is ergodic with r,espect to the flow, then it is also ergodic with 

respect to the discrete-time dynamics. Furthermore, if the flow has an SRB measure 

' ' i. 

I ! 

I 
I I 
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(SRB measures a.t~_defihed below)~ then so do~s its disdrete"'time'version, and the 

SRB measures coincide. 

2. Non-invertible maps on manifolds-with boundary): Many mathematical and physical ex­

amples of dynamkal systefhs are naturally described on domains with boundaries 

and <,iefine<,i by maps v.vhidl are injectiyE; but not surjective. Most of the definitions 
,, -. , ••• :_;: ,, ' -- • J :--i i . ' . ·.. : 

given here will work with little ~9dification in this settipg. •The sole11oid map is a 

good example of a non-invertible map on a manifold with boundary. 

3. Flows defined by vector fields on m.n: Th¢ Lorenz flow from the introduction is an exam­

ple of a flow withpartial hYJ?erbolic heha~ior. Such physically realistic examples are 

generally defined by ordinary differential equations on Euclidean n-space, which is 
,. 

'· · unbounded and hence ·non~compact The ihtere~ting' motion, however; ·oftE?n takes 

place on; and rieaf a· com pad attrad:of :K. Orie can often find a botmded' open neigh­

bbrhood'U (:;f K stich th~t'U is mapped into its'eM by the· flow (i.e. the di:ifining vector 

field pdirit inward' at every p'oirit'df aU) and every p()mtofU geherates a·trajectory 

which converges to K. expoiientially fast' The· flow map rPt ·then defines ·an 1njective 

(but not surjective!) mapping.'o'f the ;Closure{) of u into itself. 

4. Systems with singularities: Discret_e::tirnE; systern.s lllOdeled by diffeomorphisms F or 
1 '•,,, . . I·· I· ' · 

injective maps with nonsingular Jacobians DF(x) are the simplest to analyze. This 

condition can fail even in thesit;rlpJestexall).pl~s, such as tJ:te quadratic map x ~ 

4x(l- x) on the unit interval [0, 1]. 

While all these oth!7r classe~ ,qf dynamical systems ar~ im.portal1t, a cornpl~te survey is 

beyond the scope of :tl;le curren~ 1work. .hl$,te~<:l,thefocus here is on th~ simplest case, to ex­

plain the relevant th~ory and provide a language for describing the structure of hyperbolic 
r·, 

The precedihg sectidrts focus on the geometric properties of dynamical systems. 

Thi~-sectioh'foc~e~ ofithe'metrital a~peds of;dynamics,m partitulardnthe construction 

of Lyaptinov exponents, which nieasure the rates at which a dynamical system expands 

and contracts phase space \i-oluine. 
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More precisely, let x E X be anyJ>oint and~v .E:·TiXa nonzero:tan:gerit vector. 

Define 
·. _:;r ' . ? .· , . 1 ' '·~ ,' ' 

>.(x,v)= lim -:-logii.O(Fn)(~)·vll·. · 
n->+oo. n ' " .. · .. · .. ·' . 

(2.15) 

. , :; ... ,. ;f.or:ex~pl~; considerfhe cat mqp Fin Equatiol}.(2.3): i~s Jaco~icm P,Fis ~onstant, so the 

.. , . :Lyapy.nove~pqnents.are simply the eigenvalues .x±.. <-

More generall)" Oseledec's theorem [You95] guarantees that for;~very ~vari<int 

. -).J;leC1.1?ureJ-L ()f f', !h~limit above _exists for walmost everyx and v. The qupntity >.(x, v) mea­

sures the asymptotic exponential rate of separation of two,iiUpalpoints, I).e~rx,,~EJparated 

infinitesimally in the direction given by v. Clearly, >.(x, av) ~ >.(x, v) forevery nonzero real 

r number a- the Lyapunov exponent depends only on the subspace from which v is taken. 

Oseledec' s theorem further states that for each x, there exists an increasing sequence of 

.~. ·vectofspacesEi(x) an:dfunctioi::l.S·.Xi(x),i = 1, ... ,n,such:that. 
··.;, ·::t_: 

{''_· .. 

and 

i:nf{.X(x,v): v E Ei(x)} = >.i(i}. 

One can thusspeakofthe Lyapunov spectrum { Ai(x): i = 1, ... , n}ofamapFwithrespect · 

. "to the:invariant measure J-L· 

The quantity j_}(x) =log IIDF(x) rEU(x)ll is the local e~pansioh rate ofF at X: It 

has the property t]"lat 
. l . . 

(2.16) 

.Jor:almost e;very x. 

Lyapunov exponents are only defined for J-L.,.almosbevery x E.· X .. :rhus,· the Lya­

punov exponents of a dynamical system depend on both the map F and the invariant 

measure J-L. For convenience,:their dependence on F and J-L is ~~tia:ny suppressed. 

It is easy to ~ee. that the Lyapunov .exponents of.uniformly hyperbolic•maps are all 

nonzero; However7 .in the setting of flows one _must deal with invariant ·manif0lds, called 

cent~r manifolds, alongwhich the.flow is neither exponentially; expanding nor exponen­

tially contracting. That is, the flow has a zero Lyapunov exponent in.directions tangent to 

center manifolds, The reason.that center manifolds·arise.natqrally·in,the setting of flows 

is that every bounded solution curve which does not coincide with the stable manifold of 

a fixed point must be a .center manifold. 

1 • 

j I 
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23yl ; Entropy and inf'oimation: theory 

Intuitively, the exponential separation of trajectories corresponds to an exponen­

tial stretching of phase sp~ce volume'. This is•acc6mpacled by a loss of information about 

· 'the initial ·conditioh of a @veil trajectory. A. pr~cisihvay'to :rhea'silie this'lossOf·infdrmation 

or generation of randomness is provided by the ~oti6noi entropy from irtfdrm~tion theory 

[CT91;'Sha48j. ., 

Let n = {WI,: .. , WN} be a finite set and lef {1, be a' probability distribution on n. 
The entropy dftL is defined by 

N 

·II(fJ,) =- LJi{wi)log2{p(w2)). ·. (2.17) 
i;=i . i . ' '· .: ; /'. 

Among other things, ·it is an estimate of the minimum number oftand0rn bjts neetled to 

generate a "typical" elemel!t of (O,p,). The functi<:>~H (really a family of functions, one for 

each N) has some remarkable properties. These properties include: 

1. The function His symmetricin its arguments: permuting the entries of the probabil­

ity vector 1-l does not change the value of H. 

2. H(l, 0, 0, ... ) = 0: the amount of information needed tq;simulate the; absence of ran­

domness is 0. 

3. H(O, !-l(w1 ), ... , 1-l(WN )) = H(/-l(w1 ), ... , 1-l(wN)): null events do n~t add to the random-

ness of a system. 

4. H(!-l) ~ H(:k, ... ,:k),withequalityifandonlyif/-l(wi) =]; fonllli:·thismeansthat 

the uniform distribution is the mdst rant! om 'Possible: 
"'i . 

5. H is nolli}egative and coqtinuous (for each fixed N). 
•• • : • ::. • ' • • '. • (''' '.' ' • • < ·: .:--~. : •• ; ' 

Furthet:more, Shannon proved that H is the ottly 'furtttion, up to a positive multiplicative 

constant, which hasthese'ptoperties. It is thus a natural measure of.inforrhation. If Z : 

!Z· ---* lR is a random1\rariable, H( Zc) :can be denned 'by applying· the defiiiitiori above to the 

probability ·distribution of z.,. 
'' One;basic ptoperty·of ehfi:opy<isthatitis invariant tinder transformations. For 

finite 'sets; this, ·simply· mea:ns that it Z is a random variable: and if; is . a fimttion, then 

H('lj;(Z)) ~· H(Z), with equality if and only if '1/J'iS injective on the range of Z.' This has 
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,~ arnusll,lg;implication: JetpN be a im:iform randpm variable with rartge { 1, ... , N}, and 

_ let(p1,P2,p3 , ..• ).=,(2,.3,5, ... ) :denote_th~ se.quenceofprime numbers, One can then define 

ra,n<f.pmva:riables(El ,,E2, E3, ., .. ) ,impl_icitly through.the prime factorization of the random 

integ~:rZN:- , 

Z _ E1 E2 
N- P1 · P2 · ··· 

Since ZN ::; N, we must have Ek d:o 0 whenever k 2': 1r(N), the number of primes ::; n. 

Thus, by the con~exityof theJunction_~_~---t x log2(x), 

log2(N) = H(ZN) = H(E1, ... , En(N)) 

:S H(El) + ... + H(En(N))· 

But Ek ::; log2(N) with probability 1, so H(Ek) ::; log2(log2{N)). Therefore 

log2 ( N) --~- 1r ( N) log2 (log2 ( N)) 

so that 
(N) log2(N) 

7r 2': log2(log2(N)) 
< • :: }, • • ,;... - • • ; • • • • 

This estimate is certainly not sharp: it is well known that 1r(N) 2': lpg2(N). 
, .'" J , ' '> ' ' • ~ ' • :: ' ; I 

2.3.2 Kolmogorov-Sinai entropy 

We now use concepts-developed in the previous section to quantify 'the:amount 

of randomness generated by a dynamical system. Let 11 be an F-invarjant measure. A 

11-partltio!l' is ~coll~ction S of measurablesubset$ of X such th~tfl (X- (UeE3~)) = 0 

and./1(~ n~') = 0 for all~,~' E 3 such that~ -::/= (. Given two WP~~titions S1 and S2, 
. . . . . . . . ~- . •: . . . ' . . 

their common refinem~!lt 3 1 V 3 2 is the partition { 6 n 6 : ~i E Si }. Let F-1(3) denote the 
': • • •,· ' • ' r· • 

p~rtition { F-1 (~): ~ E 2}. !he entropyof a wpartition3 is 

H(/1, 2) =:--' L 11(~) log 1-l(~). 
eEB 

(2.18) 

· Physically,we;can thinkof partitions as providing a .coarse-grairi.ed description ofthe sys­

tem. 'Thus, each set ~ E 3 specifies a_ coarse-grained. state. The entropy H (J1,,· 3) then 

measures the average 'amount of information carried by each coatse~grained state ~ E 3 

when the system i~ in the statistical steady state j.J,. 

' ' 
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·" ' Now consider H (JL; Vk:t p;-k (3)). Thls measures tlte' amdUiit ;ofihformation 

. cattied by<'each lertgth-n ·S~quence ·(.;6 7.;1, . 5.; en'::C..i) Of .coarse:-grairt~d states in 3; 'When the 

· ~ f ••• ·system is. ih the·.statistical steady state p. 'In cha'otic systeths/lhis qti<ilitity is expected to 

grow linearly as n-. +oo. Thus, one can,measure the rate of entropy production by 

hJL (3) = nl!lfoo ~ H •(JL, n\} f~k (3)) : 
k=O 

(2.19) 

The Kolmogorov-Sinai entropy (also called thentet~k ~ntr~py) of (F, JLYis the~ 

(2.20) 

The metric entropy and the Lyapunov exponents of a dynamical system are not indepen-

dent: Ruelleprb~ed that . ' 

h!l s ~ /x >-t dfl (2.21) 
t 

holds for all invariant measu;r~s fl ofF, where g+(x) = max(g(x), 0). 

Again, the basic property df entropy is that it measures the intrinsic amount of 

information in a random signaL For the Kolmogorov-Sinai entropy, thi~ me~s that hJL 
r.) ··.: .. ·;''' ' ' ', ~:i .;•·:, . ',;·,, :- .. _. :< >,·;·:.\},~<:.~·'.·(·~ 

is invarianfunder hi-Lipschitz homeomorphisms. It is thus an example of a dynamical 

invariant. 

2.3.3 · Markov pattitions·and symbolic dynamics 

It is possible to choose JL-partitio~ ~hich d~amatica'~ly simplify the ~alysis of 
; '· · · · •· ·, ' • · ' · ·· -~e · · ··' o ··~:: ·i •· 

uiiliormly'hyperbolic systems~ Th~se nice partitions a~e ca~led M~rk~v partiti~~·. Roughly 
.. : ? i ~.:;.. •• ( ''_.'f · ... :'. ; \ ; _.'. :. j ! .: .. ' < :. ·. :_:· .' ' ~- ' . . \ ,· ... ·, '~ .:· __ ·,,.::' : . 

speaking, a Markov partition has elements whose boundaries coincide with stab~e or un-

·. st~b~~·manifolds. &ebasic t1seb{M~rkotr,p~rtlfions is t~~~ruitr~ct's~b~lic"d;namics, 
reducing many questions in ergod1cth~~ry to GOrt~s'ponding questions ~'ili~ ~tatistical 
mechanics. of one-dimensionallatt~ces'with :tapidly ·decaying potentials. This approach 

has certain limitations (Markov partitions do not generally exist in nonuniformly hyper­

bolic syste.Il1$). and· is .not .nec~ssafY· in any :case, (one can develop '5mooth eFgodk theory 

without ~ymboli~ dyna:rn,ics); buJjt :does provide ·~e U:seful.concephiallirik between hy­

ped;,oli~ otlynamks artd. ~tatistioal·mecbanics. I his presented here ·in terms, of.-the·;cat mllp 

example introduced earlier. Interested readers should see Bowen TBow75l for the,general 

construction. 

____ ,. ___ . ___ ,,_ ·-- -· ,_,_ __ , __ ---·--.. -· -·- . 
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Figure 2.4: A (generator for a) Markov partition o( the cat map (2.3). 
! _< • 

The bask idea of Markov partitions is illustrated in Figure 2.4, where a Markov 

partiti6n for the cat map (2.3) has been drawn. Let B = {6, 6}. For each point p E 1'2, 

let S =. ( ... , S-1, So, S1, .:. ) be a bi..:infinite symbolic sequence SUCh that Sk == ~i if ~i contains 

pk(p). Clearly, ambigUities atise whene'verp E of.i for some i, but suchpoints'form a set 

of Lebesgue measure zero. Thus the· map ·<I>· : p f--.+ s 'is w~ll-defined almost everywhere. 

It is in fact invertible, and its inverse isgiven by '<l>j_1(s}' == n~_00F-k(sk)· The map <I> 

identifies points in 1'2 with symbolic sequences iri 'the space of bi-infiliite sequences with 

symbols taken from the set 3; this space of bi-lnfili:ite s'ymbolic sequences is denoted 3z. 

Let O" now denote the shift operator acting on symbolic sequences ;:sz, so that 

O"(s)(k) =::: s(k + 1), (2.22) 

i.e. it shifts a symbolic sequence to the left. Then the following equation holds: 

F o <I>-1 = <I>-1 o O". (2.23) 

Heuristically, the map <I> allows one to identify F -invarfant measures J.L on 1'2 with shift­

invariant measures on the sequence space sz. If we equip 3 with the discrete topology 

al}d associate w:ith the sequence sp<~.ce 3Z the corresponding product topolqgy, then 3Z 

is a compact metrizable space and the map <I>-1 is a continuous mapping of 3Z onto X. 
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Geometric structures associat~d with the action of F on X have natural counterparts as­

soCiated with the action of the shift map <J acting on the sequence space sz. ·In particular, 
'•• ·'''/'' \ r •· ''" ' •" - '• ••' ''" • '" ) 

given a sequences, the:set 
_,. 

. . . 

w~ ~ { s': s(k) = s'(k}-fprall k < n} (2.24) 

is a local unst~ble manifolci of s: each sequence s' in w~ a~rees with s to the left of the 

nth position, so that d (a-n(s), <J-n(s'))-+ 0 as n-+ +oo. Furthermore, each local unstable 

manifold of s contains w~ for all sufficiently negative n. 

The construction abo:ve can be gener?lized to hyperbolic invariant sets. In the 

general case, ho~ever; the syii1bolic encoding <P would identify the restriction F f K of a 

map F to a hyperbolic invariant set K with the action of <T on a shift-invariant subspace of 

B2 (instead of the full sequence space sz) .. 

2.4 Siriai-Ruelle-Bowen measures 

This se~ti?!l is based mostly on Bpwen [Bow75] andYoung[You95} . 

. ~et X ,be .. a compact manifold and F : X -+ X a poo diffeomqrpll.isrn. f. Borel 

rneasu~e /L Of.l,~)sinxariantif F*fl =.J.L, where {F.,J.L)(A,)is defined t9 beJ.L(F;~1_(A)) for 

all Bo,rel sets A. The pair(F, J.L) i~ ergodic if every P.:inva,riat;t.t~orelset A Sfiti~,fi,es J.L(A) E 

{Q,J}. T,lle pai,r{F, J.L) is mixing if limn~+oo JL(F-n(A) n B) = p(A) · J.L(~h}ti~ ,easy to 

_check that if (F, J.L) is mixing then itis. ergodic as well and thattl'teconverseqq~s not hold. 

There are equivalellt formulations of these conditions: it is easy to checkth~t (F, J.L) is 

. e,rg~J~~ if~nd only if for every pair. of Borel sets A ~dH. in .X such that J.L( A) ap~ ~(B) are 
. ( ' . . . ' . ·; . ' . . ' ,. . . .· . . ~ . . ' . '' . . . . ' . ' ... . . . : . ' •. ; . 

both p_osjtive, tl].~re e.xfS.~~ an iJ1.teger n ~ 0 sp.cJ:;t that J.L( F':-;n (;\ ). C' .{3) > 0, and that ( F, fL) 

is mixing if .and only if for every pair of Borel sets A and B with positive J.L-measure, there 

exists an no such that J.L(F-n(A) n B) is positive for all n ~ n0 . 

; . By anaJogy,:a m.ap F is S(lidto be topologically transitive iffor <llLop~n se,ts A and 

B, there exists an integer n ~ 0 such that Fr-n(A) n B is nonempty. Similarly, a map F is 

topologically mixing if for all open sets A aridB, there exists an integer no ~ 0 suchthat 

p-_n (A ).n E isrtonempty fgr all n ~.-no.· 

The. fundamental theorem of ergpdic theory i.s the fgllowin:g-: 

'tb~oteih 'L7 fBirkhoff). Let X ben locally compactHitusdorff space,· .P : X -+'X'a continuous 

map, and p. a Borel measure. Jf fL is invarfant under F, then for every fiindi6n g E L 1 (J.L) and 

----~---·-·-----------------·--------·--'--------



J:L-ill;mosteverypoint x0 E X,the limtt 

· .. N-1 

1" k N~~oo N ~ g(F (xo)) 
k=O 
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(2.25) 

B~cause X is a compact metricspace;,everyB()re}meastlr~,on:Xis-also a Radon 

measu.re. Th~, the Riesz-:-Markov theorem applies and there exists.a bijective correspon.,. 

d,ence beD-vee:t} Borel measures on X anq boHnded line~r :f\11<\C:tions on C(X) [Fol84]. This 

-fact -and Theorem 2.7. imply that for every diffeomQrph,ism F,, th~re .exists a plethora of 

B,orel,~;n~asures on X whichareinvariant unde:t:.JT. 

Some special dynamical systems have unique invariant measures. Most, systems, 

however, have large families of_invariant measures. ,For,example,_the cat map (2.3) has 

periodic orbits of all periods, and e~ch periodic orbit supports a.rt invariant :rn~~~Hre.,For 
> • •• • ·, • ; • • • ' ; .' -:. • :. '"' -' • ·-· ·-,. 

systems wi~ uniformly hyperbolic attractors, h()weyer, there is a particularly na.tural class 

of invariant measures called SRB (Sinai-Ruelle-Bowen) measures. 

Let f-L be an invariant measure, K the support of f-L, and B a J.L~partition of K. For 

each x E K, let 3(x) denote the element of B containing x (this is well-defined for walmost 

all x E K) . . The J.L-partition 3 is said to be sl:lbon;linate to the unsta_ble foliati.<m wu if for 

every x E K, 3(x) c wu(x). As X is compact Hal:lsdorff, for e:v~ry Borel measure J1 and 

wpartition 3 there corresponds a canonical family of conditional mea~ures {J.LB(x)} such 

that /1B(x)(3(x)) ~ 1 andfor every Borel set B c X, thefuriction 

(2.26) 

is measurable and 

L JlB(x)(B)J.L(dx) = J.L(B). (2.27) 

The measure /1 is absolutely continuous with respect to wu iffor ev~ry p-partitiqn 3 of K 

ai)d almost every _x E K the.conditional measure JlB(x) is.absolutely co11tinuous with re~ 

SRect to the normalized:I.-ebesgue measure (mLebh(x) of 3(x), and ifthere exists a constant 

c > 0 such that 
_ 1 < dJ.LB(x) < 

c ' c 
- d(mLeb)B(x) -

for almost all x E K. Furthermore, we say that /1 is absolutely continuous~ith respect 

to tvu with Holder continuous densities if in addition to the condition above, there exist 
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constants .c1 > 0 and 0 < a < 1 such that the Radon'-"Nikodym derivatives<a/J-1'7~"'> are 
- ml..eb S(:z:) 

a-H6Ider continuous withHolder non;ns bounded above by c1. 

