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KdV-Burgers Equation 

Alexandre J. Chorin 
Department of Mathematics 

University of California at Berkeley 
Berkeley, CA 94 720, USA 

Abstract 

We consider traveling wave solutions of the Korteveg-de Vries-Burgers 
equation, and set up an analogy between the spatial averaging of these 
traveling waves and real space renormalization for Hamiltonian sys­
tems. The result is an effective equation which reproduces means of 
the unaveraged, highly oscillatory, solution. The averaging enhances 
the apparent diffusion, creating an "eddy" (or renormalized) diffusion 
coefficient; the relation between the eddy diffusion coefficient and the 
original diffusion coefficient is found numerically to be one of incom­
plete similarity, setting up an instanc~ of Barenblatt's renormalization 
group. The results suggest a new relation betw~en self-similar solu­
tions of differential equations on one hand and renormalization groups 
and optimal prediction algorithms on the other. An analogy with hy­
drodynamics is pointed out. 
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1 Introduction 

There are many equations of interest in science whose solution is too com­
plicated to be computed with sufficient accuracy, and one may be interested 
in finding an effective equation, easier to work with, whose solution is an 
average of the real solution. Recently, there has been a major effort to find . 
rational ways to derive such equations for nonlinear problems, see., e.g., 
[1],[2]. 

Optimal prediction methods [3] have been developed· to find effective 
equations where the average is over a probability density for unresolved de­
grees offreedom. In the case of systems in thermal equilibrium the derivation 
of the reduced equations simplifies considerably, and turns out to be closely 
related to renormalization group methods [4]. 

It is of great interest to extend these simpler optimal prediction meth­
ods to non-H.amiltonian systems, and we attempt to do so here by analogy; 
a more ambitious extension of renormalization group ideas to systems far 
from equilibrium, including diffusive systems, has been presented in (5], 
(6],(7]. We work here with the specific example of the Korteveg-deVries­
Burgers (KdVB) equation, with boundary conditions that give rise to trav­
eling waves. The problem has a single dimensionless parameter that we 
call R (to highlight an analogy with the Reynolds number of fluid mechan­
ics). For large values of R the traveling waves are highly oscillatory; we 
consider a spatial (not ensemble) average of these traveling waves and look 
for an equation whose solution approximates this average (see Figure 1). 
This problem was chosen because of its apparent simplicity, because previ­
ous work by Barenblatt et al. [8],[9] has suggested interesting conjectures 
about its solution,. and also because of interesting connections with fluid 
mechanics. 

In the following sections we describe the problem, review the equilibrium 
averaging theory for Hamiltonian systems, set up the analogy for the KdVB 
equation, and provide a numerical analysis of its validity. We also compare 
the numerical results to earlier analytical work and. point out interesting 
scaling relations that emerge from the calculations. Note that the averag­
ingfrenormalization presented here is applied to stationary solutions; the 
extension to time dependent problems will be presented elsewhere. A key 
feature of the work is that the methods are applied to partial differential 
equations and thus require a careful consideration of scaling. 
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Figure 1: Solution of the KdV-Burgers equation for R = 60 (thin oscillatory 
line), its average for .e = 20 (thick line), and its optimal approximation 
(broken line) 

2 The KdV-Burgers equation, its numerical solu­
tion, and an asymptotic an~lysis 

Consider the equation 

(1). 

with boundary conditions 

u( -oo) = U, u( +oo) = 0, ux( -oo) = 0, (2) 

where the subscripts denote differentiation, x is the spatial variable, t is 
time, and a ~ 0, £2 , U ~ 0 are given constants. The boundary conditions 
create a traveling wave solution moving to the right (towards +oo) with 
velocity U /2. We pick as length scale L :;= £/..Jif, as time sc~le T = £jU312

, 

set X= x' I L, t = t' /T, u' = uj(LjT), and drop the primes; the result is the 
equation 

(3) 

with ux( -oo) = 0, u( +oo) = 0, u( -oo) = 1; R = £..Jif /a is the "Reynolds 
number". For R :::; 1 the traveling wave has a monotonic profile, while 
for R > 1 the profile is oscillatory, with oscillations whose wave length is 

. of order 1 [10]. At zero diffusion ( R = oo) the stationary asymptotic wave 
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train extends to infinity on the left with a singularity near the location where 
there would be a shock in the absence of dispersion [11]. For finite R the 
wave train is damped as is the singularity, and the solution of (3) tends to 
1 as x decreases even in the steady state. 

The numerical solution of (3) requires some care. As usual we proceed 
by fractional steps corresponding to the several terms in equation (3). The 
fractional steps that correspond to the linear terms are performed via a 
Fourier expansion, with each coefficient advanced in time exactly (the earli­
est reference we could find for this procedure in this context is [12]. For the 
nonlinear term we use the fourth-order Lax-Wendroff-like method of Zalesak 
[13]; its accuracy is second order in time and fourth order in space, and so 
is the accuracy of the overall fractional step scheme, though in practice the 
error in time is negligible. 

Equation (3) is solved numerically in a domain -X +t/2:::; x:::; X +t/2, 
in which the traveling wave is stationary. X is picked large enough so that 
there are no significant oscillations of the solution out~ide this domain. The 
boundary conditions are imposed at the edges of this domain rather than at 
infinity. 

The solution of equation (3), shifted by -t/2, tends to a steady state. For 
R ,...., 20 the convergence is smooth and rapid (see Figure 2, where the residual 
variation is due to the translation); for greater values of R oscillations can 
persist for a long time and reaching a steady state at an acceptable cost may 
require a little averaging in time. At the steady state we average the solution 
at each point x over the region (x- C/2, x + C/2) and call the result u, the 
averaged solution at x; Cis a dimensionless multiple of the unit of length L 
specified above. We are looking for an effective equation g( v, Vx, Vxx, ..• ) = 0 
whose solution v approximates this average; this solution can be expected 

. to be smoother than the solution of (3) and thus require fewer mesh points 
for an accurate numerical solution. 

In [8],[9], Barenblatt et al. have given an asymptotic derivation of an 
effective equation for this problem. They assumed that R was much larger 
than 1, that the front was averaged over a length much larger than the wave 
length of the dispersive waves but much smaller than the width of the wave 
train (i.e., of the region where u is neither the constant 1 nor the constant 
0). They also assumed that the dispersion in the effective equation was 
negligible and thus the effective equation ha4 the form 

(4) 

with an effective viscosity (not necessarily constant) Veff < 1. If one writes 
u = u + u', and the spatial average of u' is zero, substitution into equation 
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Figure 2: Decay of the time derivative of the solution of the KdVB equation 
to the constant that characterizes the traveling wave 

( 4) yields: 

(5) 

An asymptotic analysis then suggested that Veff was approximately a con­
stant, at least far from the edges of the oscillation region, and a numerical 
calculation supported this conclusion to some extent. We shall call equation 
(5) the hydrodynamic approximation and the value of Veff it yields liJiydro· 

3 Renormalization and averaging for Hamiltonian 
systems 

To explain what will be done below for the KdVB equation, we quickly 
review optimal prediction ~t equilibrium [3], which for a Hamiltonian system 
is a special case of real-space renorm<!lization [4]. Consider a system of 
ordinary differential equation 

·~~ = R(</>), </>(0) = x, (6) 

where</>, x, and Rare n-dimensional vectors with components</>= ( </>t, ... , <f>n), 
etc. and t is the time. Assume that the system is Hamiltonian: there exists 
a function H = H ( </>) such that Si = <>~H for i odd and Ri = - <>~H 