Remark 2.8. Given a me(lsure'space (X, f.L;E),trandom variabl~ Z on X, and a CJ algebra 

I:' c 2:, the condition~} expectation of z with respect to I:' can be defined rath~r generally 

using the Radon-Nikodym theorem. One may be tempted to define conditional measures 

for elements•o£ LJ' using coh:diti'onal:expectatioil's. To;cbristritdgenume' conditional mea­

sures ( conditi'oned t>n: sets of ·J'i'measure zero )i hbwe-tTer, reqmh~s some care. This is because 

in order for eachJl;x toli~ a.·ffieasute, we must chboseversiohS'6fc'onditionaVexpt?ctatioi\S. · 

which eiiSure that th~ set'fitii:cfions p,!i are c::<:>un~aMy additive, this· resUlts in' ail u:ncount­

able number of conditions. See R6gets' and ·Willi'ams'[RWOOa] fot 'a thorough disC'Ussion of 

these issues, · 

An fuvarlaht mea~ure· ~supported 'on a compact invariant set K is said to be 

physiCaJiy rele~arlt if K hils a rri~asutabie heighbo~fio~d UK ~ith p6sifl~e Lebesghe mea­

sure such tha.t' for eve~y Xo; E zj a~d every bounded ~o~tit\uou~ functio~ g : X ·_:_. IR, 

(2.28) 

An· SRB measure· is an' :ergddie invariant 'measure 'f.LsR.s which' is physically relevant and 

satisfies the following conditions: ·· 

1. The measure f.LsRs is absolutely continuous 'Yith respect to the unstable foliation wu 
-··, ·, :!' .' '. ;; .. . ···:· .. ·, ... ,, .. . 

with Holder continuous densities. 

2. ( F r K' f.LsRB) has a positive Lyapunov exponent. 
·''. 

Much is known about the properties of SRB measures when they exist. To determine 

whether a given dynamical system actu~lly possesses an SRB measure is much more diffi­

cult. 'See Young'[You01] for a discussion of relevant 'issues. 

· It is not th~ case that every hyp~rbblit 'aHnid:ot possesses an SRB measure. For 

example;c6hsidetthe "figure 8" attractor in Figure2:5. It is'easy to see that the physically 

relevant invariant measure is a Dirac delta mass located at the hyperb6iic fbced point in 
. ' 

the center, which we identify with the, origin 0. The measure Jo has one positi\je and one 

nega;tive Ly(lpunov ~~ponent and is not 9bsoh1tely ~:ontinuous along its ~table rp.anifold. 
'· ·.. '' ' r • • '. ,. '·• 

Figure 2:-?alss> ~hows that not eve,ry invaria,nt rp.easure is, physically relevant; a; 8 mass 
. - . . . . ' . -.. ~ - . ; . : . . . . . ~ . , . . - -
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Figure 2.5: The "figure 8;, attractor. 

supported by either of the unstable fixed points .in the "figure 8" flow is. invari~,t but not 

.physically relevant. 

:Here is the main result concerning SRB measures: 

Theorem 2.9. Let X be a compact Riemannian manifold and F : X ~ X a C 2 diffeoiizorphism. 

Suppose K c X is a uniformly hyperbolic dtt;tactor; and F is topologically transitive on K. Then 

there exists a unique SRB measure J.LsRB supported on K. 

See ~o~en [Bow75] and Young [You95] for two different proofs of this theorem. 

Remark 2.10. Theorem 2.7 asserts that the limit in Equation (2.28) exists for J.LsRs:almost 

every initial condition x0 • Theorem 2.9, on the other hand, guarantees the convergence 

of (2.28) for a set of positive Lebesgue measure. Thus, if one takes the view that sets of 

positive Lebesgue measure are physically observable, then SRB measures are precisely the 

physically relevant statistical steady states associated with hyperbolic attractors. 

Remark 2.11. Ruelle's inequality (2.21) becomes an equality when the invariant measure J.L 

is an SRB measure [You95]: 

hJl-SRB = L f >..t d~RB· 
i lx (2.29) 

This is Pesin's, formula. It gives a precise connection: between the rate of phase space 

expansion. and the rate of loss of information about initial con~itions, It is instructive 

to check that Pesin's formula is satisfied by t.he cat map (Feat' m~.eb)· 

.. We have already seen examples of systems with SRB llleasures: the first is the 

solenoid 1Jlap, the second is the Lepesgue measure mLeb for the cat map. To be sure, 

these are abstract mathematical examples. The existence or p.onexistence of SRB measures 

outside the mathematically pristine setting of Axiom A attractors is difficult to establish. 

; I 
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Nonetheless, insights gl;aned from.sh!d:yiilg·~~~~m~~~~es help illuminate many ques­

tions of direct physi9.a:}':feleV.CiJlce; 'includirig:~mall~n0h:;e ii~ts of random perturbations 
• . • ·~· .• ! 

iimits of dynamic,<H systeins. There·ar~.alsq s~ine·p~y~icillly'pbservable consequences of. 

the existence,>of a~ SRB·~~asure, sti~~·~s"theGalla:voftl-C~heh Fluctuation Theorem (see 

Maes [Mae99]). 

Even ~hen an SRB measure is known to exist; it is usually not possible to com­

pute its density along unstable manifolds. For that matter, it is generally impossible to 

determine unstable manifolds exa~ti:y. It is relati~ely. ~asy, h0wever, to compute the ratio 

of the probability density at distinct two points in the same unstable manifold [Dol01]: 

Propo~ition 2~1.2; SupposeJ-t is absolute1y'coizhh'uous' alohg the:unstdbti tnattifoliis ofaiC2 diffeo­

morphism F and has Holder continuous densities. Let p denote the den:Sity dJ J-l biz a local unstable 

manifold wiu(x) and let J~(x)beiliejticobiim detirmi~ht dfF'6H th~ uhstable subspace EU(x). 

Then 

(2.30) 

for all x' E Weu(x). 

Proof' Let mk be the measure on' p~k(wfu ( x)) induced by the metric of X and set Pk d~k = 
F,.-k,(p0 'dmo): Then : 

Pl(x) =po(F(x)) · J~(x) 

P2(x) =po(F2 (x)) · J¥(x) · ,Jji;(F(x)) 
. . . . . ' . . .; -· .. ~ 

Thus 

(2.31) 

The unstable distribution Eu(r) is Holder cohtlrlti:oti~ and.thejdcbbian DF is C 1, so the 

local expansion coefficient Jp(x) is aisoHolclercoritirtuotis.-As x' and xb~lqng tolhe same 

unstable manifold, d( pn (X), pn (x')) mtist cmtv~fge 't(} 0 .Wh~n W~ let n ~ oO. Therefore 

the right hand side of (2.31) ·converges uniforthly; which implies ·the 'left hand side of (2.31) 

also converges and is a continuous function t>f ± and x'.' But the left hand 'side 6f (2.31) is 

indepen~entof x' as l0hg as 'x· and x' belorrgto the sam~ tiilStable manifold:"' Settirig x' = x 

finishes the proof. 0 
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The quantity logJjt.(x)is called the:tocalexpansion rate, of F. We will also refer 

to Jjt.(±) as the local expansion coefficientof F atx. 

2.5 Transfer operators 

Before contin~ing with a revi~\V of existing sr'nall-noise results on invariant mea­

sures of dynamical systems, it is~seful t~ t~ke a little detour through the theory of transfer 
' . " . ' ' . .. , . . . .. '. ~ ; 

operators. This links ergodic theory with statistical mechanlcs and yields insights into the 

properties of in~ari~t dt~asur~s: Almost everJthin:g h~r~ I~ ~ak~n from Baladi [BalOO], 

Bowen [Bow75], and Sokal [Sok97]. The ~mph~~is is on the parallel betWee~ dynamical 

systems theory and the theory of discrete state space Markov chains. 

2.5.1 Finite state space Markov chains 

Let us begin by reviewing the theory of finite state space Markov chains, as trans­

fer operators arise naturally in this setting and a basic understanding of Markov chains 

can provide valuable intuition about trartsfer operators in the dynamical systems setting. 

Furth~rmore, this theory forms the f<?uridation for Markov chain Monte Carlo methods, 

which is part of the subject of this thesis .. 

,Le,t S be a .finite set, which will be calledthe state space in what follows, The set S 

may be, for example, the collection of all possible internal states of a digital computer or the 

collection of all valid occupation vectors of a lattice gas. Without loss of generality, identify 

s with the set of integers { 1, 2, 3, ... , m }. A real rr X m matrix pis a stochastic matrix if all 

its entries are nonnegative and each of its rows sums to 1. The latter condition is equivalent 

to the statement that the column vector e = (1, 1, 1, ... , 1)t is a right eigenvector of P with 

eigenvalue 1: Pe =e. A stochastic matrix Vis irreducible if for every pair of indices x and 

x' such that 1 ~ X; x' ·~ N, there exists a nonnegative integer k such that the xx'th entry 

(Pk)xx' of pk is positive; it is aperiodicif there exists a k suchthat (Pk)xx' > 0 for all x and 

x'. 

Each stoch~Stit matrix P defines a family of Markov chains with values inB: Pxx' 

simply specifies the transition :probability from state i to state j. The basic result is the 

following: 

Theorem 2.13 (Perron-Frobenius). Every stochastic matrix P has a left eigenvector J.L with 
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· nonhegative real entties •and eigenvalue 1;. and the, eigenvector occurs with multiplicity 1 if and 

only if P is irreducible. Furthermore, 1 is the only eigenvalue ofB on the. unit .circle. if and only if 
Pis aperiodic. 

The proof can be found in Katok and Hassell)ltift fi<H95]:)Th((Petron-'Frbbenius 

theorem guarantees the existence of invariant measures for finite state Markov chains, 
.. • ,. r; '} /' ,. ·. :; ·' :.·.. I , • -~·: . .'_ ·: .' ::;' ;, ·. _ ;·, '_: , _ ,' . i' .• .' .. ; ; . .-• . .' 

'¥ld gives conditions for their uniqueness. ane uniqueness proof for irreducible aperiodic 
j ;··. ·, 1 ;~ ~·· > ' I., ' '\ ' , .. ' . . ' ' 

cha4ts is of particular rele~ance here, so it is reproducedbelow: . 

. ' .. Sup~o~e P defines ~ irreduclble ~periodic Markov ~ain on a finiie state space 

... . S. ,Given two probabilitr ~~a~ure~ p 1 and /-t2 on S, define a '~~w dhain .i: ~ (xi; x 2) on 
r' . , ' . ' .• ·':~•.. '• ; . . . ' (. 

S x S as follows: 

1. Set x0 = (x6, x~), where the initial conditions are drawn from the measure /-tl x /-t2· 

2. For each k ~ 0, if xJ. =I= xt then let xJ. and x~ .evolve independently to obt~in xJ.+l 

and i~+1 . 

3 .. If xJ.. = x~, then l~.t x[ evohreaccording toP, and ~et x[ =:= x[ for a~ll > k. The time 
•. . ' ' ' ' .· . ' ' •.. ·' :. ' • \''! : •. • ' .. r.' 

~coup is the;coupling tim~,of the chain; it is a,random ~~riable (and inJact q stopping 
' . . .: ''. <: I . . - . . . ;~ ' ·, ; . 

time since it is the first hitting time of tJ:le diagonal in S. x S).. , . 
'' • • • • • > ~ j . :· .; 

·Now let g : S ~ lR be ahy observable, and suppose ~-t 1 and f:L2 are invariant measures of P. 

Then, 
. . . 

. 119 dM1-J g d~-t2l IE [g(xi)- g(x~)] I 
< IJE [g(~k)- g(x~)lk ~ kcoup]JP(k ~ kcoup)+ 

.IJE [g(xk) :~ ;(xk)lk > kco~p] I P(k' > kcou~) 
I . • ' . ' ! : . : : . • ~ I . . ; " 

< 2sup{lg(s)l: S E S} · P(k ~ kcoup): ,, 
. '; ~ .. ) . ' ' . 

(2.32) 

(Note that g(xJ.) g(xD.for k > kcoup!) .Since the chain is irreducible anq aperiodic, 

P(kcoup < oo) = 1, which implies that P{k :s:; kcoup) --'-+ 0 ask .. :-+ oo. Thus J-tl = /-t2· 

Furthermore, an upper bound on limk-+oo P(k'S.kkcoup) yields a lower bound on the rate ofex­

ponential decay of correlations. This. proof ilh:1.strates the coupling method [Gri78], which 

has been applied to d~amical· systems in :rec~nt years as well. See.[B<,tlOO] anq [BL02] for 

examples. 
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2.5.2 Monte Carlo algorithms 

The computer simulation of Markov chains has become'u'6igllitotts'in computa~ 
tional physics and computer s~ience. Typically, on:e b~gins~ith a ~e~s~r~- f.L of interest 

and designs a stochastic matrix P (equivalently a Markov Chain { Xk}) which preserves 

f.L, and which is irreducible and aperiodic. One can the'fius~th~ st~<:ha~clc matrix P to 
. . . ·. ·. . ' . . ,· ., '.·:,c· '' .. .\''. 

generate sample paths { xk} of the corresponding Markov cham, with suitably generated 

initial conditions x0, and compute empirical averages "k E~,:01 g (xk)· As N ~ +oo, this is 

expected to converge to the weighted sum !:x~~ !J(x)JL(x), where the probability vector f.L 

plays the role of a probability mea~ure~ This way of estimating, averages is known as the 

Marl._ov chain Monte Carlo method, 

Typically, the initialstate xo in a Monte C:a:rlo calculation is. either chosen from an 

easily accessible distribution or a deterministic state. The important task is to ensure that 

P preserves p,. That is,p. = J.L; P,which means 

JL(x') = .L J.L(x) · Pxx'· (2.33) 
X 

Clearly this condition is implied by ·: 

J.L(x') · Px'x = J.L(x) · Pxx'· (2.34) 

This is the detailed balance condition, and is equivalent to the statement that P is a self­

adjoint operator on the space L 2 (JL). Given a probability vector f.L, an easy way to construct 

a stochastic matrix P which preserves J.L is t~ start with an arbitr~ry irreducible aperiodic 

matrix Q = ( Qxx') and set 

Axx' · (J.l(x')Qx'x 1) 
min J.l(x)Qxx' ' ' (2.35) 

In fact, it is easy to check that P satisfies the detailed balance condition with respect to 

f.L· The matrix Q is the proposal matrix. To estimate averages with respect to J.L using P 

constructed a:s'above, simply follow this reCipe: 

Algorithm 2.14 (Metropolis). 

Input: 

proposal matrix Q 
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matrix A= (Axx') constructed as in (2.35) 

initial stat~ xo .. . . 
:",-- : .. i:<":-~·::!~.~.{:~L ::.~-;;-~f; ·· .. :··- · · ' - : ' 

int_~g~er N (we will_generqte N + 1 step~pf theMark()V chain) 
; .. , ~ • . . . ,· . . . ; . ' :. . ~- . ; '. - . . ; . i . . ·. ' 

1: fork := 1 to N do · 

2: ' .. generate a ~~wstate x' with pr~bability Qxx' 
: . . i .. .:. ·. . ~ ' -; 'J ; • ':, .: • - •• •• ' 

3: Xk := x' with probabilityAxx' and Xk := x with probability 1 - Axx'· 
: _< ' ; : ' • • • • ' ' • • • : '- : • • • ~ ;' • : ' • • ' • • ' 

4: end for 

Out.pt,d: { ~o, ... , XN} (N +1st~~ of.tl!~ Jy!arkov chain) 

···• That is,'to.:gertetate ~ach'step M the chain, one begins by·gerteratfug a new sam­

ple using the proposal matrix Q and applying oa simple test(2.35) to deci'cle whether to 

• · accepnhe proposed new state or to ·keep the old orie: · This 'Markov· chain Monte Carlo 

algorithi:rds called the Metropolis algorithm~~ Note that the Mettop61is algorithm requires 
·. I 

only the relative probability ~-t(x')jfl,(x), 'not the probability itself:: This property is essen-

tial in applications: since it is difficult tq estimate the partition function accurately in most 

problems of statistical mechanics, one can only compute relative probabilities ~-t(x')/~-t(x), 

not the absolute probabilities ~-t(x) arid ~-t(x'). 

It is easy to give an upper bound on the errors in any Monte Carlo calculation. It 

is given by 

1 -~~ Eg(xk)ll :S 
. . k=.O . £2(J.L) 

2. Cgg(O). Tint(g). -
N , (2.36) 

where N iS the number of samples used, . .. ,· 

' 1 +oo 
Tmt(g) = 2 L C99 (n)/C99 (0) 

· n=-oo 

(2.37) 

is the integrated autocorrelation time of the observable g, 

(2.38) 

is the autocovariance function of g, and JEJ.L [h(xn)]is the exp,ectation value of Xn when 

x0 is chosen from the measure I-t· That is, the error is roughly the Standard deviation of 

g divided by the square root of the number of effectivelyOindependent·samples; This is 

consistent with the intuition one derives from the Law of Large Numbers. The rate of 

decay of correlations thus determines the convergence rate of a Monte Carlo calculation. 
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This is clearly related ~o the spectrum ,of the stochastic m(ltrix. P. Note that. the discrete­

. time Fourier transform , 
+oo 

Cgg{f) = . L Cgg(n) ei27rnf (2.39) 
n=-oo 

must be real and positive for allfr~que~c~e~ f;A is the .sp~~~~lpo~~r .. density of Cgg 

[Hel91]. 

A related issue is the rate of relaxation to equilibrium: suppose the stochastic 

matrix pis irreducible and aperiodiC and we ch'riose a probability ~e~su~e mo whlch is not 

~qu~fto the unique invariant measti~e M· Let (xn : ri 2: 0) be the M~rko~ chairi'generated l-. 

by p and mo, and let mn del).ote the distribution of x~. ;Then the mea·~ilies rii~:coriverge to 

M exponentially fast. More precisely, .there exist cpnstants · C > 0 and 0 < p < 1 such· that 

limn- Mil :::; cpn. (The choice of the norm II· II is irrelevant as the state space is finite here 
. . 

and probability measures are simply vectors.) The constant p is given by 
. .._ . ' . . . . .. ·.· ,. .·· ' 

p::;::Stip{J/\1 :AEa(P)\{1}};. (2.40) 

A simple calculation sho"Ys that 

.-log(p):::; Ji~ (~log (C99(~/C99,(0))}, (2.41) 

foiall g; the quantity ori:the right hartd·sid~ is.the exporterttial'autocottelation tirhe rexp(g). 

Ftirthermore, it is easy to.check thatp = ~up9 e..,..rexp(g) . . The e~portential autocorrelation 

time thus determines the rate of relaxation tO' equilibrium:. . : ! . 

The exponential and integrated autocorrelation 'times play impottqriholes in the 

artalysis of Monte Carlo algorithms .. lri.. rtu:rrierical studies ·nf diaotit systems> the con­

vergence of time averages is also deteriniri.ed by these au:tocorrelation times~ There is, 

however, a: third factor which affects the convergence of long' time averages: this is the 

tate 'at which an initial condition converges to the relevartf 'afuactot. This is denoted by 

r.u in the present discussion. Note that both Texp and Tint are properties ofirivariant mea­

sures, while r.11 is related to transienfphenomena which differ dramatically from system 

to system. Some syste~s can exhibit metastability, ~at is, the, system may: ~tay rtear a 

· bounded region of phase spac~ for a long time before .converging to an attr(l·cnng set. This 

,can •arise, for example; for systems m parameter regimes near some types of bifur~ations 

[GH83, OttOO];'Numerical methods which work with one ora few trajectory at a time can 

only obtain local information about the phase space structure of a dynamical ~ystem and 
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hasri:o hope of:detecting'metastability or estimating-;r.~t~m generab·Global methods, .such 

as the ones described in [DH97],lcan ob.tain such information/but ate:mmputationally 

intensive and impractical for systepl_s ~ifh more than a few degrees of freedom . 

. Anil}9g011;?ly, pne ~~ ,'41a~y~~ d~t~rrniN~tic hypetbql~~ dynarni~al systems using 
. . ·.· .. '·.-· '. " .:.:· .. · ' . --·;,.' ·,· •'' '• :. 

traJ;\sfer op~rators, "Yhich generali:z:e stochastic Ift<\_t.ri~es t<;> tlu:~ setting qf dynamical sys-
_, .' , ,' : , : · ,. . • • -' . , ' • · • : , . · ' ' , J , \ ·, I l ~ : ;· '·. _,;' . , . ' .' ' . ; . ' .' ,• · ! • , · . ; ' .- : , 

tems._ Let F :_X ~ X b~ a _map with _{ln invaJ:iant meas:ure g. The covariance_ f~ctiort of-
_:_ . ' . . ! >< • • • ' ; • 'k. ·:~ ' ; . .' . . . . :. ' :. . .' '.' .• : ' -;.' • ' ·. • . • _: i ~ . _- ) , . : • . 

twoobservables g, h: X ~JR is 
' . ,. . . .... ' 

C9;;(n) ~ f (goFn)'-:h-dW""- f·g d:P,f h djl,. · 
. .r'. . 

(2.42) 

Covariance functions are si~ilarly defined for flows. when F is hyperl;>Olic, JL is an SRB 
· ~ , -- •· · ---~·· ·· -· ·· .~ ':~··· ···:~-.;r .. .- · ·;. 

measure for F, and g and hare both Holder continuous with a sufficiently large exponent 

a, it can be shown that Cgh(n) decays exponehpally as n ~ ±oo. Furthermore, the Fourier 

transform 
00 . . 

C9h(w) = L C9h(n)e-iiu.J (2.43) 
n=-oo 

of C9h can be extended to a meromorphicfuhctioh hl a strip about the real line [BalOO]. 

T1;le poles aJ:1citheir Ihl}ltiplicities ,q~pei).p oW,_x,qn tJ;le lllap .F and;'<;f,<;>, I).<:}t ~epen<;l on the . 
. .! . 

, f,uncti,ons :g ap<;I,~.iThe$epoles are Rp.elle-:Polli~(jtt re~ona11ces_. They de~e_rmirl~ th~ decay 

rates and oscillation frequenci~s,qf:,.co,vari,apc;e,artd C()r_r~lfttion,fl,lpCPOI).S,,alld the set of 

reso,nanc~s _is c~H~d the; corr.~l~tiqn sp~ctrurr,t 0:-cort. ( F} 9f F, NtJmerical evidence dearly 
·.. .· ',·. . . . . 

sho,w;s _ that tl~e eJSpo~e,nti~l, <;l~~ay :qf cqrrelatio,~rqan _.(3ontinue !O hold ,in non,UI1-iformly 

., ._ hyperbqlic systems, a$_ shown by Figure)}. Jrl ~~,tfig11re, th~autoc<:?yariance ~ctions for 

··;; ;the coorqinate func~ons Xi, x 2, a:t;1P, x3 .of lh:e Lgr~nz flow.are seen to, decay e:><ponentially. 

; .To U!lc:ierstand;;wh,yC9h(n) ,dec~ys~xppnen.tially:fas~ as""~ +oo).letusiJ:ltroduce 

tPe ()p~rator 

I ,-.. (TF:<9)(;c) ~ g(E(x))., (2.44) 

That is, (TF ·g)(x) can be ihtetpteteiit as the value,ofthe observable gWhen the syStem is in 

the state F(x); so the opetatotT.F evolVes·obs_ervabl~s g forward iritime. Witliou:t loss of 

generality; let tis'assume thaf g ~ hand J:g dJL E o, Then·Cgg{n) = fg ·,TJMJ •tlJL, ·and one 

:might h:ope'to inimkthe thedry'offinite'shite Matkov chains by findihg an appropriate 

Banach space B with the fdll0Wirig properties: 
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· L The operator TF is bounded on R 

2. The spectr~l ~adius of TF ~ B - B is equal to 1. 
: ·~ .. 

3:. a. (T.F) consists of a J:~imple, eigenvalue at 1 and p = sup{ I·>- I :: >. E a(TF) \ { 1 }} is 

-stri<::tly less than L. · · 

'rite'C'~n:d.itio~ab~ve:wocld !ID:ply theexponential decay of correlations for the dirtamical 
- -

systein in question. 

'· The ~~ec~~ of~ bo~ded operatorT : B - B can depend strongly on the 

· .. ·''ch~ict?'of th~·sp~ce::B; ~d. ilie'C:hriic~ of an appropriate functio~-~pace on which' t~ study 

TF i~ a rl.~nhiviai ta'sk. S;o'me ~eeffiin!ily natural choices, for exaihple, ~ill ~ot teveal infor-

- ri\~~o~ o~·correl~Bond~cay.-·con~ider the operator TF actirig ori the Hilbert space i}(!-L)= it 

is easy to che~k tha{T_F. is tmit~ry _and hence its spectrum is a subset of ~e· tirut circle. (TF 

is a n:on-uruhiry isometry jj .F'pieseiv~s the measure 1-L but is' n8t ~veitible.) This means 
. . : .·. ' ... : . . '. . . ~ . : , . . ·' . . . : . . i ;-' '. . . . . . . : . : . ~ . . ! ; . •• ' .. : 

that one cannot deduce 'the decay of correlations from the spectrum: of TF. as an operator on 

i}(I-L). Noteth~t this ch~i~e does yi~ld some information aboutth~ dyna~cs~ foi exam-

'ple, applying the spectral fueorelli~toTF: L 2 (jJ,)- L2(!-L) feils us thatfd~ every g E L 2 (!-L) .. 
in the orthogonal complement of {hE L2 (!-L) : h oF= h J, 

since Tp.is Unitary and its spectrum lies in the unit circle. AsN - oo, the right hand side 

converges to 0. Thus the limit 

(2.45) 

always exists in the sense of L 2 , and equals the orthogonalprojection of g onto the sub-
, . . . r . . . , , - -' . , . ·~ 

space of F~invari<~nt fwi.ctions .. This beautiful result, the_Mean E~t5odic Theorem, was first 

proved by John von Neumann [Fol84]. However, the decay of correlations is a more subtle 

property and cannot be deduced this way. 
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Recent work of Blank, Keller, and Liveraru [BKU02] shows that for Anosov sys­

tems, i.e. maps F which are uniformly hyp~rboliconall.of the manifold X,one can indeed 

construct a Banach space so thatTF has p~operties (1) 'fur.~~~h (3)'l~tel~b~ve~ The space 

they construct consist Of functibns which are Smbbth aiohg unstable :l:mirufolds and are 

allowed to be much rougher along stable manifolds. The 'spectrum and: eigenfunctions 

of the operator TF_ then give detailed information about the_ decay of c_orr~l~tions and the 
··. ., ' ; . .·" '· . :l _·:· i .;, .. ··. ;; .·-· ... ·.:;_,.f.,. 

existence of SRB measures. Earlier work on the exponential decay of corr,el<!#ons iil dy-

namical systems relied on "weighted" transfer operators and ~yll).b()li~ (jynarics to reduce , 
• ' . ·.• ~ ; '. • .· ' ' : •• : f ·: ,. . '. :. • ~·,; ' •. ·• • 

hyperbolic dynamical systerw;to to purely expan,ding ~ystell}S. _ ~ough}y speakipg, this 

_cor~es~~~dst~ c~opping oHhalf ?f each ~i-i~t~ ~rmbol~<;- s~9~e~~~ ~() th~ti!\b~~omes a 

one-sided sequence: The one-sided shift mCl.p i~ ther:t n_on-invertible b,l,l:t Pll!ely e)(p~ding, 
' • v ,. .. : : • : • ; • -. : '·. • • " • -. >. . . . .' ' •. ~ '. •· • .: . . .. : i. ' ~ ~ : . ' 

which simpl~fies the analysis and allows on~ to prove the existence of a. SJ1100th invariant 
.'. ·, ·. . • ' I'·. ·•.· ·'"·'· : . . ..: .. •",·! ·'' 

measure. This measure is then trcmsfern~d back to th~ original hyperl:>olic system. via the 
, ' ·' . j . . . ,. ... = . . . .: ,. ·. ·. . . : .' :; . . : . '' .. . : ~ ~ . ·. ' ~ ; ; ·' • . ·, ... 

symbolic coding. In contrast, the appr9a~h of Bl~k1 Keller, -and Liver<lJ.li i§ ffi()te direct and 
' • ; ' • : : .• ' ': • -~ •• • ;. ." ',' ., • • ; .·' .'' ' .: ; • • • • • T " • , 

natural. The weighted transfer operator technique does play a qudal role i:n the ,so-called 
. . : : : . . . . : . -~ .. ·... ~ .. : . :, . ' 

thermodynamic fqrmalism [BalOO, Bow75] and in constrl!ctihg large cleviati()ns fU!lctionals 
.· ' . . ~· \ 1'. . . i, ,.· ·,j' · .. 

for dynamical systems [Tak84]. -

2.6 Zero-noise limits of unifonhly-hype~bolic systems 

Let F : X ~ _ X be a map, and let {p€(x, ·) : x E X} be a family of transition 

probability measures on X depending dh a parameter t: > 0. Let (xn) satisfy Xn+I = 

F(xn) (with a possibly random initial conqition x0), and define the measure F*p€(x, ·)by 

setting F*p€(x, A) = p((x, P-1(A)) fot all Borefsets A. Let (xh) be the chain with transition 

probabilities F*p€(x, ·) and W,tial condition x5 = xo, The ~ain (J;t)i~ :th~n then arandom 

perturbation of (xn)· This interpretation is particularly meapingful-ifp€(~.; ·) is in some 

sense small when t: is small. Now let g : X ~ ~ be a continuous function. Then it is 

natural to ask whether 

Hcij .. · · g dJ-L€ == J· g dJLo, 
€-+0 

(2.46) 

· ~h~~e /-L€ is an invadaht measure for the chain (x~) and J-Lo is an invariant measure for F. 

thefoiiowing simp~e result provides a partiai an5wer (see [kifsS]): 

Proposition 2.15. Suppose the transition measures p€ ( x, ·) converge. to dx uniformly in probabil-
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.· ity, i.e. for aU a:> o, 
Jim:~upp€(x,X \ B(x, a))= 0. (2.47) 
€-+OxEX . 

'Let {~;} denote aja~iiy ofih'~ari~rifmeasures for p€ for E.> 0 .. Then any weak lim~t J.Lo of { J.l€.} 

... · Jb~ € :_;'dis F-invatiant. · '- · ' · ' · '· 
• I : ,".. .. I • . • : •. • • ~ ./ • ' I . . ' ~ • . I 

.. [J~qof <:!tC>o9~ ~ ~Hb.s~q';l;en.c~ .. ~~ ~ .. 01 su,.~!;Jh~t ~~k -:-+ J.Lo weaklxas k ~ 00. As X is com~ 
• '• •, 0 • ' '• • ' •, ', ' ~' 'J '• • ~· : r • • ,,' ' •' • •, ' • ' ' '0 0 '• ' ' • • 0 ; • ' 

pact Hausdorff, _every ~m:el p~ob~bility me.asure on _X is a Radon measure and it suffices 
• ' . •• . ' :: . ' - •• ~ .. - _ •. ( ' ... _, ; . ~. .. f .. -:· '·;: ' ' . (' • ; : ~ . 

to verify ~a~Jg ~ 'r, ri;J.Lo ~- J g dJ.LfJ. f()r. ~\Tery 9 E. C(X}: 
. . . ; ! ' • ' :, I . ~ '· _' I ' ,/ 4 • ;, ! .• · ; >. •.: ~ ' ' • I • , , , 

r,.> .·IJ9 0 F dJ.Lo ~ I4dJ.Lol = limk:lf;99 F·dJ.L€J<:~ Jg dJ.L€i< I 
.. '.' :· .. · =.--liii1k.;jj9 o F,dJ.L~k· ~ E Jg o.F€k dJ.L€k I 

:::; limk E f 19 oF- 9 o F€kl dJ.L€k (2.48) 

·== ~ .limk:[E(d(F,F.k)<a) (J j9oF _., 9 o F€k I dJ.L€k) 

' .i . +, E ( d(F','.F~k )2:a) (J 19 ° F - 9 ° F€k j dJ.L€k)] · 

··. Ch'Oo-siilg·ti small e'n:ougK~o that'fg(if- g(tj)l <b'whenevertd(x,:y) <a yields 

, [J9,o 1; ~"" -~~ ~""[ ,; b+ .li.'! 2; <d <F, ;.,) > q). (2.49) 

·The ·second term varushesby assumptiort''and b > 0 was arbitrary, so J.L6 is'inVaria:nt. 0 

Thus, the real problem is to figure out which invariant measure$ ofF can arise as 

weak iimit~ ~f { J.L<} ~s E ~ o: The~~ i~ ~~especial ca.se which is ~el(~derstood mathemat-
, :' . ; : ·. I . ·, -: ' ; . • ... · . ; : ' . .::• :• ; : ~ : . , , : : . · .. : i · ! • · . ' . • · 

ically: Suppose the unperturbed map F has an Axiom A attractor on which it is topolog-
.. ' . . ' . . .• j ;- • ,. ' •' . ,. 

i~ally tr~itive and the random perturbation is given by transition probability measures 

~hich have ~~n!in~P~~, p;qbability cien~itles. Th~~ the perhrrbed systems h~ve ·~que in-
• • ~ ' I • • • • ' .: ; ' ' ' - • \ !. ' ~- • • • ' • , ' : ' .. , ' • , ,· : • ' 0 • : ' , •• ' • , ' • ' 

variant measures J.l€ and the limiting measure J.Lo must be the SRB measure of the original 
rnap'F.[Kif88]. More~reci~~l~:. ,. .. . . ·'· ; 

Theorem 2.16. Let F : X ~-X .be a smo9th diffeomorphism on a ,compact Riemannian manifold 

X and {P<(x,·): x EX} afamilyofmea~ures .. Suppose.thefollowingcorzd!tionshold: 

1. For each 9 E C(X, JR), J 9(y) P<(x, dy) converges uniformly to 9(x) as E ~ 0. 

2. For each E > 0, P€(x, ·)is absolut~ly contitiuo~~ with r~spect'to the Lebesgue measure of X. 

Then·the Mflrkov chain deftn~d by ,the transition ,probability densityEq1i(x; ·) has a unique invari­

mit measure J.l€, and the weak limit of Jl.€ as E ~ 0 is a convex· combination of SRB measures of 

F. 

J 
·I I 

' l 
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Kifer proved that by showing. that the weak limit J.to must be absbiutely continu­

ous with respect to J.tsRB· The ergodicity ofP,sR.s then show!') that J.to · = J.tsRB· 

. . , 'fh.e absol}lte continuity of trarv>itjpl) probaq~l\ty,me(lsure~ .. p:t~<~ms tha~ ~e dy­

. . namics is ~ertu~bed in all spatial directi~ns (though in a p~ssiqly iDfio~()geneo~ way). 

However, as explained in the Introduction, it is frequently desirable to use random per-
,=,,·,: __ .. :. · .. --·.··.' ._ . , .,--_·:r_.· ·;·•>·----~~--- :·\,-."·.:< ... ,·};,._:,;1 ::_t:' ~'. 
turbations which are limited to the u:riSfable directions oruy. fu'the solenoid example, we 

~an cllect< J1r~ct1y ili~frefttirbations iri1:he'~t~l:i1e dire~tio~ (sp~~d\Yir and' ts> do 

not perform any useful function in the ·~omp\.lhtion. A sthail ~miJurifof n'oi~~ (iriform 

noise on the order of 10-15) in the unstable direction to suffices to produce: a inuch reliable 

picture of the atttactor. Precise theorems in the case of singular random perturbations are-
___ ,/ 

not known to the author. 

<.It is easy to show that if JLE is an invariant measure for the perturbed system, then 

any weak limit_of Jl€ is invariant under F (see Chapter 4). The bulk of Kifer's proof is 

involv~qin shpwing that ~my weak limit is absqlutely continuous wi~ resp~<:tJp-~e SRB 
. . .. ~- . ~ . . .. -· .... ·. .. ,, ;_ ' - . . .: .· . ~ . . -

measure J.tsRB· The ergodicity of J.tsRB then implies that the weak limit must coincidE: with 

J.tsRs itself. The key point is that this strategy can only 'show that the limiting· measure is 

a-,proqaqility rneaswe; it does not iive rates of,<;:onvergence. '!'her~ are, in fact~ yery few 

such estimates. . . 

The use of noise in numerical studiesof cJ:t~~tic' syste~ 'is not a new i?ea; ad-

ditive nois~is a natural way to ensure that simulated orbits visit differeri1: parts -of the at-
; , ~· ' ~:- ; ., •• .' .... -' ' .•. <' ~ ; 

i tractor more quickly ~ith approximately the correct frequencies. The fundam.:;ni~l math-:~ 
. . ~- : (_ . . ' . • . : ·. ; ·. _; . : . i ! . .:;,::·." '; :.; -:'. ': . . -: ~ >.:. ~ ·. : < .--:; _; •• ' 

ematical resUlts date back to the work of Kifer [Kif74, Kif88] and Freidlin and Wentzell 

[RV9s].··Bditdirtg;~m Kifer's.theo~em, H~nt '[B~~6J,t<il~~[Kif97j~ a~d·o~h~ii~ et. al. 

[DJ9CJJ h~ve suggested the use of random per~rb~ti~ns as the' basis'·ofreli~bl~·numeri-
- . _ _ . :r .. _ .•. _, _;. <t. · ·,-_ · .. · :.j . , ··., __ :· 

cal algorithms. However, these papers consider only perturbations which nave absolutely 

cohtihuous (with respett to·Lebesgue) trarisiti6il'prbbabil~ty measures. 'The'~Hl.Jiysis of 

degeriet~te p~rttirbati6ns is much mofe challenging;'· 

2.7 The limits ofhyperbqlic theory 

It is important to remember thatreal physical systems rarely·~atisfy the axioms of 

uniform hyperbolidty. Most real physical systeins have parameter regimes in Which fuey 

experience intermittency, alternating between chaotic and periodic or quasiperiodiC behav-
' 
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y 

-1.0 0.0 1.0 

X 

Figure 2.6: The Henon attractor. 

ior1 [OttOO]. Even very simple mathematical models can exhibit nonuniform hyperbolic 

behavior and become very difficult to analyze. For example, consider the Henon map 

(2.50) 

with a = 1.4 and b = 0.3. It has two hyperbolic fixed points and an apparent attrac­

tor; it is shown in Figure 2.6. The strange attractor has well-known self-similar structures 

[GH83]. If the attractor were uniform.ly hyperbolic, the unstable manifolds of the fixed 

points would be dense inside the attractor. But the attractor folds back on itself ever more 

densely, so it is impossible to have stable manifolds which are everywhere transverse to 

the unstable manifolds with angles bounded away from 0, as is the case for hyperbolic 

attractors [KH95]. See Guckenheimer and Holmes [GH83] for a more extensive discussion 

of strange attractors. 
1 I am grateful to Dr. Tom Weaver of the Hertz Foundation for pointing this out. 
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Despite its limits, hYperbollctheory d(:)e~'yield quaiitativei~ights andqucintita- . 
.. ·.·•·... . . '· ' . . . .·· ·:·· ··: .. ,,. . . ' ' .. ·. ' :. \ ,· . ; . '· ... ' 

tive preqktioris for ph,ysicallyrealistic models. There has also beeri-rnuch:progressiil't):le 

rigorous:theory·of rtqnunifoririiy hyp~rbolic systems in recent years,[You95]. 

\' 

< • ' ~'. 
~- ·. .· 

) 

,.·.;, 

.. · ' 
--~.-~--~--~~·:.--.-,.---:--.;--
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Chapter3 

Racndom Perturbations in Numerical 

S. 1 .. . tmu· attons 

This chapter explores the use oh1.oise in numerical algorithms -for computing 

statistical averages of observables. Most. oftl'lilr<#scussioit is based on numerical studies 

ofthe.Lorenz system·(1.2) [GH831 Lot63] •. and'oih~rlow~dimensio~al systems. Ah~lytical 
results remain far from optimal and havebeen sufuma~ized. in Chapter 4. 

3.1 Asymptotically un~table subspac.es & Lyapunov exponerlt,s 

The calculations described in this chapter focus on the computation of Lyapunov 

exponents because of their intrinsic iriterest as dynamical invariants. Furthermore, in order 

to compute Lyapunov exponents, we need to first compute the invariant sub~paces Ei(x) 

(see §23), and the computation oftheseinvariimtsubspaces provides valuable insight into 

the local geometric structure of dynamical systems' 

The easiest way to estimate Eu (x) 'is to try to lift the flow to the orthonormal 

frame.bundle. In concrete terms, this means that given a solution x : [0, +oo) --,7 X of the 

equations of motion 

x(t) = f(x(t)) 

x(O) = xo, 

i I 

I I 
I 
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we want to find equations of motion 

±(t) =f(x(t)), 

il1 (t) =6 (vl (t), ... , Vn(t)), 

iJ2(f) =6(vl (f), ... , Vn(t)), 

Vn(t) =6( V1 (t), ... , Vn(t)), 
·, -_;-· 

.. ! ' _;I .- ~· -~~ 

'::: 

so that the vectors (v1(t), ... , vk(t)), 1 :::; k:::; n, form an orthonormal basis for the subspace 

Ek(x(t)) associated with the k largest Lyapunov expohepf~f:.ui f;a~t, Hiis poS,si'bi~: to find 

the desired equations in a "triangular" form 

±(t) =f(x(t)), 

~1 (t) ~'6 ( V1 (i)), 

~2(t) =6(~1(t), V2{f)), 
. .·\;, .· 

~- .! 

Vn(t) =6( V1 (t), ... , Vn(t)), 

so that if one is only interesteq in computing Ek(x(t)) for some k < n, then not all n2 + n 
' . . . . ' " " ! . ' . . i -'· . ' . . ..... } • ' ·- ~ ! 

equ(ltions are ne~ded~ 
Theyector field for ,the or,thm1or~~ll]asisJy1 (t), ·;" vk(~}) of Ek(x(t)) is easiest to 

e~plai!l in ,the f.o,rm of a simple,?-lgorithm: ; 

Algorithm 3.1 (Flow Field for OrthonormalFtames). 

Input: 

vector field f 
point x EX (system state; dimension of X is n) 

integer k 

1: x := f(x) 

2: fori := 1 to k do 

3: vi:=Df(x)·vi 
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4:· for j :=ltoi·-1 do 

5: Vi.:= Vi ,..,..,- (Vi . Vj + Vi . Vj}Vj 

•·. 6: end for · 

7: vi :=vi- (vi· v)v / 

8: end for 

Output: vectors i:, v1, ... , vk (time derivatives) 

The algorithm is a straightforward consequence of the orthonormality cdnditions 

and the requirement that VI, ..• , vk span Ek. The inner loop enforces the orthogonality con­

dition, while the last statement enforces- the normality of the basis vectors. In hyperbolic 

flows, the vector VI (X) will. converge fairly quickly tO the maximally unstable direction 
I 

EI (X) associated with the largest Lyapunov exponent. Because V2 (X) is kept orthogonal to 

VI (x), it will not point in the direction associated with the second largest exponent. The 

vectors VI ( x) and v2 ( x) together, however, span the subspace E 2( x) associated-with )q and 

>.2. A simple induction argument establish:s the correctness of this algorithm. 

We can compute the largest k Lyapunov exponents using Algorithm. 3.1. We only 

need to compute the long-time averages of the partial traces of the Jacobian D f along the 

spans of (vi, ... , vi) fori= 1, ... , k [WSSV85]: since 

AI'+ ... +>.k = f~oo ~ (1T tr (Df(x(t)) fEk(x(t))) dt) 

~ ,t'! ~ (~ f v;(t)' · Df(x(t)) · v;(t) dt), 

it follows that 11T >.i = lim T vi(t)* · Df(x(t)) · vi(t) dt. 
T-+oo 0 

(3.1) 

(The row vector v* is the transpose of the column vector v.) 

In practice, we cannot simply insert Algorithm 3.1 into an ODE solver and expect 

it to work. This is because Algorithm 3.1, when implemented as part of an ODE solver, 

contains a vicious feedback mechanism: because of numerical errors, (vi, ... , vk) will be­

come slightly nonorthogonal after a finite number of steps. This forces the ODE integrator 

to take ever smaller st~ps to maintain orthogonality. Eventually, the computation grinds 

to a halt. Thus, we must periodically reorthonormalize (vi, ... , vk)· This can be quite ex-. . 

pensive to do for higher dimensional systems. If one is only inter~sted in computing the 

1 ' 

I I 



47 

Lyapunov exponents {.X1, ... ,.X~} and not the invariant subspacerEk(x),then it is more ef­

ficient to simply remove the constraint that the bas1s (v1; .. :; vk) stays orthonormal. This is 

equivalent to computing the Lyapunov exponents for the time-T map ·if>T:for a fixed T > 0 

instead of directly for the flow [BGS76, GPL90]. More precisely:.: 

Algorithm 3.2. 

l1,1put: 

flqw map ¢>r : X 7 X 

point x E ,X (initial cond~tion) 

inte~er. k .. .. 

,integ,er.Nn.n (running time) 

orthonormal v.ectors { v1 , ... , vk} (initial frame). 

1: fori:= lto k do 

2: 5.i := 0 (initialize) 

3: end for· 

4: for n ==:= Uo Nrun do, 

5: fori := 1 to k do 

6: Vi:=Dif>r(x)·Vi 

7: end for 

8: for i := 1 to k do 

9: for j := 1 to i--' 1 do 

10: vi := vi - (vi · Vj )vj .(reorthogonalize) 

11: end for 

12: ).i := ).i + log/lviii/(Nrun · T) 

13: vi := vdllvill (renormalize) 

14: end for.· 

15: x := ¢r(x) (continue with the next step) 

16: endfor 

Output: { >.1, ... , >.k} (estimates ofLyapuiwv exponents) 
. . , 

This is the standard algorithm one finds in [GPL90] and referE;nces thereiri. 
" . ~, ... ', . ,-. : ' \ . ' . . . 

Algorithm 3.2 can also be used to compute the Lyapunbv exponents of art arbi­

trary map 'f by replacing ¢r with F. Algorith~ 3.ieff~ctively performs a QR factorization 
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of the Jacobian DFusingGram-Schrriidt orth'Ogohaliiatioh.LThereis,.a rhore·sophisticated 

·variant of this method which use~,Househol~er ~ansf?rmationsin place of Gram-Schmidt 

. orthogonalization; see [GRL90] artd referen~e~ therein':. 

· 3~2 · Tim:e averaging 
f i ~-- ·. 

,Traditionally, .the COIT).putatiqn pf ¢.~ .~v~rag~ Y<lltJe, of ,an ,observablE~, g with re­

spect to an ~.rg()dic:i~'\~rifl.I)t JP.e<lsur~ proq:~e9.s:l:>y, p~r:for;rrUngJong:-time.simulations of 

thesystem};p. qu~sppn.?nd COJ!tPY.ting'tin:te av~r~ge~ .• pus.si:rnple.prqcedure is formalized 

bel~'\>\7 inpseuqp_s()de: 

AigBrithirt 3:3·<Ti~iAve'raging). 

Input:·.· 

•fuj:).diot:t 9 iX ~'IR.:'(observable-ofinterest) -.·• 

'mapF ·:X:~ !X (dynamics) 

point x0 E X (initifll condition) 

integer Niru1 ( initiilllzation time) 

., :integer N ruri Jr.unning time) 

1: X:= Xo 

2: for n := 0 to N.nit - 1 do 

3: x := F(x) 

'4:· end for 

5: •g :== 0' 

· 6: forn := 1 toNr.m do 

7: x := F(x) 

8: g := g + g(x)/Nrun 

9: end for 

Output: real g (an estimate off g dJ.LsRB) 

... ·· 

I ,• '!:. 

.·. :~ 

Note tha_~ the ~tiaJjzation)oop is .ne;:trly identical to the averaging loop. For the 
. . . . . . ., - . (, . .. . . 

.. ~ake o,f .~larity, descriptions. of algqrithms .~ l.ater se.ctions. of * chapter will abbreviate 

the initiali,zation loop. 
. . ! . ~ 

In order to apply Algoritl;un 3.3 to realistic problems reliably, we must be able to 

I ' 
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estimate the numerical error in the result. As 

2 Cgg(O) T;nt(g) 

Nrun 

where T;nt(g) is the integrated autocorrelation time (see §2.5 .2), the choice of the initializa­

tion time N;n;1 and the running time N,un depend on knowledge of the decay rate of the 

autocorrelation function of the observable g. In exceptional cases, it is possible to obtain 

analytical bounds on this rate of decay. In most cases, however, analytical estimates are 

unavailable, and we must calculate the decay rate from empirical data. 

A practical problem which arises frequently is that the autocorrelation function 

may decay very slowly, either with a small exponential time constant or even subexponen­

tially. This corresponds to 10' (TF ) \ { 1} I ,....., 1. This is rather common in statistical mechan­

ics and quantum field theory, as correlation lengths in lattice models diverge to infinity 

near phase transitions. For classical dynamical systems, a similar phenomenon exists. For 

example, polynomial decay is often expected in systems with nonuniform hyperbolicity or 

intermittency, such as the intermittent interval maps (see §3.5 and [LSV99, OttOO]). These 

difficulties will be addressed later in this chapter. 

Figure 3.1 illustrates the result of applying Algorithm 3.3 to the Lorenz flow to 

compute Lyapunov exponents. As can be seen, the time averages { 5._i(T)} converge to 

well-defined limits as T increases. In the figure, the estimates 

5._i(T) = ~loT v1(t)Df(x(t))vi(t) dt , 

are plotted against the time interval T . The initial condition is taken to be a small ("" 

10- 15) perturbation of the origin. The estimates 5._i(T) will converge almost surely to the 

Lyapunov exponents as T ~ oo. Furthermore, ).-2(T) will converge to 0 as T ~ oo, since 

flow lines are center manifolds (see §2.3). 

3.3 Random kicks in unstable directions 

At first sight, Algorithm 3.3 may appear to be the only practical way to com­

pute the expectation value J g df..LsRs of an observable g with respect to f..LsRs · However, 

when the number of dimensions is sufficiently small, one can apply the subdivision algo­

rithm of Dellnitz and coworkers [DH97, DHJR97, DJ99] to discretize the transfer opera­

tor. In many cases, it is also possible to apply periodic orbit theory and cycle expansions 



50 

10.0 \ 5.0 ""----......_ 
0.0 --

~-
-5.0 

, 
I , 

exponent I I 

- 10.0 •• 
~ 
• . ...., .... ___ 

-15.0 .-I 

I 
-20.0 I -

20.0 40.0 60.0 80.0 100.0 

Figure 3.1: Estimates of Lyapunov exponents as a function of simulation time interval T. 

[CCP97, Dor99, Gas98] . In moderately high dimensions, these alternative methods be­

come less efficient and their implementation requires overcoming a host of theoretical and 

algorithmic challenges. 

Notice that the Metropolis algorithm 2.14 extends naturally to continuous state 

space Markov chains with probability densities instead of probability vectors. Its imple­

mentation requires only that one can compute the relative probability of two different 

states. But Equation (2.30) provides a formula for the relative probability of two states 

lying on the same unstable manifold. Is there a way to use Equation (2.30) to construct 

a Metropolis algorithm for SRB measures? Specifically, can we perform Metropolis sam­

pling by proposing moves x' along w u(x) and then comparing the probabilities of x and 

x' by evolving both points forward in time and computing the local expansion rates along 

each trajectory? 

Let F denote a map with a hyperbolic attractor K and an associated SRB mea­

sure f-LsRs · Let x be a point inK. FixE > 0 and let m~) be the normalized surface measure 

on w €u(x) induced by the Riemann metric of the phase space X. In order to construct a 
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Metropolis algorithm using (2.30), we need to understand the behavior of proposal mea­

sures as they evolve along unstable manifolds. Let qx (-), then, be a probability density on 

w €u(x ) (defined with respect tom~) and let Px denote the density of /1SRB on w €u (x ). Then 

the acceptance ratio Aq(x, x') associated with the family of proposal measures { qx } is 

A ( ') .. (qx'(x ) · Px(x') ) 
q X, X = illlll ( ') ( ) , 1 . qx X . Px X 

(3.2) 

Now, for each x we can define a new proposal measure q~l) by 

(3.3) 

The measure q~1 ) is obtained by taking the distribution qx on the local unstable manifold 

W;" (F - 1 (x )) and pushing it forward to W ;" (x ) using the map F. Equations (3.3) and (2.30) 

imply that 

(3.4) 

But this means that if we repeat the construction and define 

By induction, 

Since x and x' belong to the same unstable manifold, d (F-n (x ), p - n(x')) ----) 0 as n ----) oo. 

It follows that pushing a proposal distribution forward under the map F improves the 

acceptance probability. Heuristically, then, we expect to be able to accept every proposal if 

we use the family of measures { q~N)} as our proposal measures for sufficiently large N. 

The discussion above leads to the following algorithm (for simplicity, set qx ( ·) = 1 

and N = 1): 

Algorithm 3.4 (Random Perturbations in Unstable Directions). 

Input: 

function g : X ----) JR. (observable of interest) 

map F: X ----) X (dynamics) 

real number E > 0 (noise amplitude) 

point x0 E X (initial condition) 



integer Nirut (initialization time) 

integer Nrun (running time) 

vector subspace jj;u (approximate unstable direction represented e.g. by basis vectors) 

1: X: = Xo 

2: fJ;u := random orthonormal frame 
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3: do initialization loop for Ninit - 1 steps (this is nearly identical to the averaging loop below) 

4: g := g(x) 

5: for n := 0 to Nrun - 1 do 

6: fj;u := DF(x) · fj;u 

7: x := x + 8x (8x is a small uniform random sample drawn from uniform probability measure 

supported on the ball Bu(x , E) = B(x, E) n (x + iJ;u).) 

8: x := F(x) 

9: g := g + g(x) / Nrun 

10: end for 

Output: g (an estimate of J g dp,€ ~ J g dJ-lsRB) 

Note that this is not, strictly speaking, a Monte Carlo algorithm. One may be 

tempted to use backward iterates ofF to really implement a Monte Carlo method with the 

proposal measure q(n). That is unlikely to work because the unstable manifolds of p-l are 

the stable manifolds of F, which (when F is dissipative) generally fill up a set of positive 

measure, so iterating p - I is an extremely unstable process. Note also that it is generally 

impossible to propose moves that lie exactly on the unstable manifold; Algorithm 3.4 pro­

poses moves along approximately unstable directions jj;u _ The action of the map F then 

pushes the proposals closer to the unstable manifolds. 

Algorithm 3.4 is extremely simple: it applies periodic random perturbations to 

the flow under study. The correctness of Algorithm 3.4, then, is equivalent to the stability 

of SRB measures under small random perturbations in the sense that the invariant mea­

sures /-l€ of the perturbed chain ( x~ ) converge weakly to /-lsRs as E __. 0. Unfortunately, 

Theorem 2.16 does not apply here, as the random perturbations used here were directed in 

(approximately) unstable directions and cannot be absolutely continuous unless F is ev­

erywhere expanding (i.e. dim Eu = dim X). However, results appearing in the next chap­

ter imply that Algorithm 3.4 is consistent in the following sense: if we first let Nrun __. oo 

and then let E __. 0, then the output g of Algorithm 3.4 converges to J g dp,sRs · Also, as noted 
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Figure 3.2: Estimates of Lyapunov exponents as a function of simulation time interval T. 

in the Introduction, the random perturbations introduced in Algorithm 3.4 may help re­

duce the correlation time of the perturbed Markov chain. 

Let us now combine Algorithms 3.2 and 3.4 and compute the Lyapunov expo­

nents for the Lorenz flow with the standard parameters ()'= 10, b = ~'and r = 28. Figure 

3.2 shows the partial sums ~i' defined in Algorithm 3.2. The flow is sampled at intervals of 

T = 0.02, and after each sample the state variable x is perturbed by uniformly distributed 

random variables of amplitude E = 0.01 in the estimated unstable direction i;u. As in 

Figure 3.1, the initial condition x 0 is a small (rv 10-15) perturbation of the origin. 

Because xo is near a hyperbolic fixed point, it takes some time for the computed 

trajectory to leave the vicinity of the origin and explore the rest of the attractor. This is 

the reason for the appearance of the "plateau" in the top curve of Figure 3.1 fort < 5. In 

contrast, in Figure 3.2, the addition of noise helped the partial sums converge much more 

quickly. One may object that the choice of xo is unnecessarily pessimistic, but it is im­

portant to remember that frequently, the phase space of a dynamical system is partitioned 

into multiple ergodic components. Choosing initial conditions near a known fixed point is 
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( 

Figure 3.4: Estimated Lyapunov exponents for the Lorenz flow kicked by uniform noise 
of amplitude E in the asymptotically unstable direction. The solid curve is _5._ 1, the dashed 
curve _5._2, and the dashed-dot curve _5._3 · 

a simple way of ensuring (with high probability) that the statistical information we com­

pute pertain to a single ergodic component rather than a convex combination of ergodic 

invariant measures. 

Figure 3.4 shows the estimated Lyapunov exponents, computed by sampling the 

perturbed Lorenz flow at intervals ofT = 0.02 for 106 steps, as a function of the noise 

amplitude E. Figure 3.5 shows the corresponding empirical decay times f exp of the auto­

correlation functions for the local expansion rates. The empirical decay time f exp is defined 

here to be the time required for the correlation function to decay to 2
1
0 of its value at t = 0. 

Figure 3.6 shows the empirical estimate fint of the integrated autocorrelation times as a 

function of E; f;n1 is computed by numerically integrating the normalized autocovariance 

function from 0 to fexp using the trapezoid rule. Finally, Figure 3.8 shows the variances of 

the local expansion rates. 

The exponential decay time decreases with increasing E, as expected, though f;n1 

increases with increasing E. These observations are confirmed by the spectral power den­

sity C(f) = J~: C(t) e-i2-rr ft dt, shown in Figure 3.7: as E increases, the spectral densities 

(1) become more smooth, which reflects a faster decay of correlations; (2) the peaks be-
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Figure 3.5: Decay times of the Lorenz flow periodically kicked by uniform noise of ampli­
tude E in the asymptotically unstable direction. The solid curve is .\1, the dashed curve .\2, 

and the dashed-dot curve .\3. 
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Figure 3.8: Variances of ~k for the Lorenz flow periodically kicked by uniform noise of 
amplitude c in the asymptotically unstable direction. The solid curve is ~ 1 , the dashed 
curve ~2, and the dashed-dot curve >.3. 
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come broader, which reflects the movement of resonances away from the real axis; and (3) 

C(O) = Tint increases slightly. Note that the numerical computation of Tint can be somewhat 

subtle; see Sokal [Sok97] and references given there for a more detailed discussion. The 

qualitative features of Figure 3.6 do not depend sensitively on the numerical quadrature 

scheme or the integration limits. The roughness of fint as a function of E may reflect the 

instability of parts of the correlation spectrum with respect to random perturbations, as 

suggested in [BK98]. 

It is possible to extract some resonances from the correlation data, for exam­

ple using Prony's method [MSW89, WMS88]. However, a straightforward application 

of Prony's method to the numerical data produced only an estimate of the dominant, 

slowest-decaying resonance, which can be extracted by the more naive means described 

above. It is an open problem to develop numerical algorithms which can reliably estimate 

fast-decaying ("broad") overlapping resonances, either by processing correlation data (or 

equivalent their Fourier transforms) or by other means. 

In statistical mechanics, the integrated correlation time Tint is usually expected to 

be comparable to tl1e exponential decay time Texp except when the system is near a phase 

transition [Sok97]. In contrast, we see here that the Tcxp is much larger than Tint when no 

noise is added. With the addition of noise, Texp quickly decreases while Tint increases slightly. 

Thus with a suitable amount of noise, we can decrease Texp without increasing the already­

small Tint or changing {.Xi} too much. 

Covariance functions can be expanded as 

Cgh(n) = L agh(w)einw + R(n) (3.5) 
wEacorr(F) 

where R(n) "'A.R_ is an exponentially decaying error term with decay rate AR > Im [w] for 

all w E O"corr (F). The exponential decay time Texp is therefore determined by the element 

of O"corr (F) with the smallest imaginary part. In contrast, the integrated correlation time is 

roughly equal to 

1 (X) 1 (X) ( · ) 2 + L Cgh(n) = 2 + L L agh(w)emw 
n=l n = l wEacorr(F) 

agh(w)eiw 
1 - eiw 
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Thus, while Texp depends only on the part of O"corr (F) closest to the real line, Tint depends 

on the rest of the correlation spectrum. Since Texp and Tint differ so much when E = 0 and 

respond to random perturbations in qualitatively distinct ways, it is likely that random 

perturbations have a much larger effect on resonances which lie near the real axis than 

on those which lie farther away, and that the correlation spectrum of the Lorenz flow is 

concentrated away from the real axis but contains a few resonances with small imaginary 

parts. Whether this effect of random perturbations is true for other dynamical systems is 

unclear, but it appears to be consistent with the results of Blank and Keller [BK98]. The 

conclusion we can draw from these figures and from Table 3.1 is that for the Lorenz flow 

and other systems with relatively strong mixing properties, the addition of noise can help 

decrease the exponential decay time but not the integrated autocorrelation time. In fact, the 

standard deviations of the estimated Lyapunov exponents (see Table 3.1) actually increase 

with increasing E. 

In Monte Carlo studies of lattice models, the exponential decay time Texp is usually 

associated with the amount of time needed for equilibration. The integrated autocorrela­

tion time, on the other hand, determines the number of steps we need to simulate the 

Markov chain before obtaining a new effectively independent sample. For dynamical sys­

tems, standard results about transfer operators (see §2.5.2, §2.5.3, and [BalOO]) show that 

this understanding of Texp and Tint is still correct, though if the initial condition xo is far from 

the support of f..LsRs then we also need to take into account the attraction time Tatt· 

In order to compute Lyapunov exponents using Algorithm 3.4, one must work 

with the orthonormal frame bundle lift of the flow (see Algorithm 3.1). This is because 

the calculation of Lyapunov exponents requires information about the jacobian D f. Thus, 

a straightforward implementation of Algorithm 3.4 for computing Lyapunov exponents 

may appe~r to require D 2 f . However, it is easy to see that the bundle degrees of freedom 

are enslaved to motion in the base: for subspaces E 1 and E2 in general position, with 

dimE1 = dim£2, d(DFnE1 ,DFnE2) -+ 0 as n-+ oo. Thus perturbations in the bundle 

degrees of freedom are unlikely to have a significant effect on the decay rate of correlations. 

We can thus modify Algorithm 3.4 when computing Lyapunov exponents to perturb only 

the state variable x, not the orthonormal frame E;u . This requires only f and D f, not D 2 f. 
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E N f exp fint IN ->-0
1 

0.0 0.906 ± 4.8 X 10 -::S 5.334 0.013 0.000 
0.5 0.828 ± 5.6 X 10-3 6.208 0.017 0.077 
1.0 0.902 ± 7.0 X 10-3 3.398 0.028 0.003 
1.5 0.966 ± 7.8 X 10-3 2.009 0.037 0.060 
2.0 1.018 ± 8.3 X 10- 3 1.341 0.045 0.112 
2.5 1.057 ± 9.0 X 10-3 0.968 0.056 0.151 
3.0 1.063 ± 9.0 X 10- 3 0.734 0.059 0.157 
3.5 1.057 ± 9.4 X 10- 3 0.594 0.067 0.151 
4.0 1.052 ± 9.8 X 10- 3 0.487 0.076 0.146 

(a) Estimates of largest exponent 5-1 

E N fexp f int IN - >-0 1 

0.0 0.00 ± 3.1 X 10 ·j 3.164 0.018 0.000 
0.5 0.035 ± 5.9 X 10- 3 0.787 0.068 0.036 
1.0 - 0.11 ± 6.0 X 10- 3 0.247 0.072 0.112 
1.5 - 0.28 ± 5.8 X 10- 3 0.200 0.066 0.288 
2.0 - 0.47 ± 6.0 X 10- 3 0.193 0.065 0.470 
2.5 - 0.68 ± 6.2 X 10- 3 0.173 0.063 0.680 
3.0 - 0.89 ± 6.7 X 10- 3 0.166 0.062 0.896 
3.5 - 1.10 ± 7.2 X 10- 3 0.160 0.061 1.102 
4.0 - 1.33 ± 7.7 X 10- 3 0.160 0.061 1.339 

(b) Estimates of second largest exponent 5-2 

E N fexp fint IN- >-0 1 
0.0 - 14.5 ± 2.6 X 10 -::S 7.470 0.004 0.000 
0.5 - 14.5 ± 3.5 X 10- 3 7.210 0.008 0.041 
1.0 - 14.4 ± 4.2 x 10- 3 4.012 0.012 0.116 
1.5 - 14.3 ± 4.9 X 10- 3 2.256 0.018 0.227 
2.0 - 14.2 ± 6.0 X 10- 3 1.475 0.025 0.358 
2.5 -14.0 ± 8.0 X 10-3 0.988 0.044 0.529 
3.0 -13 .8 ± 9.0 X 10-3 0.741 0.051 0.739 
3.5 -13.6 ± 1.0 x 1o- 2 0.600 0.063 0.951 
4.0 - 13.3 ± 1.1 x 10_2 0.487 0.077 1.192 

(c) Estimates of smallest exponent 5-3 

Table 3.1 : Correlation times of the estimated Lyapunov exponents of the Lorenz flow peri­
odically kicked by uniform noise of amplitude E in the asymptotically unstable direction. 
Estimated Lyapunov exponents are stated with their standard deviations. 
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Figure 3.10: Estimated Lyapunov exponents for the Lorenz flow kicked by perturbations 
which are uniformly distributed over cubes of side length E. The solid curve is ~ 1 , the 
dashed curve 5-2, and the dashed-dot curve ~3 · 

3.4 General random kicks 

Our attempt to construct hybrid Markov chain Monte Carlo algorithms for SRB 

measures has led to Algorithm 3.4. The results in the previous section show that this al­

gorithm can be rather effective at reducing the initialization time (at least for the Lorenz 

system) while introducing only relatively small errors in computed averages. Algorithm 

3.4 is, however, rather expensive, as it requires estimating the asymptotically unstable di­

rections. Are there variations of Algorithm 3.4 which can be more efficiently implemented? 

One natural idea is to simply use random perturbations of F with absolutely 

continuous transition measures. This class of perturbations has the advantage of a firmer 

mathematical foundation and has been advocated by a number of authors [Hun96, Ki£97]. 

Theorem 2.16 implies the consistency of random perturbation algorithms based on abso­

lutely continuous transition measures in the limit E ---) 0, and it is fairly straightforward 

to establish the existence of a unique ergodic invariant measure when E > 0. Figures 3.10 

-3.14 and Table 3.2 contain the corresponding results. The data is qualitatively similar to 

those of the previous section. 

However, as we are interested in applying these algorithms to nonlinear evo-
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Figure 3.11: Decay times of the Lorenz flow periodically kicked by perturbations which are 
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Figure 3.13: Variances of 5..k for the Lorenz flow periodically kicked by perturbations which 
are uniformly distributed over cubes of side length c. The solid curve is 5..1, the dashed 
curve 5..2, and the dashed-dot curve 5..3. 
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E N f exp f int IN -A0
1 

0.0 0.906 ± 4.8 X 10 -3 5.841 0.012 0.000 
0.5 0.749 ± 7.5 X 10-3 2.029 0.034 0.156 
1.0 0.748 ± 8.8 X 10-3 1.121 0.051 0.157 
1.5 0.762 ± 9.5 X 10- 3 0.747 0.058 0.143 
2.0 0.752 ± 1.1 X 10- 2 0.507 0.078 0.154 
2.5 0.708 ± 1.1 X 10-2 0.380 0.085 0.197 
3.0 0.631 ± 1.1 X 10-2 0.273 0.081 0.275 
3.5 0.580 ± 1.1 X 10-2 0.186 0.068 0.326 
4.0 0.498 ± 1.1 X 10-2 0.180 0.065 0.408 

(a) Estimates of larges t exponent .>.1 

E N fexp fint IN - A0
1 

0.0 0.00 ± 2.9 X 10-3 3.665 0.016 0.000 
0.5 0.022 ± 6.1 X 10- 3 0.413 0.078 0.022 
1.0 - 0.15 ± 5.9 X 10- 3 0.393 0.074 0.153 
1.5 - 0.37 ± 6.1 X 10- 3 0.240 0.069 0.375 
2.0 - 0.63 ± 6.4 X 10-3 0.180 0.063 0.635 
2.5 - 0.88 ± 7.0 X 10- 3 0.173 0.063 0.889 
3.0 - 1.17 ± 7.5 X 10-3 0.160 0.060 1.177 
3.5 - 1.42 ± 7.9 X 10- 3 0.153 0.058 1.424 
4.0 - 1.69 ± 8.3 X 10-3 0.146 0.056 1.697 

(b) Estimates of second largest exponent 5-z 

E N fexp f int IN - A0
1 

0.0 - 14.5 ± 2.7 X 10 -3 8.618 0.005 0.000 
0.5 - 14.4 ± 5.0 X 10- 3 2.777 0.019 0.133 
1.0 - 14.2 ± 6.0 X 10- 3 1.355 0.029 0.310 
1.5 - 14.0 ± 7.9 X 10- 3 0.861 0.044 0.518 
2.0 - 13.7 ± 1.0 X 10- 2 0.607 0.063 0.789 
2.5 - 13.4 ± 1.2 X 10-2 0.387 0.088 1.086 
3.0 - 13.1 ± 1.3 X 10-2 0.280 0.087 1.452 
3.5 - 12.8 ± 1.4 X 10-2 0.260 0.084 1.750 
4.0 - 12.4 ± 1.4 X 10- 2 0.186 0.070 2.105 

(c) Estimates of smallest exponent 5.3 

Table 3.2: Correlation times of the estimated Lyapunov exponents of the Lorenz flow peri­
odically kicked by perturbations which are uniformly distribu ted over cubes of side length 
E. Estimated Lyapunov exponents are stated with their standard deviations. 
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Figure 3.15: Estimated Lyapunov exponents for the Lorenz flow kicked by degenerate 
perturbations of amplitude c: in a linearly unstable direction. The solid curve is 5_1, the 
dashed curve 5_2, and the dashed-dot curve 5_3· 

lutionary PDEs, the use of absolutely continuous perturbations may increase the spatial 

roughness of the solution and reduce the efficiency of numerical integrators. In many 

physical examples, we are interested in differential equations of the form 

x = f (x) = Ax+ ](x), (3.6) 

where j is a smooth vector field whi.ch vanishes quadratically at x = 0. If the relevant dy­

namics is localized near the fixed point x = 0, then it would be dominated by the structure 

of the Jacobian matrix A. When A is hyperbolic, that is when it is diagonalizable and its 

spectrum does not intersect the imaginary axis, the stable and unstable manifolds of the 

fixed point 0 are tangent to the eigenspaces of A. These eigenspaces offer a convenient 

substitute for the asymptotically unstable subspaces in numerical studies of flows. This 

is especially relevant for numerical studies of nonlinear parabolic PDEs, such as reaction­

diffusion equations and the Kuramoto-Sivashinsky equations, whose linear terms can of­

ten be exactly diagonalized by the usual Fourier basis. 

Figures 3.15 - 3.19 and Table 3.3 contain the results for such a calculation for the 

Lorenz equations, where the flow is periodically perturbed by a degenerate perturbation, 

uniformly distributed with amplitude E, in the linearly unstable direction of D !Lorenz(O). 
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Figure 3.17: Integrated correlation times of the Lorenz flow periodically kicked by deg~n­
erate perturbations of amplitude c in a linearly unstable direction. The solid curve is >- 1, 
the dashed curve .\2, and the dashed-dot curve .\3. 
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E N Texp f in I IN- >.01 
0.0 0.904 ± 4.9 X 10 -3 5.721 0.013 0.000 
0.5 0.778 ± 8.9 X 10- 3 1.108 0.052 0.126 
1.0 0.764 ± 1.1 X 10- 2 0.400 0.089 0.140 
1.5 0.637 ± 1.0 x 10- 2 0.193 0.072 0.267 
2.0 0.398 ± 1.0 X 10- 2 0.193 0.067 0.506 
2.5 0.120 ± 1.0 X 10- 2 0.173 0.059 0.784 
3.0 - 0.20 ± 7.2 X 10- 3 0.060 0.027 1.105 
3.5 - 0.48 ± 6.6 X 10- 3 0.046 0.021 1.389 
4.0 - 0.77 ± 8.3 X 10- 3 0.080 0.030 1.680 

(a) Estimates of largest exponent 5.1 

E N f exp fint IN - .A0 I 
0.0 0.00 ± 3.0 X 10- 3 3.538 0.017 0.000 
0.5 - 0.19 ± 5.9 X 10- 3 0.387 0.074 0.192 
1.0 - 0.68 ± 6.3 X 10- 3 0.180 0.063 0.689 
1.5 - 1.30 ± 7.2 X 10- 3 0.146 0.057 1.300 
2.0 - 1.91 ± 8.0 X 10- 3 0.126 0.051 1.915 
2.5 - 2.44 ± 6.7 X 10- 3 0.066 0.030 2.441 
3.0 - 2.89 ± 6.9 X 10- 3 0.060 0.027 2.891 
3.5 - 3.23 ± 6.7 x 10- 3 0.053 0.022 3.239 
4.0 -3.56 ± 6.7 X 10- 3 0.046 0.020 3.566 

(b) Estimates of second largest exponent 5.2 

E N fexp fint IN - .A0
1 

0.0 - 14.5 ± 2.7 X 10-::l 7.483 0.005 0.000 
0.5 - 14.2 ± 6.5 X 10- 3 1.241 0.034 0.318 
1.0 - 13.7 ± 1.0 x 10- 2 0.500 0.078 0.829 
1.5 - 13.0 ± 1.3 X 10- 2 0.273 0.090 1.567 
2.0 - 12.1 ± 1.3 X 10- 2 0.200 0.076 2.421 
2.5 - 11 .3 ± 1.4 X 10- 2 0.193 0.069 3.225 
3.0 - 10.5 ± 1.3 X 10- 2 0.166 0.059 3.997 
3.5 - 9.94 ± 1.0 X 10- 2 0.086 0.035 4.628 
4.0 - 9.32 ± 1.1 X 10- 2 0.093 0.034 5.247 

(c) Estimates of smallest exponent 5.3 

Table 3.3: Correlation times of the estimated Lyapunov exponents of the Lorenz flow peri­
odically kicked by degenerate perturbations of amplitude E in a linearly unstable direction. 
Estimated Lyapunov exponents are stated with their standard deviations. 
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Note that the intuition behind the use of the linearly unstable directions is, strictly speak­

ing, not applicable to the Lorenz equations, as the behavior of the Lorenz flow is not clearly 

dominated by its behavior near the unstable fixed point at the origin. Nevertheless pertur­

bations in the linearly unstable direction at the origin appear to be as effective as pertur­

bations in asymptotically unstable directions, possibly because all that is really needed is 

random perturbations which are transverse to the stable directions with high probability. 

3.5 An intermittent interval map 

The Lorenz flow is rather special in some ways: although it is nonuniformly hy­

perbolic and possesses a complicated strange attractor, it exhibits very robust mixiil.g prop­

erties and strong dissipation. In this section we examine a simple family of maps which 

have properties that are expected to cause more serious difficulties. 

Liverani, Saussol, and Vaienti [LSV99] have studied the family of maps 

{ 

x [1 + (2x)0
], 0 ::; x < 1/ 2, 

Go(x) = 
2x- 1, 1/ 2 :S:x:S: 1 

(3.7) 

When a= 0, G0 is the "angle-doubling" map x ~----> 2x (mod 1) and is uniformly expanding 

(i.e. uniformly hyperbolic with dim Eu = 1 an~ dim E 8 = 0). When a > 0, something more 

complicated happens: Figure 3 .20 shows a plot of the map G0 for a = 0.999 superimposed 

with a plot of the identity function x ~----> x . The map is tangent to the diagonal at the origin 

and fails to be expanding there. Fix x0 and a so that 0 < x0 < a < ~ and let n be the 

smallest positive integer such that G~(x0 ) > a. Linearizing yields 

ln a - ln xo < < ln a - ln xo 
ln (1 + (1 + a )(2a) 0 ) rv n rv ln (1 + (1 + a )(2xo) 0 ). 

A straightforward numerical calculation suggests that, in fact, n '"" 0 ( x0° · (- ln xo)), so 

that the amount of time required for the system to escape from a small neighborhood of 

the origin is much larger when a> 0 than when a= 0. 

Liverani, Saussol, and Vaienti proved that for 0 < a < 1, the map G0 has an 

absolutely continuous invariant probability measure. Autocorrelation functions will not 

decay exponentially fast, however; they can only decay at the rate O(n- l /o+ I ). When 

a < 1/2, the covariance functions of Go are absolutely summable and one can prove a 

central limit theorem. This map provides a simple example of intermittency coexisting 
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Figure 3.20: The intermittent map Ga for a = 0.999. 
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with an absolutely continuous invariant measure. Note that the main idea of the proofs in 

[LSV99] is to use random perturbations of Ga to establish results on mixing rate, etc., in 

the zero noise limit. 

In Figures 3.21 - 3.25, numerical estimates of the Lyapunov' exponent of Ga is 

shown for a = 0.49. As can be seen, the addition of noise significantly decreases the 

correlation time, as one might expect. Note that while Texp = oo when E = 0, f exp ( E = 0) is 

finite because of its definition. It is also not surprising that in this case, Texp and T;n1 have 

similar behavior as the noise amplitude E is varied: the correlation functions of Gw unlike 

those of the Lorenz flow, are simple decaying functions and do not appear to oscillate. This 

corresponds to a pure imaginary correlation spectrum o-corr (Ga )· 

More dramatically, if we set x0 = 10- 12 and a = 0.99, Xn is only on the order of 

10- 9 after 106 iterations. These calculations suggest that the addition of a small amount of 

noise can help avoid some problems associated with intermittency in numerical simula­

tions of low dimensional maps, at the same time perturbing the desired averages by only a 

small amount. A word of caution: this conclusion may not hold in more complex systems 

in higher dimensions, as realistic physical models are likely to have more complicated 

mechanisms for intermittent behavior. 



72 

0.67 ------------t-------l..;;;--~\......- ____ +-i
1 
-----

1~' I! 
0.66 ·---4----~------~-----~-------1 

/
1 i ; I 

0.65 -- ---~: -------+-------·- ------i'i---------1 

exp I ! I I I 
0 64 .. ---···-------J-------·--- -------·-· ·---··-· -·--- ____ _j ____________ _L _______ _ 
. ( ! I I 

o.
63 ------t- 1 --- -r~-t---------1 

0.02 0.04 0.06 0.08 0.1 

epsilon 

Figure 3.21: Estimated Lyapunov exponents for the intermittent interval map with a = 

0.49 kicked by uniform noise of amplitude E. 

I 
I L I 

-- -----~- I - i 40.0 

30.0 

10.0 

I I I 

I I I c I I 

tau 20.0 

0.02 0.04 0.06 0.08 0.1 

epsilon 

Figure 3.22: Decay times of the intermittent interval map with a = 0.49 periodically kicked 
by uniform noise of amplitude E. 
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Figure 3.23: Integrated correlation times of the intermittent interval map with a = 0.49 
periodically kicked by uniform noise of amplitude E. 
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Figure 3.24: Variances of 5-k for the intermittent interval map with a = 0.49 periodically 
kicked by degenerate perturbations of amplitude E. 
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Figure 3.25: Approximate errors for the estimated Lyapunov exponents of the intermittent 
interval map with a = 0.49 periodically kicked by uniform noise of amplitude f. 

f N Texp fint 1>-€- >-0 1 
0.0 0.621 ± 7.1 X 10 -4 45.73 6.298 0.000 

0.01 0.655 ± 2.4 X 10- 4 3.004 1.105 0.033 
0.02 0.661 ± 2.0 X 10- 4 2.336 0.910 0.040 
0.03 0.665 ± 1.9 X 1Q- 4 2.002 0.806 0.044 
0.04 0.668 ± 1.8 X 10- 4 1.669 0.782 0.047 
0.05 0.670 ± 1.5 X 10-4 1.669 0.598 0.049 
0.06 0.672 ± 1.5 X 10- 4 1 .. 669 0.592 . 0.050 
0.07 0.673 ± 1.5 X 10- 4 1.335 0.586 0.052 
0.08 0.674 ± 1.4 X 10- 4 1.335 0.544 0.053 
0.09 0.676 ± 1.4 X 10- 4 1.335 0.541 0.054 
0.1 0.676 ± 1.4 X 10- 4 1.335 0.538 0.055 

Table 3.4: Correlation times of the estimated Lyapunov exponents of the intermittent in­
terval map with a = 0.49 periodically kicked by uniform noise of amplitude f. Estimated 
Lyapunov exponents are stated with their standard deviations. 

I 
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Figure 3.25 suggests that IE 1>-(<=) - .AI = 0(~:11 ) for some e > 0 as <: ---+ 0. The 

analysis in Chapter 4 may offer an explanation for this behavior. 

3.6 Scaling and white noise 

When Algorithm 3.4 is applied to flows, there are two parameters in addition to 

the choice of the form of the random perturbation: the noise amplitude c and the pertur­

bation period T. Let us again compute the Lyapunov exponents 5-i for the Lorenz flow, 

this time periodically kickin g the flow with period T using isotropic gaussian perturba­

tions of variance<:. Figure 3.26 shows the estimated exponents 5-i as functions of the noise 

amplitude <:, for various values of the perturbation period T. As one can see, there is no 

apparent relation between the curves corresponding to different values ofT. However, if 

we rescale the curves to plot 5-i against ln VEft, then we obtain the plots on the right col­

umn of Figure 3.26: the curves collapse onto a single curve. Figure 3.27 confirms a similar 

scaling for the exponential decay times. 

Thus the estimated Lyapunov exponent 5-i is a function of ln VEft. This scaling 

behavior is not really surprising, as the Markov chain generated by adding periodic gaus­

sian perturbations to the Lorenz flow, in the limit when <: ---+ 0, T ---+ 0, and c/T ---+ <:1 E 

(0, +oo) converges to the solution of the stochastic differential equation 

(3.8) 

where w denotes standard Wiener process [KP92] . A similar scaling behavior is expected 

when the periodic gaussian perturbations are directed in asymptotically unstable direc­

tions, though only when ln VEfT is very small. An immediate implication of the existence 

of this limit is that when we apply period-T random perturbations of variance <: to hy­

perbolic flows, we must have ~:/T ---+ 0 to guarantee the weak convergence of invariant 

measures as c ---+ 0. 

Computationally, it is much easier to apply Algorithm 3.4 and its variants to the 

Lorenz flow than to solve the stochastic differential equation (3.8) . This is because SDE 

solvers are generally more complicated than their deterministic cousins [KP92] . There is, 

however, a theoretical advantage in relating periodic random perturbations to white noise: 

there exists a substantial machinery for manipulating and analyzing stochastic differential 
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Figure 3.26: Estimates of Lyapunov exponents as functions of E, for various values ofT. In 
the second column, the data points marked by squares come from solving the SDE (3.8). 
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Figure 3.27: Exponential decay times for the autocovariance functions of 5-k. Again, the 
data points marked by squares are computed from the SDE (3.8) . 

equations, ranging from the stochastic calculus [RWOOb] to a well-developed large devia­

tions theory [FW98] and the methods of modern PDE theory [Eva98] . We do not present 

these connections here as they are part of on-going work. 
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Chapter 4 

Convergence and Related Problems 

Chapter 3 demonstrated the use of random perturbations in numerical compu­

tations of statistical averages. The main effect of random perturbations is a reduction in 

the amount of initialization time required for long time simulations. In a low dimensional 

family of maps with a simple intermittent behavior, random perturbations also help nudge 

the system out of the non-expanding region into domains where phase space expansion 

dominates. 

In order to provide a solid theoretical foundation for the use of random perturba­

tions in numerical studies of SRB measures, the following questions must be answered: 

1. Let (x~) denote the trajectory of the perturbed system and g : X ___, lR an observable. 

Does lE [g (x~)] converge to J g df.LsRs as n---> oo and E---> 0? 

2. What is the effect of random perturbations on the decay rate of correlation functions? 

As was pointed out in previous chapters, Kifer 's Theorem (see 2.6) provides an affirmative 

answer to the first question but only when the perturbations have absolutely continuous 

transition measures . Furthermore, Kifer 's result provides no information on the rate of 

convergence and does not apply when the transitions have singular transition measures . 

This chapter provides a simple, alternate proof of a special case of Kifer's The­

orem along with a rough error estimate on the convergence rate. The main result is an 

upper bound in the form of a power law: there exists a constant "f E (0, 1) such that 

If g df.LE- J g df.LsRsl = 0 (c:"~), (4.1) 



I \ 
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where J.Lc is an invariant measure of the perturbed system and J.lsRs is the SRB measure 

of the unperturbed system. For technical reasons, the proof,only works for absolutely 

continuous transition measures of ~onvolution type, but the result is likely to be true for 

the more complicated transition measures considered in Chapter 3: 
The estimate (4.1) is not likely to be sharp: even in th~c~~~9f~,l19I1tln,iformly 

·· . :1~: .:i ·: __ ,f :,;, ·-:.): .'U~,x·.& _. :/' 
hyperbolic system like the Lorenz flow, perturbed invariant measures appear to converge 

with exponent 'Y 2: 1 as E ~ 0 (see Figure 3.1). The harder problem of determining the 

effect of ram;lom pe1{hll:batio:ps op. the ~or:relation ·spectrum of hyperbolic sys~effis is left 
1tfhl~J:Mkt"·:; Y·~:_, '·>· ..... , ····~.·I ··,;;··r'c~'' ~~:' r;:J ·. ·.·.• 

4.1 Rate of mixing in Anosov systems 
. (" :··,·(: . 

, : · • .First,; we· need to review some standard definitions and results: See Bressaud and 

· • .· ... ·. ,, •· LiveranLDBL02].forldelails and proofs. 

, • Let X oe a icompact Riemannian manifold and F : X '-'-*' X a topol0gically tran-

, •.sitive Anosovdiffe~inorphism (see §2.2). For x :and·;x'~in X,let ·ds (x,·x')bethe~distance 

between X and X1 measured along the stable manifold containing both; X and: :t1L:(we set 

: , ';•d8 :(x;:.x')' ,=. -f'oo. if .J:; :and, x'· do not lie on· the same stable ::manifold};: Fix 8 > 0 and 

''r¥ft3ii'IE':;(0;:1:). For g: x.~ R define .,. : 

lgl ~ · sup ·· J.q(x)- g(x')J;. 
. 

8 
d5 (x,x'):::;O d8 (x, x')13• . 

llglls = llglloo + lgls' 
',, ''' 19(±)- ~(±')! 

llgllu = llgi!I + d"(~';/):::;/S ~u (x,x't , · 

(4.2) 

(4.3) 

(4.4) 

. {l7he m~t:t:i:C .tffi is the exact an~log of ds on unstable manifolds..} ;Let C 8 ((38 ) denote the set of 

, all;m,e;.}s,t,trable. hmctions g such that 119 II s < oo. The. following is the mairt result of[BLO?J: 

.. ·.-·~ ; .. ··'ro~:'~)~:"Jr. : ·,; , .~.. · , . , .--' .. ~·- .. · 1. i: . 1··. ·d •. • ·•• ,- : -~--~ ••.• -· 

· Theoiein 4.1~ Theieexist positiveconstcmts Cand e < i ·such that for all f3:s E {0, 1], g E: Cs(/38 ), 

ailih1;'h2 ~·d&(x,i) wiai']h1 dm = j h2 dm =: t , ".,·. 

;li'(go pnr hJ.·dm ~ l(g 0 pn). h2 dm' ~ Cllgllsmax(llhillu,·lllhlh1). enf3s. (4.5) 

This theo:rem tells us how quickly an absolutely continuous initial distribution 

relaxes to a statistical steady state: 
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Corollary 4.2. The map F possesses a unique SRB measure /-LSRB· Furthermore, therll:exisf,j:Jositive 

constants c and el < 1 such that for all g E c s (f3s) and h E ca (X'~) I 

where 

IJ (go Fn) h dm- j g dJ.LsRB j h dml ~ G:jfgll:s' llhllu .-or. 

Ifwe take h ~ b, f h dm = 1 in cdrollary 4.2, the~ (4:6)' t~ll;s us that 

dist ( dJ.L1, dJ.L~) = sup ,- j g ~J.L1 -It g dJ.L21· 
11YIIs9 

(4.6) 

Thus the exponenti<;1ldecay of correlation functions implies exponential relaxation to equi-

librium, as claimed above. 

4.2 Error estimates 

This sectiort- contains the proof of (4.1); The basic' iilgiedients are ·a scaling ar­

gument due to Shardlow and Stuart [SSO()] and the results stated irl the pre~rious section. 
• ·: • : '· • ' : ;. ;. ' • ' • : C ' :, • ' ;_ • ~ ~ I : • ; • 

For simplicity, the discussion is restricted to the simplest case of Anosov diffeomorphisms 

6n the d:.torus ird,':th6ugh it should rtot be diffichlt'to exterid'the argument 'to Axiom A 

systems on general manifolds. 

Proposition 4.3. Let F : 'll'd ~ 'll'd be a .transitive 4nosov tiiffeomorphism and let J.LsRB be the 

SRB measure of F. Suppose P£(x, ·) is a family of probability measures satisfying the following 
. - .,,_ . j .. ,-:•. 

conditions: 

1. The measures P£(x, dx') have.the form q£(x ,~x!):dx~, that is, they are translationdnvariant. 

2. The distributions q£ have standard deviation ~: ... 

Let F£ denote the correspont:ling random perturbation ofF, and let m 0 be an absolutely continuous 

measure. Set x~+l = F£(x~) with initial condition x0 drawn from m 0 . Then there exist constants 

C = C(mo) (depending only on mo and F), f3 2: log IIDFIIoo, and r 2: Ia (TF) \ { 1} I such that 

for all Lipschitz-continuous functions g : X ----* lR, the estimate 

(4.7) 

r -, 
I 

L' 

1 
I I 
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· ,, •. . hblds;with expo»enf· 
. ,,_.-: 

logr 
··'=log;~~ 

81 

(4.8) 

Proof First, defu).e. the. following Markov chains with initial condition xo ,drawn from m0 : 
·;:·,_ ._·;._ .~-'>:tJ··:·t·-- ..... ·--~--~---· --~ ;_ ·r~-~- · . , ., 

= F(xn), 
\. . . 

=Fe (x~). 
(4.9) 

The quantity we :wish to estimate, liE [g(x~)] .= J g dJLsRBI, can be split up in the following 

way: 

:· ·I·E [g(±~)r~ j 9 dtisRBI ~ JE.Mx~)l-"- E.[g(!t~)Jl + · · (4.10) 

IE [g(xn)]- J g dJLsRBI· (4.11) 

The rest of the proof consists of showing that as n --+ +cx5, · • ·· 

· l .. the righth<lrtqsid.e of;(4,10) gro}Vs at most ex;ponentially fast; and 

. To estimate,{4,10)"observ:e ~hat.JIEJg(x~)]- IE [g(xn)Jl ~ Lip(~)IE [d (x~,,:.z;n)]. Choosing (3 

sufficiently large (on the order of logiiDF(x)lloo) yield,s W:I(l(x~;;xn)] :?; Ct ·l3n, which 

implies that 

(4.12) 
'-~\ · ·,..,~ .· :~~i:'I-~:<:· ~ 1/. 

To estimate (4.11), we can use Coroilary 4.2: there exist positive constants C, and r < 1 such 

that C9h(n) ~ Cllglls ·llhllu · rlnl. As the initial measure mo is absolutely continuous, it has 

a density• ho 'Willi re$p~d to the Haar measure m~ This mean5 that 

It follows that 

IIE[g(xn)]- j gdpgRBI ~ ~~~6Fndmo_:_ f gd~s~sl· 
, = I/ (g~'p"n)fio dm -2c fg dJL~RB1· 

~ CllgJJs ·llhoJ.lu · rn. 
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· We need fo choose1n0 and 'Y so tha:t 

(4.14) 

for all n ::; no + 1 and 

(4.15) 

fqr all n ~. nq, It. is .easy to check that th~ ~hoice 

. . .. logE +/3 . 
no=----"-----.,. 

logr--: (3 
(4.16) 

log r 
'Y = logr __:_ /3 (4.17) 

. works. So 

(4.18) 

if no ::; n ::; no+ 1. As no and 'Y do not depend o,n mo, the argumen,tcan._be repeated with 
' ' '. ' ' . ' ·.. . ... ·: ,., 

'mo replaced by the law 'f!l'k of Xk fork ~ 1: 

liE [g(xh+k)] - fg dJ.LsRsl :S C (Lip(g)+ ll!!l'i~-· ·iihkii~) · {Y · (4.19) 

for no + k ::; n ::; no+ k + 1. Now 

.. ~k(x} = j q£(x .- F(x'))hk~l(x') m (dx') 

'~ J qe(x- x')hk-l(F~1(x')) det (DF"" 1(x')) ;;, (dxi) 

= j q£(x')hk-l(F-1(x-x'))det(DF- 1(x-x')) m(dx'). 

The map F behaves like an expanding map along ullstable mariifolds. ·]?)ifferehtfating in 

the direction Eu(x) shows that there exist constants a E (0, 1) and b > 0 such that 

It follows that • 

siip lihkliu < +oo. 
k2;1 

(4.20) 

(4.21) 

and the factor Clihkilu in Equation (4.19) can be replaced by a constant depending only on 

ho (or equivalerttly m0 }land the map Y This yields 

IIE[g(xh)]- J~ dJ.LsRBI :SC{~ip(g) + ll9ils) E"~ (4.22) 

whenever n > no = log e+.B. 
- logr-.B 0 

I ' 

L 

1 . 



I ' 
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Corollary 4.4. Suppose the randomly perturbed m~;w-F€ has q,,,uniqye;inv.arianf;1Jleasure 1-l£· Then 

under the assumptions of Proposition 4.3, 

:~ l!g df-l£- J g dJ-LsRill = 0 (E'YL (4.23) 

As mentioned above, the atgument should work in the more general settin'g of 

Axiom A attractors. It should also work wh'eh X is a 'b6titl'ded ··st.ibsef 0f ]Rd;{ailliough in 

the Euclidean case one must also take car~.to ensure that the probability of escape from 

the basin of attraction is sufficiently ~mall. When the transition measures P£(x, ·)are not of 

convolution type, more effort is requir~d to make the argument in the proof of Proposition 
. ..... . 

4.3 work. Specifically, more care is required in checking that supk II hk llu < oo. _Neyertheless 
,_. 

the estimate is likely to be true. Also, as pointed out earlier, (4,l) is not likely to be sharp. 
< " ' ·< ,. 

See Figure 3.1. 

·_ Becaus'e r < 1 and (J :> O,the exponent 'Y = Io~~~/3 gener,ally falls be!Ween 0 and 
. . • . . . .< . • '. . ' ·.' l _, .' • 

1. Thus the 0( E-r) error can, in principle, be rather large. This rather pessimistic prediction 

is not reflectecj. in nmnerical. experiments: erro;rs:generally decay much more quickly as 

E -+ 0. It is an open problem to develop a pett~~bation theory whi~h can.a4equately 

explain the results of numerical experiments on hyperbol~c systems, perhaps along the 

lines of [CCP97]. It would also be'very nice to hav~ sbmeid'e~ bi'ndW to handle situations 

where hype~bo~icity is not uniform, ~specially in.~ystem~ exhibiting some intermittency. 

This is left for future work as well. 

. . .·· -- . . ~ ,· 
;,·· 

Proposition 4.3 says nothing about the liliique ergodicity of the Markov chain x~ 

· ,. for E > 0. It does say that even ff,~~ possesses ·several invariant measures, none of them 

ca:h be more than 0( E'Y) away from /-lsRs when E is sufficiently small. )n some ca_ses, it is 

possible to establish unique er~o,dicity direc,!ly. One case is when the transition measures 

P£ (X, ·) is absolutely continuous. Another case' is described below: 

Theorem 4.5. Let F :X ----*X be a.diffeomorphism,possessinganAxiomA attra.ctor K. Suppose 

F fK is topologically transitive and let /-lsR'B be the SRB measure, ofF fK· Suppose p€(x, ·) is a 

family of probability measures sritfsfj;irig the Joiio:Wi~g conditionJ: 
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1. There exists a C1 family ~ ( x) of smooth submanifolds of X; of diLlmetet-~ •'E :sUch tf!at'Pe ( x, ·) 

is absolutely continuoUs with respect to the Riemann measure of ~ ( x). The dimension of 

~(x) is assumed't'(Ybe;aiili:Wu:-'iet us denote'the deiz~ity bfp'f(x,'·)bn'~(x) byqe(x, ·). 

2. The family of manifolds ~(x) are everywhere.transverse to the local stable. manifolds ofF 
~ . . . . . . . : . . ·' .. . 

with an uniformly bo.t~:nded.an,gle, . 
. . .. _.·.··: .· :' 

3. The transition densities Qe (x;'x') are uniformly poSitive and are smooth fimctions' of X and 

x' E ~ ( x) with uniformly bounded derivatives. · ' ' 
. . . ·.·· ·:-, ~. . . 

.• :. ; : ~ ~(: : -· . : . 

: Then,the. rpndom map Fe lu.ls. a unique invariant meq{iure for all sufficiently small E > 0 .. 
. .. ; •':. ; .":•.: \ ·:.·.\::. ,- , ;1 1, ' :';' 1 ~: '· -~. : • ~ ' ' ' 1 : ·,;. ' ·, r: ~-.: ~-: .. •. :' ~,.: '~, 

Proo/ The proof relies=·a·cbuplihg'~rg\.mtent. The mam idea is due tb Ma:ttingly [Mat02] 

and is quite close to the work of Bressaud and Liv~raci.rm .. o,z]: 
Le.t~Y,s.F4q<;>s~.-~P p~()ba~ility m~asur~s m1 ~nd 71}2 aJil.4 .(ix E >: 0, .. fhe prqofrelies 

on cons~c~g·a-Ma~k~~ ~aill ·(~~. x~) such that x; and X~ are tr,v9:r.ealizatio~ of the 
. . ~ ' . . 

Markov chain with the transition measure Pe(F(x), ·),that i$ at each step we apply the 
. . ·.• • J. • 

deterministic map F and then perturb the result. The initial~con,di~_ons .. xbr~e dra;w:n: from 
. . .· . . ' . .:···.,:·. .· ... 

mi fori = 1,2, and the joint process (x;, x;) will have the propext~ tl)at d (x;, x;) almost 

surely converges to 0 as n ---+ oo. 

If we can construct a joint process as described above, then W.~ c::.e:m adapt .the basic 

coupling inequality (see §2.5.1) to this setting. More precisely, fix h > ~ ~11d let nh be the 

. smallest integer such that for all n ~ nh, d (x;, x;) ~h. Then 

·liE [g( x_~)-~;.;:;-g(x;) J I. ... :::;; · IJE [g.(~~}:-; g( J;.;}l7,7,:r:;' ?:th}i P( n -~ nh)+ 

liE [g(x;) .~ g{;t:;)ln ~ nn]I.P{~ > nh)· 

< 2 ·11911~ · P(n ~nit) +h. 

As "!- -;--:-+_ ,oo, Jhe fi!st te_rt;n· v~nis_l),es, -Since_ h ~as arbitrary, tiys: S~()WS, thCl,t, al)-Y. tvyo realiza­

tions of the Markov chftin, with the .Sfllll.e tr.an?ition ~uJe x f7 . .fe J~d.,.tq, the same steady 
• ·,' .•.•• -·· !•.) .,., ~- ' , .•••••• • . ,7 .. ~-#·-· .. 1 ~_ .. 1·-' .... . . . 

state distribution, which must be the (unique) invariant measure. 

The coupling construction.'is 'easiest'to describe m thef~trn of an algorithm. Be­

. fore de~cribing the algqr!thm, let us select 8 > 0 so:tha~.th~ }o.~al;prpduct. (x, q:'r 1-7+ [x, x'J 

make~ sellse w<peneve:r d(x, x') < 8. (Recall th(lql)e-local pr,qduct [·, ·] JI\aps (~, x) to the 

un_ique point in the intersection of the local unstable manifold of x and the local stable 

manifold of x'. See §2.2.1.) 

I I 

I . 

L 

l .. __ 

' ' I 1 

J ' 

I 
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•; ', ,,; ; l:,. I "., ' i_ I .. ;'~ . '··\ ' ... 

1: s~~pleif\~tial po~nt~ ;:cbJ;r:ommd9r i. = 1, f'ind~p~I\d§tl~ly, 
··' : . ' . . ':.' '.' ... , . ·"' . ··- .... ,, ... ,. 

2: forn := 1,2, ... do 
• ..r ~-~ ', 

3: 

4: 

5: 

6: 

'$et:t~ :·~'P(i~:_1) foti ~1,2· · ·: '·' 

if d ( x~, x~) ;::: 8 then (there is no chance fot'coupli'ng) 
.~~t x~. :=;:. F<.(xL1) fori =;: . .1.,2 inqt?penq~ntly. 

else 

'!'. 

'·i\'' 

··:.···.:'. 

.· ~ ; ' l {-

... · .. · . . . ' . 

7: let fl> : ~ (x~) ---t ~ (x~) be the stable holonomy map and let Jip be its jac:obian 
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8: select ·s~u:npie poirit xi f~6in J>€ (i:~,:} '(we iliilufiiiolitaw ~ ~c/ii'lp'i~/fsrn· a~(~~ .. ) by 

rej~ctfon, sampling,.usi1:zg q<,(x;, ·}and,th,e.:~~!pt:z.of!ly,inap,_<p).,. . .. : , ; i , .. 
. t I. Q<,(~~ • .P-1(-)) ·I· . - . . 

9: se c := sup Jci>(.P 'I (·)):q<(x~·;·} . 

ib:' ·. 

r'1: 
12: 
i3~ 

if UNIFbRMRANDOM() ~ ;::..:1 
: ·~.P(x~)-~~2;aJ(x;)·) th~rt! '(C'oup1eafot one step!) 

s~tx~:~x' . · ·· 

14: 

15: 

'fir 

seLi~ := <P (x'}, 

else 6-u) luck, try/dgaift) 
~~t x~ := x1 

set X~:= F€ (x~-1) independently 

· ertdff 

1'7: endif 

18: end for 

:., .. l •. 

To show that this algotithn:l: ptqdtices a. joirtt process'.('x~, x~) with the desired 

properties; we need to ~how that as n '--"i'ob~ d (X~, x~) ---t 0 almost surely. vus is implied 

by the following: 

'· · ·- 1: Evh-y- 'tim'e x·~ a'ka i~ ·c8~e within ,:( dista'fit-e of 8 Of each oilier, there is a finite 

probabillty' that they wohla 'ci>upl~ f6f ~u 'ffihfrb ti:rftgs: 
' '. l,.:' 

.. }· Th~ ~v:~nt (~(1;~, x~)_:£ 8)qccurs infinit~lypften . 
•.. . j ' ,, ' • •. , • '"-· .,,.. ' ... ·.' ' ,. '·.' 

The probabilitY of totiplirig is 'deteri:nined b:flirie itl of.Al'gofitluri 4.6; This-'is·eqtiivalent to 

the probability ofsuccess 6H~jedid'ri samplihg (see [Ma:t98]):' Thii:d>rob'aJ?ilityis·bounded 
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below by 

. Pmm (x1,x2) = in.f(c-~·~.;;.:. qe(x
1
,x') ) ·, 

·.. --.>: . ; x't '' : . , J~(:x~) 'qe,Gx~., ~(x'.).) . . : : · . 

, . • i!•.:.F· ·~e(xl:,'~~.~(x)}:,' ,,~, 
c =sup . . 

· ., .. ,.;:t~.r J~(~<?,-:-J(x,)) · qe'(x~~,~:f): ·. 

th~jac~61an J~·is a-Holder;~ontiliuous .. fof's6ine 'a >' o'ilrid'tne;densit'i~s varismoothly 

wtth fii. and x2 : ':Fh~thertrtdte:· the difference J ~ _: 1.18 botind~d aw'~y hom 0 and its Holder 

norm is proportional to the C1 distance between the manifolds Y1(xi). arid Y~(x2 ) (see 

[BP02J)~ If x1 ~nd ;i2 ate c6uptea ~t 'step rri., ilieh, 1:hjy wiiflie Bii the 's~in.e stable mani-
.-- .:. . . ' - t ~ . . •' :. . . . ' ' - ' •' . . ~ .- • . : • . . . . • . . : . : • . ' : ' 

. fold·: At the mixt sfep, ·me applicatio:h ofthe map P w111 c<5it'fratt the di~t~rice··along the 
I ' ' . 

. stable mahifold, '~(;'ihat'x~~1 ~nd ;~+1 ·ci~e clbser than~'±~. and ':t;·6f~'faCthr'bf (3 < 1. 

fhe H:o1aet 't6dtmuity6f Jif ahci''ilie ~m.oothne~s 6tt'h~ distribtitioHS· q€(x, ·) ensure the 

existenc~ ·of ~ Ji~sii:ive 't6ri:~:t~Atc sudti·ih~t i <• ' ' · '· : 

'~ '! 

(4.24) 

Thus the prob~bilitftll~t x1~~d x2 remain coupled for ali time ~sbo~ded below by 
. ' . . ; '· . .· . ' . : : ~ :_ : . : ' ' ' 

00 u e""'a·,Bnf>,d(xt,;,x;.)"' ·~ e~t:J"'/(1'-,8"') > o: 
n=O. ·· 

(4,25) 

So each time the processes couple there is a finite probability that·they wiHremairrcoupled 

forever. 

To see that X~ and X~ will have infinitely many opportunities for couplirig, fix xA 
and define 

x~+~ = [F(x~),x;+1], 
£A = xA. 

(4.26) 

Th~s, x;+1 is a projection of x;+l onto the unstable manifold of F(x~). Let d, = d(x~, x~). 
Then 

-1 1 . 
d,+1 = d(xn+1> Xn+1) 

= d ([Fk(x;), Fek(x;) J , Fek(x;)) 

:::; d ( [ pk(x;), pek(x;) J , pk(x;)) + d(Fk(x;), Fk(x;)) +d(Fk(x;), pek(~;)) 

:::; CE€ + f3dn +E. 

(. 

I 
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By induction, 
Cca+£ 

sup{d} < · . 
n n - 1-/3 (4.27) 

The images of a local unstable mahifold under the action of the map is dense in 

the attractor Kin the followi~g sense: for every open set U such that U n K # 0, every£> 

0, and every x E K, there exists an integer n large enough that pn (w€u(x)) nu # 0~ To see 

this, one only needs to check that the density result holds ftir the corresponding symbolic 

dynamics, and hence is also true for F : X ___.... X. (The proof is fairly straightforward and 

is omitted here.) 

Let· Sn denote the support of the distribution of x~. As xi is the projectibn of xi 
onto a the unstable manifold of F(xA) and the transition measure which define~ our ran~ 

dom perturbations has a uniformly positive density on the manifold ~(F(x6)), it follows· 

thatthe support of the distribution of xi is theimage of ~(F(x6)) projected onto the :Unsta­

ble manifold of F(xA). Because the manifolds ~(x) are ~a~sv~rse to the. stable directions,.· 

this projection :ri:mst contain a small open neighborhood of F(xb) in its ~table mali:i~ 
fold~ By induction, ahd by the density of images of local Unstable manifolds explained · 

above, there exists an N such that P ( x}v E U) > 0. Applying the same construCtion: to ~~, 

we ~ee that for each 6 there is an Nlarge enough that P (d(x}v,xJv) < 6/2) > o.'Hence 

P ( d ( x}v, XJv) < 8) > 0 if N is large and £ is small. By the compactness of K and the con~ 

tinuity of p€(x, ·),there exists a single N which makes thi~work. Thus there is a single 

constant p' min > 0 such that 

for any (fixed) (x5, x6). The rest is straightforward: 

Since 

P (d (x~, x;) 2: 6: almost always) ~ P (d (x~N' x;N) 2: 6: almost always) 

= p (U~~O nn~in (d(x~N,X~N) 2: 6)) · 
00 

~ 2:: P(nn~m (d(x~N,x;N) 2: 6)). 
m=O 

00 . 

(4.28) 

P ( d (x~, x~) 2: 6) · IT P ( d ( xtn+l)N' x[n+l)N) 2: 6jx~Ni X~N) (4:29) 
n=m 
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and Equation (4.28) implies that 

we find that 

P (d (x;,x~) < 8: infinitely often)= 1. 

0 

This proof also works if the supports Y;,(x) of the transition measures have di­

mension strictly larger than dim wu, but.the notation·becomes a bit messier. Note that a 

more detailed analysis of the probability distribution of the coupling time % would yield 

estimates of the decay rate of correlation funCtions for theperturbed system; this line of 

attack is part of on-,going work. Note also that for technicaheasons, Propositions 4.3 ~d 

45 apply in different situations. They will both apply as stated only when thi:l convolution­

type distributions in Proposition 43 are everywhere trarisversetothe);;fable subspaces; (It 
. . . 

should be possible to replace "everywhere'; by "altnosteveryWhere;':J 

See Baladi [BalDO], Bressaud arid Liverani [BL02], and YoPJ::tg [You98]Jor other 

uses of the coupling method in the study of hyperbolic systems. D~vid Griffeath's thesis 

[Gri78] offers a beautifully lucid introduction to the coupling.methodfor Markov cha.ins. 

. I 

' I 
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, • , , , :Prec~ging·.ch~pt~rs explored the effects ,Of noise in hyperbolic dynarltie;aLsystems - ' . . 

• tl;uopghtnwn,eri~alan<;l ;analytical techniques.' nus chapter.describ~sifwo s.~ts of'numerical 

. , exp.erimeht~: oli :the Kwamgto-Siyashlnsky•,equation!(KSE;Ji', 
' ' ' 

(5.1) 

.. whet~ithe solution u ·~ u(trx} is~assurne'dtd be·peri6dkin x:With petiOa .L·aiidh:, {3 are 

· :posifive1con5tants> ", . : · ' · ' ·: · · · , 

The KSE originally arose as a model of interface phenomena in classical contin­

uum physics (see [KPZ86] and references therein). It also played an important role in the 

study of infinite dimensional dynamics [Tem88]. This chapter describes the calculation of 

some statistical properties of the KSE and studies the effects of noise on these quantities. 

5.1 Properties of the KS:E 

In [Tem88], it is shown that the initial value problem (5.1) is well posed fort E 

[0, +oo) with initial conditions in an appropriately chosen Hilbert spate JH! and that solu­

tions remain bounded for all time. Furthermore, as a dynamical system in the an infinite­

dimensional Hilbert space JH!, Equation (5.1) possesses a finite-dimensional invariant man­

ifold A. c JHI, called the inertial manifold, which attracts all trajectories exponentially fast. 

The implication of this result is clear: even though the phase space lHI has infinitely many 

dimensions, the dynamics of the KSE can be prescribed.by a finite number of variables as 
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· 1. ) -.' :t; becdmesl~rge;·RDE() wi~ inertiaLrrtanjiolds provide a relativeJy.-SiJ::fiple seiling in which 

- -, · .· >f td'extend th:e s~atisticaf theory. ofdynamical systems to irtfinite"dim:en5io:f.fal::p~oblems~ 
Let ek(x) = ei27rkx/L denote the usual Fourier basis, lHIN the spanof: (eiJ¥;· ... ,eN), 

, · and lP'N projection onto lHI,N. Then in additionto the existence of inertial manifolds, one 

; ,Fru;t, pwv.~ fu~t f~r a}l s~pently lar9e N,, tl)~xe exis,ts a ~s:ti,o.[l.~ N .~appP'1g ,!!~l,y-' irito its 

or,tJ:wgol}fl~ complement, ()_uch th~~' 
;J .•. >. j- .. ; ;,,_ •• {_ . . . •. -. • ·'· 

. '·: ~. ~ : ; ., ·. . ~­,._, .. 
( 

expone:ntially fa.st as t ---+ oo. That is, asymptotically, we catr:Write 

:.;:-.: 

., ; .·; 

(5.2) 
: .-, -· ... · 
,',_:•: _\_, 

(5.3) 

Furthermore, it is possible to approximate the maps fPN numerically [NTWOl]. The exis­

. · ''terice·oHnefti~l marufokls iihpiies iliafany inviltiahfineasure tfof(s:WiS sttpportedott a 

.. -. ' ''firiih?ciittU~rision~l:subrrranifold ofllil_;. Jri·the laii'gtiage'of dp'titri.ai ptJ\:iicti6ri'i(see §1.3), the 

,_,~ "" condifidn~l 'irieastiies M Ji ·conditidned ori lP' }lfu are trivia.I ifdn'e t~kefN' large ~rtough: they 

':'t: 

are Dirac fJ measurespositioned at fPN(lP'!vu). 
... ;: 

, . ~· .· .~e"}'ri~g. (q~l) in Fourier spe~tral variables yi~lds 
. ' 

·:·uJ.(t)' = ~ iw;k . L- Uk~ (t)uk2(t) + w5k2(a- /3~5k2 )'1ik(t)',· 
.J · · kr+k2=k · ·· · ···· ·:· 

(5.4) 

wo = 271'/L. 

Linearizing about the fixed point u = 0 yields 

:tfJuk(t) = w5k2 (a·"""· f3waAn'•fJuk(t). (5.5) 

Thus, those mode~ with wave n~ber 
. '• 

k:< Ncrit ~-~0yj. (5.6) 

are linearly unstable, while those modes with wave number k > Ncn1 are liriearly stable. 

The trivial solution u = 0 is thus a hyperbolic fixed point of the KS flow. This linear 

analysis _also.shows that the dimension of the inertial manifold is at lt:7~,f)t l'jcnv since by 

definition ~e inertial manifold must contain all unstable degr~es of freedom. In addition, 

we see that the map <I> N : lHIN ---+ IHI exists only if N > Ncnt· 

r , 

' 

I .~ 
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Irt th.e .opposite JimifN:_<<: N<~il·• physiCal scaling .arguments'Predict.that.the dy-

> ;nan;Ucs: pf,fi N ,can. be modeled by·a s.tothasti~ally~forct;~d ,Bi.t£getsi·equat1on [For75, KPZ86, 

Y(lkS1]: , -· · · . • ·; ·.;V , .<· 
.. i :· ~·-

... , · · · ,.!_. -.---: . ,:'-, ': ... ····:.·~ . · . .-; .. '-.- ···:·:.·;_.: ·-.'~:-".-) -~;~~_,,,._.:; ,;~-~:·;-.: .. _,:, .. ;:·_- ··.••· -.. ' ·>"· .;_r. : ·· 
where v is an ·effeCtive ·viscosity constantan.a J is' a White noise fotdng term. In view 

- · ·= . _,.).c. ,.;·~·, • • ;) 1.: :; .-.+ .: 1 .f... -~'-'·{+'· · · < • •· ' ' 7 -1. r': . · 

of these facts, it is natural to ask if one may d~Ve'Equatioh {5;/)'fi·om Equation (5.1) 

using a systematic pptimal p;redjctio.:o proc~dllfe, spch as the one recently suggested by 
_: . ' . / ... · ... , -.. · .. ··- · .. : \ : .. -,. . " . 

Stinis [Sti03]. In addition, there are other interesting questions regarding the long-:term 

predictability of tlleil<SE: ·· · -·. > • y, ': .. < , · • ··'- .· · 

1. As we increase N pc,1st Ute critic(ll v:alue NCrii; .. how does (u - lP'Nu) become more 

predictable in terms of lP'Nu? 

2,. T~)ms~er. the .q~~$tiqn .(}\Jove; _it i~ ·!l~Du"~l, ,t<:p~~gin. py. p~rf9r.rnJ..ng -~lWle,rical· ex­

p~rirn~I}tf>. But, :h9w; do ;~e,teJl if t~e, sy~t~m):t~s ;;r~l(lx~<i:', t<;> .~qpiFqri,~w,rin such 

. ~~p~r~mentf What poes.ppe do inJJl.e,pre,~t:nce,of multiple, ,attra~itot~r(and hence 

multiple invariant probability meas.ur.e~)?. ' ' . : ; . 

3. How can we quantify the· Urtcertaiilly'1~ffm (u' __:_' IP'Ntl) g!V~H knowledge of lP'Nu? , 
. . . 

On~ candidate. is .the rel<iti~e ~n~r:op,y H{l,'(/X)) ~hich I?~~.~~!es the amount of in-

formation-in one random variable Y when one 'h.as knowled~e of another random 

variable X [CT91]. The amount of computatiQrtal:reso.urces required to compute 

H(u -1P'1Vu/1P'Nu) directly is prohibitively large, though. 
Jn .. 

There is a long history of numerical simulations of the,I<SE, with a particular emphasis on 

the statistical properties '6f~6iutiorts artd :the vel!ific'aWpn of (5.7) [SKJ+92, Zal89]. How­

ever, it is difficult to assess the reliability of the$e early studi~s. There is, i~ contrast, very 
\ . .. ·.'·'::: . .. ~i:·: _)~{ V· :·." ··:.': :.:·>;·:::{j·:·::·, :.:_..-!-~ .· ··. :{~ ~ 

detailed work on the geometry of the KSE in recent years UJKOl]. 

Note that the KSE is invarian,t. :tmder translations in the sense that if u : 1I' x 

[0, +oo) --> lR is a solution, then so is 

(5.8) 

.. Furtherfudte, if St' ': lHl' --4 Iff d~rtoh~k th~ softitiotl.'rriap dfthe<KSE, theri T~~s;(uo) = 
. si(rxoh&)l He~ce tWo Solutioris which att:! 'tr~risl~tes 6f e~clt-dtheitein<iin tr~fulatesof each 

other under the KS flow. The unit~rityofthe'ttcinslation ~penitor Tx0 ': lHI ~ IHi'~nd the fact 
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·Figure 5.1: The exponential separation of nearby initial conditions in the Kirramoto-
SiV'aslli.ilsky'eqtiatibn>'fot·a =·l andr.B == '0~085~ 

:~ - : ' . -~. ,· _,. ~ : :· .•. -, ' . . .. : . r -, • . 

that solutions are bounded for all time means that there are center manifolds .associated 
-·~< ~ .-. ~ . :. ·' ': ,; : . . . ~ . J • 

with the translation invariance. 
-: • • . ·: .• : ._. - . ·(; 

1 
; .' _ • ~: r :" -~ . 1 

·. :)) 

5.2 Parameters & initial conditions 

L fu stiufying· ~a~ti/.dyrtarl~~l systeiris, On~ Of the mOSt basi~ problems iS the 
' •• ,._. , ·:· :•'; >' '; • 1 -~ · • ': ' :1 ~ • : ' .. - '·. : - ~ • ( , \ ,'. ', j -~ i· ' '·1! . ,: •:.", •. _I • ' • • : 1 ;: _. , ' I .. :' ' 

stability of dyuamicai' features imder variations of the system's parameters .. For the KSE, if 

. ,. ~e fi~ ~ = L = ,l.and varythe."hypet-:viscosity" ,B,the sy~tem wiU uridergo a secp.ience of 

:: , bifurba·tions. (see (nK01; stfo3] ~d th~ references th~re.) • The KsE exhibits very .different 

• . b~ha~i~r ;fo~ drlfeie~t pa~a~eters; ~d ~ot all Interesting features df thls system are stable 
1 

•. ,, • rtinde~' srri.all perfurbations of the parameters: For concreteness, the num:eriCal experiments 
. . ,• . 

. hi this ~hapter focus on" the para~ete~ 'values 
;. ; 

··,· L_ ;::;.2n, a= 1, {j .= 0.085. (5.9) 

··For this set of parameter values, the KSE'exhibits exponential separation of nearby initial 

conditions (see Figure 5:1). As the KSE may potentially have infinitely ergodic compo-

! 
I i 



nents, the experiments use initial conditions of the form 

uo(x) =a· Re [(cos(Bo) + isin(B0 )) eiwox], 

a = a0 · (1 + 10-6 · UNIFORMRANDOM()), 

ao = 10-3, 

Bo - ~-
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(5.10) 

The initial condition (5;10) is a small long wavelength excitation near the origin and may 

. give us a better chance of obtaining unambiguous statistical results associated with a single 

ergodic component. 

5.3 Lyapunov exponents: comparison with existing results 

The first set of experiments involve calculations of Lyapunov exponents esti­

mated using Equation (3.1) and Algorithm 3.1. The exponents were computed using both 

periodic (gaussian) kicks in asymptotically unstable directions. Figures 5.2 .~ 5.6 show the 

results computed by periodic random perturbations in asymptotically unstable directions. 

In these calculations, the perturbed KS flow is sampled at intervals ofT= 0;01 for 5 x 105 

steps and plotted as a function of the noise variance e:. The empirical decay time fexp is 

defined here to be the tim~ required for the correlation function to decay to lo of its value 

at t = 0, and the empirical estimate fint of the integrated autocorrelation times is computed 

by numerically integrating the normalized autocovariance function from 0 to fexp using the 

trapezoid rule. 

Asi!' the case of the Lore~~ flow, the exponential decay time decreases with in­

creasing E a:pd fintremains more or le~s static with increasing E (see Figures 5.7- 5.9 and 
' ' f, . . • '· • • I 

Figure 5.10)~ Tables 5.1-5.3 show that the standard deviations ofthe Lyapunov exponents 
. . 

do not decrease with increasing e:; this is al~o similar to the behavior of the Lorenz flow. 
' • . ;': I" ' ' ' ', ,_': !' 

Note thatthe.algorithm did not producetheLyapunov exponents ill order of magnitude; 
. ' ' . l ·., 

this phenomenon is explained ill [GPL90J. In agreement with Figure 5.1, the Lyapunov . 

·~xp~rtent data sh~w th~t this choic~ of .parameters. produces (~eakly) chaotic dynamies 

with very strong contractions and only two small positive Lyapun~vexponents .. · 
The distribution ofLyapunov exponents 'may be compared with those computed 

by Christians~n,. ~vita:n.ovic, and I'utkaradze· [CCP97] using more sophisticated periodic 

orb~t t~chniques. Note that they consider the restriction ofthe KSE to tl:le space of odd-
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· Figure 5~2: Estimated Lyapunov exponents for theKS flow kicked by gaussian noise of 
variance E in the asy~ptotically unstable direction. 
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Figure53: Decay times of the KS flow periodically kicked by gaussian noise of variance E 

ihthe asymptotically unstable direction. 
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Figure 5.4: Integrated correlation times of the KS flow periodiCally kicked by gaussian 
noise ofvariance E in the asymptotically ttnstable direction. · 
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Figure 5.5: Variances of the local expansion ratesfor the KS flow periodically kicked by 
· · gaussian noise of variance E in the asymptotically unstable direction. 
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Figure 5.6: Approximate errors·for the estimated Lyapunov exponents ofthe KS flow pe­
riodicallykicked.by.ga:ussiah noise cif variance· E .in the asymptotically unstable direction .. · 
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Figure 5.7: Autocovariance functions for the local expansion rates of the tin perturbed KS flow. ·· · · · · · · · 
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Table 5.1: Ccirrelation times of the estimated Lyapun()v exponents of the KS flow peri- . 
odically kicked by gaussian noise of variance E in the asymptotically unstable direction. 
Estimated Lyapunov exponents are stat~d with their standard deviations. · 

,_;_ :.iL·-· !:.( ;l i_- .·- .: • .: :_,; 7·:· '·. ,'t,. · ... ! :.'"'- :-: >.• .< ):··- ·r ~ ··:· , :;"':; · <; --_, -···: .• 
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Ta'bl~-~·2.; >Correlatipn times of the estimated Lyapun()y .expo~ents of the~. flow peri­
. odic~ally: ki~:ke<;l by .gaill;siap no is~ of variance .c ii} the :a§)Qllptotical,ly ~ta~l_~. qirection. 
Estimated .Ly~punoy expol}ents are stated with their stanq~I'd dev:iavons.: · · 
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E .\h Texp Tint 1>-h- ,\~11 
0.0000 ~63.0 ± 3.1 X 10 -:l 3.904 0.335 0.000 
0.0025 -62.7 ± 2.9 x ro-2 1.923 0.299 0.296 
0.0050 -62.7 ± 2.8 x 10-2 1.385 0.303 0.249 
0.0075 -62.7 ± 2.7 X 10-2 0,829 0.280 0.252 
0.0100 -62.6 ±2.7 x io-2 0.803 0.267' 0.364 

E ,\f2 Texp Tint 1>-h- ,\~21 
0.0000 -63.0 ± 3.1 X 10 -2 . 3.904 0.335 0.000 
0,0025' -62.7± 2.9 X 10-2 1.923 0.299 . 0.296 
0.0050 -62.7 ± 2.8 X 10"'2 1.381 0.303 0.249 
0.0075 -62.7 ± 27 X Io-'-2 0.829 0.280 0,252 
0.0100 -62.6 ± 2.7 x 10.,..2 0,803 0.267 0.364 

E .\b . Te.xp ·Tint 1>-b - ,\~31 
0.0000 -148.0 ± 2.2 X 10 -:l 5.107 0.356 0.000 
0.0025 ~147.0 ± 1.9 X 10-2 1.906 0,288 . 0.196 
0.0050 -147.0 ± 1.9 X 10-2 1.376 0.281 0.164 
0.0075 

. . . -2 
~147.0 ± 1.8 X 10 .· 0.803 0.255. 0.171 

0.0100 -147.0 ± 1.8 xlo-2 0.751 0.238 o~246 

E. .\14 Texp Tint 1>-14- ,\~41 
0.0000 -148.0 ± 2:2 X 10 -2 5.107 0.356 0.000 
0.0025 -147.0 ±: 2:0 X 10-2 1.463 0.301 o;196 
0.0050 -147.0 ± 1.9 X 10-2 1.376 0.28i. 0.164 
0.0075 -147.0 ± L8 X 10-2 0.803 0.255 0.171 
0.0100 ~147.0 ± 1.8 X 10-2 0.751 0.2_38 0.246 

f. AI5 · fexp Tint I € 
0 I ,\15 ::- ,\15 .· 

0.0000 -11.4 ± 2.4 X 10 -:l '1.168 0.088 0.000 
0.0025' _:_n.1±1,3 >< 1o-2 0.134 0.027 0.289 
0.0050 -11.7 ± 1.3 X 10-2 0,130· 0.026 0.283 
0.0075 ~11.7 ±].3 xl0-2 OJ34 0.026 0.3i4 
0.0100 ~11.8 ::1::1:3 X 10-2 '0~125. 0.025 0.419 

. Table 5.3: ··Correlation times Of the estimatt~d Lyapunov ~xponents of the KS flow peri- .. 
oclically kicked by' gaussian noise ofVatiance E in 'the asymptotically ililstable directiOn. 
Estimated Lyapunov exponents are stated with their standard deviations. 
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wave-number modes because the relevat).t cyde expansions converge only for hyperbolic 
. . .· . . . 

periodic orbits: while the center manifold associated with .the direction of the flow can 

be factoredout using a Poincare,sectibn, the cenfer manifold associated with translation 

invariance may causeproblems for cycle expansions. 

5.4 Mode-mode mutual information 

The second set of experiments concern the statistical dependence between Fourier 

modes. SpecifiCally, a pair of partitions Sk and 21 of lR is chosen for each wave numbers. 

k. The partitions allows us to constructcoarse~grainec:l ra11d0m variables ~k and~~ whose 

probability distributions are given by the empiricaLdistribut;ion.of uk over the partition 

3k x 21. That.is, ~k is formally a 2k-valued random variable. ~ndprovides a coarse'"graiiled 

description ofRe [ilk]· 

More precisely, this constr11ction assigns to each set E E 3k the probability 

P (E)~/ XE(ukJ>dJ-L; 

where J-L is an ihvarian:t measure of the KSE, This, in turn, allows us to compute the mutual 

information between the coarse-grained random variables~kl and~k2: 

(5:11) 

(See §2.3.1 for the definition oLthe entropy H.) The mutual.iilformation measures the 

amount of statistical c:lependence between two random variables. It is easy to Check that . . . 

~k1 and ~k2 ar:e iildepen,dent if and onlyif I(~kpSk2 ) = O~ Naturally,.the iildepend~rice 

of Ukl and Uk2 implies the indepelldence of ~kl and Sk~i b\]t4he converse is false. What 

is true is that iff (~kp ~Ji2 ) = 0 for all choi~es of.the p~rtitions Bf'i) then Uk1 and uk2 are 

independent. 

The coarse-grained mutual-information (5.11) provi~es a w().yto quantify th~ de~ 

gree of statistical dependence between the Founer modes of a sol11tion ofthe KSE. This 

gives us a starting point for addressing some of the questions raised in §S.l. Because 

of limits on computational resources, the experim,ents below use only partitions 3k with 

iSk I = 4, That is, the histograms used to construct the coars~;-gr,ained random variables 

. ~k can use only 4 bins per (real, not complex) degree of freedom. The boundaries of the 

individual bins are determined adaptively by first simulating the flow forO :S t :S 100 to 

I ' I 

' I 
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, •. f>.i.-' ·· · .; .. •. 's · , -,._, •·. •P;QO, ·;;·, -~,_.Qn>.\-10>:.~.;- 7·:,5.0,.~ 10·-~~ ,c,LQO;~JO·:} 

''·••HH., .. 
2

t··· .. -~·9~.x f.0.~1 , .~J53.xJp_- 1 .LQ~.: 9.§8~1Q -\ . 
... - - ·- ·r:o5· - . L02 1.00 LOb 
,-., 1Hf'' >•'""'L12' ,-, ·" ·1wo··•'> ··· .<r·r.oo ·· : :9:98'x'16 -.1'·· 

H4 9.98 x 1o •.. ~t. ,.. . J,QQ.: .. ,,.9.85 ~;.10•'1 
..... 1-.o.o~ . 

H5 9.94 x 10 1 9.96 x 10 -1 1.01 9.88 x 10 -l 

H6 1.02 9.93 x 10 -1 9.96 x 10 -1 9.19 :><1o -1 

.H1 1.02 ·:;· :i:-E-;ihOO ,·. ·· .. 9:8J'~ll0 - 1,;:,;;;c:,;h_~p-;.:~:0./ 
H 8 1.01 1.02 9.96 x 10 -t 9.80 x 10 -I 

... ;!;(9., .... , J~98.,-; .. , .... AQQ.- . P;9J,>:< ,lQ, -,\_ · ... tP9. 
H10 · 1.0,~ . 9.91 x 10 -1 9.93 x 10 -1 1.ps 

·''i .... :.: 

, · ',>If12 . <9.;g4-x !l0;c1 
.•; : ,., L03" ., · · .· L01 9:-90 x-ilO -~~': · 

!/,1;3.- "''·' 1.93. :~·,9~,x,l0 ·¢ ~-~7, )(,10 -1, .• i:),OiJ:, <c> .. 
H14 1.06 9A3 X 10'1 1.01 l.Op 

Table 5.4: The coarse"'graihed entropy.for each mod·eof:th~ KSE•flow . 

. - \ .. ·· 

determine rough upper and lower bounds on the real and imaginai:yparts of each mode. 

The interval is further subdivided to form a partition of~ for each mode . 

. ,, ... ,., ·.· · ··::r;bi~i 5:4 -S.10 sho~ ;he ;~suits ~f'tl"le comp~t~tl~n. Sta~i~~~~l errors in Tables 
·.' ~ :, •• ,._ .!' <; ... ,; · .. ·,:,' .. _!:';·-.:~ ·,f':''··.,·i-~'-·.:: .'·."(~ . 

5.5, 5], and 5.9 are computed by the formula 

error~ z /::,.pk i<~l(fikYI, (5.12) 
k 

1;. ··.,.. 

, . </>(p) = -plog2(p). 
·. :'. "! . -:· :~·- \ ' •" .·· 

(5.13) 

·Here/ Pk·isl the empiFicaLprobc:tl?ility of the· kth bin iri the histogra-m; an& ~Pf'deribtes the 

, ,; ·' estima-ted standard ,devii:tti()f\ bf th~ empiricatprobabilifY.:corriputedJromthe-il)tegrated 

autocorrelation' times of-the.:histogram:·NotEHhatithe fun,ction:</> is' not differenti-able at 0 

or 1, so this naive error estimate becomes meaningless when numberswery•nelu the end 

, • ·points of. [0, 1}ar-ise; This does hothappenihthese calc'ulatiorts; ~·- ' 

··', .. ·A . If the :KSE -possesses. a unique invariant' measure. pt·thkn .the '{:tanslation ;symme­

try ofthe I~SE .would imply that p, is,also translation invariant .. J:hus .. solutions of·the KSE 

with random, ihitial•conditions drawn from i-t would form: a spa:cetime:::statiorta:ry stochastic 

.. · ,process, :This, in-turn, would imply (see [Hel91~~ thattJ:te m6des arie:uncortelated random 

variables;·. Of· eourse, the KSE is unlikely to be .uniqu~ly ergodic except :·possibly· at very 

sped(lLparameter values; Nevertheless the Fourier modes would be stati~tieally tincorre-
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€ ; 0.00 . ::5.00 X 10 -3 : 7.50 xJO -<~ . 1.00 X 10 ·2 

l:llf.1 · · 2;_04·'x 10 __ ~<~ ,7.8~ x 1P '~· 9~.34 ·x 10.~_4 . 9.25 x 10 -4 

f}.H': )_ :83'x 10 -<~ 8,7 _ _.fx'1Q "'4 · Ji. .. '$2'?< 10.>:7_ 7.68 x 10 ·4 
, ... 2 -

f:}.H3. 2.58'x fQ ~<~ ··6·:2_!-txJ:o "':1- '8·:~9-x'J0~'4 8;64 x 10 -4 

f:}.H4 1.43 X 10 -<~ 6.34 X 10 -4 .. 6.08 X 10 -~. _6.32 0 10 -4 

/J.H5 . 1.32 x· 10 :<~ 6.4i ;x· to -4 : 6.9_0 x 10 -4 .. ;7.06 x 10 -4 

f:}.H6 . L40 x 10'="3 . 6.65 x 10-::-'4 • .: 7.:07 x 10_·-~ · .. g;J>9·~ 10-4 

f:lH1 .. _ 1.64 :X 10 '~ 6,.0i' X 10 ~4 . 5 .. 61 X 10-:--4 7_.43.)~ 10 -4 

f:}.Ha · · 1.77 x 10 -a- _ tl'7 x 10 + . _5.11 x 1_0 __ :4 . ·6_.:so·x 10 -4 

f:}.Hg 1.66 x w-3 _.6.29 x 10-4 6.26.x 10-4 .. 6 .. 20.x I0-4 

nHw .. , ~.44 x'10 -a 5.53 X 10 ~4 . 5,91.x 1'0:::4 .. 8.91 x 10-4 

f:}.H-11 '1.65 'X 10-<! 7_,10 X '10 ·-4_ '.6.6.4.'x 10~-~: .:.7.61'>~ 10-4 

f:}.Hf2 1.63x·1o-<~ 9.76x1o:-4 :9,52x10·'4 _-8.69'.><10-4 

f:}.Hi3 1.97 x 1Q :<~ 6,.84 x JO ~4 :.6.83"x Jo.-~4 '. :.8.86-x 10 -4 

l::l.Hi4 2.08 X 10 -iS.. 6.51 X 10 ·"4 . 9.14 X 10 :4 - ·' 9;tl X 10 "4 

Table- 5~5! 'Error estimates foi Table 5.4. 

6 ~2- 6 
6 ~.61- X 10 -l 0.00 -o:.oo 
6 o,oo 1.05 0.00 

6 0.00 0.00 L12 

~4 - ~~- ~6. 6 
~1 0.00 o.oo 0.00 0.00 

6 0.00 · •o.oo O.OQ 0.00 

6 . 0.00 0.00 -0.00 0.00 

~4 ~5 ~6 6 
~4 9.98 X 10 , 1 o.oo .. 0,:00 • 0.00 

~5. ·o.oo 9.94 X 10 'l o,oQ 0.00 

~6 0.00 o.oo -1.0~ 0.00 

6 . 0.00 0.00 ·o.oo· . 1.02 

- -· '1; 
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Table 5.6: The coarse-grained mutual information the modes of the unperturbed KS flow. 

I I 
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~6 ~6 ~6 
~6 1.83 X 10 3 8.57x 10 3 8.83 X 10 3 

~~ . . 2 8.57 X 10 -;:s . 2.58 X 10 -;:s 9.35 X 10 -;:s 

~6 8.83 X 10 -;:s 9.35 >< 10 -;j 1.43 X 10 -;:s 

.~~4 ~~5 ,· ~~6 ~~7 
~~1 6.37 X 10 -;:s 6.61 X 10 -;:s 6.68 X 10 -;:s 7.24 X 10 -;:s 

~6 7.29 X 10 -;:s 7.05 X 10 ~;:s · 7.55 x 10-;j 8.00 X 10 -;:s 

~6 7.37 X 10 -;:s 8.30 xlO -;:s 8,13 X 10 -;:s 8.37 X 10 -;:s 

'-" 

~~4 -. ~~5 ~~6 .. ~~7 
~~4 .1.32 X 10 -;:s q'.38 )(·10 -~ 5.63 X 10 -;:s 6.11 X 10 -;:s 

~~5 5.38x 10 -;:s 1.40 x 1o·-;j ·· 5.33 X 10 -;:s 6.27 >< 10 -;j 

~~6 5.63 X 10 -;:s · 5.33 X 19 -;:s 1.64 X 10 -;:s 6.27 X 10 -;:s 

~6 6.11 >< 10 -;j 6.27 X 10 -;:s 6.27 X 10 -;:s 1.77 X 10 -;:s 

Table 5.7: Error estimates for Table 5.6. 

6 6 6 
6 9.88 X 10 -l 0.00 0.00 

.6 0.00 J.OO 0.00 

6 0.00\ o,oo 9;98 X 10 -1 

~4 ~5 ~6 ~7 
6 ·.o.oo 0.00 0.00 0.00 

6 0.00 ·o:OO . 0.00 0.00 

6 0.00 0;00 0.00 0.00 

~4 6 ; ~6 6 
~4 1.00 0:00·······. -· .. 0.00 0.00 

~5 0.00 9.88 );<·10 -1 0;00 0.00 

~6 0:00 o.oo 9.19 ><10 -1 0.00 

6 .. 0.00 0.00. Q.OO· ~:. .. ·1.00 
.. 

'' 

Table 5.8: The coarse~grained mutual information the modes of the KS flow at noise level 
E= 0.01. 
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~6 ~6 ~6 

~6 7.68 X 10 -4 3.51 X 10 -3 3.32 X 10 ·::1 

~~2 3.51 X 10 -3 8.64 X 10 -4 3.06 X 10 .3 

~6 3.32x 10-3 3.06 x 10 -3 6.32 X 10-4 

~~4 ~~5 ~~6 ~6 
~6 ~.14 x iO 3 3.45 xto 3 3.35 X 10 "3 3.23 X 10 3 

86 2.86 X 10 -3 3.26 x 10-3 . 2.98 X 10 -3 2.99 X 10 -3 

~6 2.66 x w-3 3.06 X 10 -3 2.89 X 10 -3 2.74 x 10-3 

~~4 ~~5 6.~6 ~~7 -· 
~~4 7.06 X 10 -4 2.77 X 10 -3 2.63 X 10 -3 2.55 X 10 -3 

~~5 .. 2.77 0 10 '3 9.69.x 10·4 3.06>< 10-3 2.98 X 10 -3 

~~6 2.63 X 10:-3 3.06 X 10~3 7.43 X 10 -4 2.80 X 10 -3 

~6 2.55 x w-3 2.98x 10 '3 2.80 X 10 -3 6.80 X 10 '4 

Table 5.9: Error estimates for Table 5.8. 

E· 0._00. 5;00 X 10::'.3 l.OOx 10-:.! 

6 -1.53,1.80 X 10:"'1 '-3 .. 01,:-3.03 X 10-~ -2.73,3.26 X 10 1 

6 .:2.77,1.05 x m-1 -:-336,.,-8.57 X. 10 ':.! -3.35.,2.33 X 10 -1 

6 -2.36,2:9.0 X 10~ 1 -3.75,1.15 X 10 -l -3.96;-2.30 X 10 -1 

~4. -1.72,1.46 x 10-l -2.26,-7.20 X 10 -:.! -2.27,~8.31 X 10 -;s 

6 -'7.94 X 10 -l;5:19 X 10 -:.!. -Lll,-'7.07 X 10 -;.! -1.08,1;01 X 10 .1 

~6 -3.95 xlO 'l,L67 X 10 -:.! -5.10 X 10 -1,3.39 X 10 -:.! -5.24 X 10 ·1,9.34 X 10 -:.! 

~7 -1.71 X 10 -I ,4. 77 X 10 -;s -2.59 X 10 -1,-2.73 X 10 -;s -2.48 >( 10 :1,1.70 X 10 -:.! 

~8r -1:70 X 10 -1,:-1.13 X 10 -:.! ,2.48 X 10 -L,-3.02 X 10 ~ 3 -2:57 X 10 -1 ,2.10 X 10 -:.! 

6 -3.43 X 10 -1,1.07 X 10·:.! -5.68 X 10 -1,1.56 X 10 -:.! .:6.79 X 10 -1,.,9.52 X 10 -;s 

6o -8.08.x 10 -1,-2.25 X 10 -:.! -1.13;.:.5.75 X 10 -:.! -:L07A.1:1 X 10 -4 

61 -1.73,7.64 x·_IQ-:.l ~1.93,1.02 X 10 'l -2'0~,8;01 X 10 -:.! .. 

62 -3.31,-1.18 X 10:-1 -3.48~3.39 X ·10 .;s -3,95,-3.43 X 10 -1 

~13 -:2,81!3.16 X 10 ' 1 55. . ·. -1 -3. ,2.02 X 10 -3.70,,:~.62 X 10 -l 

64 -1.51,-5.18 x 10 ,:.! -3.42,'-3.51 X 10 -1 -3.14,-9.67 X ~0 -:.! 

Table 5.10: Partitions used for this calculation. 
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Figure 5.11: Some autocovariance functions of the histograms used in the mutual informa­
tion calculation. The latter is quite noisy but does show faster initial decay. 
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Figure 5.12: Spectral power densities log10 (C(f)) for the correlation functions shown in 
Figure 5.11 . 
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lated if the KS flow were ergodic along the center manifolds defined by orbits of the group 

aGtion: (Ta;0 .: x0 E 'JI'). The numerical results above suggest that at h~ast one invariant mea­

sure f.L may be translation-invariant. In particular, Table 5.6 suggests that the modes may 

be nearly independent. Incidentally, though the s~lnple coarse-graining procedure used· 

here is quite crude, it appears to be fairly effec~ive at: delecting the statistical dependence 

of jointly gaussian random variables, asqne c\1~ see- in simple numerical experim~nts. 
Of course, any cortclusi~ns We fililY draw regardihg the statistical independence 

of the Fourier modes can only be_ tentative because of th~ drastic nature of the coarse-
.. . . .. . . . . 

grairling. As for the questions raised in §5.1, a mar~ refined version oft:his calculation 

would let us place a rough lower bound on the (coars~-grained) relative erttropyof u-.lP'N-u 

withresped to lP'JV"u. _ 
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Future Work 

Preceding chapters contain concrete,I\Uffi{lrical.examples a:nd rough analy;#calre'- , 

· suit$ on. the effect,bfraridom.perturb(ltions on hyperl,oli~ d~~mics, The m(lin result is that ·, 
.·. . ; ' - . . . ,; . '· . 

correlatio?fl:JII.ctions ca:fl~~-~a.t1sed to 4ecaymuch f(lster without•affectingthe expecta:tiR!l' 

valp.~S of observables With respeCt to invariant measures. In otder tound~rstan,dJul~Y th~::. .. , 
algo'i:itl:uniC'usefuln~$s of random perturbations,- there iscl¢atly m}lch m6re to be· d.one·i!l··· · 

b~ildi,ngcfirn:ier theoretical foflndati~ns and in perfo,rming nwrlericaJ experiments. 
. ' 

., The: first question· which arises from the discussions in preceding chapters)s the 

effe'ct 0f noise on the <;:orrelatiqn spectrum of a dynamical $ysten;1., As global subdi\Ti-' 

sibn techniques and Ulam-type approximations of the transfer operator-are unlikely" to 

yield accurate estimates of eigenvalues in5ide the unit circle (see [BK98]); perhaps the l;:lkst ·. 

approach is to dlrectly infer the correlation spectrum from the autocovariance fun'Cticms 

[MSW89; M<¢?'8> WMs88]. The question of how noise affects the correl~~on spectrum j.s 
. ' . . ' . . 

also-quite interest~gfrom a theoretical point of view. In [BK98], itis S.l,lggest,ed that the 

icorrelaqon,~pectrum ofgeneral]::lyperbolicmaps may n0t be stableirnde:rcertaintypes of. 

,random. perturbations. Nevertheless, it may be tha_t for st.J#iciently ?I'It6oth: r~J:l<,i()tn p~_r-: 

turbations one.cail dev:elop a reasonablycor:nplete perturbation theot{for.fue corh~laftb)1 
s_pecfrum, .perhaps 'alof.lg the liri~$ of [ CSP+99]. One may al$0 obtaip. rough boun<:ts using _ 

thecol,lpli;ng method. It is also of considerable practical and theoretical interest to~Ui:lder~ · 

stand whether ~y sto~astic resonances mayarise from the types of randolll per~ba:ti9$ · 
co~idered h~re;·P9-i:ticularly in the presence 0f in~ermittency. , .. 

·' Another way ~£-approaChing small-noise p~oblems is via the theory of liirge de~f, 
a nons, which studies t)::le probability of large deviations,from the zero~noise limft: Freidlin 

" \ 

! ! 

.·',• 

I 

I I 

} 
.r I 
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and Wentzell [FW98] have developed a beautiful theory along these lines for stochastic 

differential equations driven by a small amount of white noise. Their results, when com-' 

bined with the scaling rule observed in §3.6, may offer another approach to the analysis of 

Algorithm.3.4. 

Algorithmically, the discussion leading to the rando:rr;t:,p.~~t:u:rp,~~i0!-1~ algorithm 
. t.,_); ) . . :;·; ./f .... __ ,~ ~~~"!-" ·~ _:.~ ... , ..... ~:;:" 

suggests that it may be possible to develop analogs of M,arkov chain Monte Carlo methods 

forSRB measures. However, it is difficult to compute the local expansion coefficients J'j. .. 

Nevertheless, there may be specific situations where, rvith apprppriate _ approxj:qtations, 
. . . :.;·.: ;:: -~, 'i/ t: \-.-41 ·-~/ :<~' .:--- ,,:· i:·--.. ~~:··.-::"'·.~~~ '"iF · 

true Markov chain Monte Carlo methods may be implemehted''for SRB·measuf~s. '!tis par-

ticularly interesting to explore analogs of other standard algorithms of statistical phys~cs, 
. . r 

such as multigrid Monte Carlo and Swendsen-Wang type algorithms. It is also interesting 

' -- :toitry t6' develop a>htiJ;rterican:ouplih'g algorithl:if for dynamical' ~ystems along the lines 

' of the' "·coliplirtg· fton\:ithe past'-' .u~chhiqtie 'Of 'PropjY·and WilSoh '[PvV96{PWOO]\Such an 

---': ~ - <l'lgorit:Km:would!provideia way; to dynamically estimating the :equilibration; ti'rne of a long 

'simulatiorL · • ,.> ,.,, · -
· Mlich·oftne'Workhere· concerns dissipative chaotic system:s. The effectsiof noise 

on1 Ha:nliltenicirt {and: tnote gehera:lly symplectit)' m:aps arid ·flows- ;ate mueh •more dif­

<ficult· ·to wiialyze·~n:ttunderstaild.· A- partieuh1rly simple example which may provide 

-AnOfuef's'ihlple·exahlpfe is th'e rca:rm.;ap (2.3)~ which is ri'lud-t b~tf~r 'hlid~:r~fd&d 'and for 

;,· ·wRid.fb:lhi;idetabiE:!;pV6kt~ss has·beehmadeon HsquaiHUih-siahstical rriechaffics in the 

: se:riHtl<is!>idil'Hmif'fFWo3;·:Nofitr3].:the effect's of noise ondassiC~l hnd quantamHarnilto­

ruair syJteilis ):n·es&rita' fascffi~ting set of riew d:lail~nges~ .. 
:F1hilily~· 'a'sexj:ilainJd ill llie iiltroductibn, th~ original motivation 'forthfs work 

wa'St6 •understiihd:Th~ statistical ~tea'dy states of dissipativ·e cHaotic systems' ftohr'an algo.:. 

· ·"' · rHhlhlt'·p6int ikview.' 1n the much rrt6re difficult study of transiertt statistical 'states; m~y 

. ' ' ' '· m'athehliiti2al;'al~orithtriic} and c6~cepfuai 'p'roblems remaih ufuesolvec:E 

\· 
- '· 
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