U'f't+l U'f'•-1 

for i even. The system (6) then preserves the canonical probability density 
~~~ exp(-H /T), where Z is the partition function. 
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Suppose we want to calculate the average value of a function A = A ( <P) 
with respect to the canonical density. One can do so by Markov-Chain 
Monte-Carlo based on the Hamiltonian H, or one can solve equations (6) in 
time, average the values of A and hope for ergodicity. 

Divide the component of <Pinto groups: J = ( </11, ... , <Pm), J = ( <Pm+l• ... , <Pn), 
so that <P = (J,J), and similarly x = (x,x),R = (R,R). Note that 
R = R( <P ), i.e., a subset of components of R is in general a function of 
all the components of </J. Suppose the function A depends only on the values 
of the reduced set of m variables J; then there is no need to calculate the 
full statistics of </J. Indeed, one can approximate the system (6) by 

dJ [ ' '] ' ' dt = E R( <P) I <P ' <P( 0) = X, (7) 

where E [il(<P)iJ] is the conditional expectation of R(<P) given J. E[RiJJ is a 

function of J only [3] and is the best approximation of R( <P) by a function of J 
in the mean square sense. Hald's theorem [3] states that the reduced system 
(7) is Hamiltonian as well, with a new Hamiltonian fi = -log Je-H dJ, 
where dJ = d<Pm+l d<Pm+2 ... d</Jn; we have folded the temperature T into 
the Hamiltonian and assume the reader can insert the appropriate factors of 
T into the equations of motion. The p;:trtition function of the reduced system 
equals that of the original system, Z = J e-H d¢ = Z, and if the initial data 

for the reduced system are drawn from the new canonical density z-te-H 
then the joint probability density of the variables J equals their marginal 
density in the full system. The average of the function A = A( J) can now 
be computed by Monte-Carlo based on the Hamiltonian fi or by solving 
equations (7) and relying on ergodicity. However, in general, the reduced 
Hamiltonian system does not produce accurate time evolutions for the for 
the components J = ¢(t), see {3]; it only reproduces the correct equilibrium· 
statistics. 

This construction is closely related to renormalization, in the present 
context, to real-space renormalization [14]. Associate the variables <Pi, i = 
1, ... , with points on a regular lattice, Divide the points into groups, each 
containing the same number q of variables, each group having the same 
shape and the same number of lattice points (for example, one could divide 
a one-dimensional lattice )nto groups of two points). Pick as components 
of J one of the variables in each group (for example, in the case of a one­
dimensional lattice divided into groups of two, take the leftmost of each 
pair). Pick as components of J the variables which are not in¢. Then write 
H(0 ) = H, <f1(0 ) </J, H(1) = fi, <P(l) = ¢, and relabel the components of 
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¢(1) so that they are attached to the points in the original lattice. This 
transformation: H(o) ----> H(t), <f>(o) ----> <f>(I), followed by relabeling, is a 
renormalization group (RNG) transformation as well as a spatial averaging. 
Note that the Hamiltonian H(I) was obtained from H(o) by averaging the 
right-hand-sides of the equations of motion (see equation {7)). 

With a suitable representation for the Hamiltonians H(0), fl(I), this 
operation can be repeated, and one obtains a sequence of Hamiltonians 
H(o), H(t), H(2), •••• The fixed points of the transformation H(n) -t H(n+I) 

are the critical points of the system if the system is infinite. The sequence of 
Hamiltonians can be expected to converge to one of the stable. fixed points. 
If the Hamiltonians have a representation of the form H(n)' = L: a~n) 1/Ji, 
where the Wi 's are a suitable basis and the expansion has a finite number 

· (n+l) · 

of terms, then the matrix A with elements ~is readily computed [14], 
oaj 

the eigenvalues of this matrix for H(n)'s near critical points determine the 
critical exponents of the system (see any textbook on critical phenomena, 
e;g., [14],[15]). The corresponding eigenvectors are the "scaling fields" at 
the critical points, i.e., fields that scale simply near those points. 

4 An analogy between the RNG and the averaging 
of the KdV-Burgers equation 

We draw an analogy between the· conditional expectations which define the 
renormalized variables in the equilibrium Hamiltonian case and an aver­
aging in space which defines "renormalized" variables for solutions of the 
KdVB equations that are stationary in a moving frame. Averaging over an 
increasing length scalE; corresponds either to more renormalization· steps or, 
equivalently, to renormalization with a greater number of variables grouped 
together. We pick a class of equations in which to seek the "effective" equa­
tion, the one whose solutions best approximate the averages of the true 
solution in the mean square sense; the choice of mean-square approximation 
in the KdVB case corresponds to the use of L2 norms implied by the use of 
conditional expectations in the Hamiltonian case, and the choice of a class 
of equations in which to look for the effective equation is analogous to the . 
choice of a basis for the representation of the Hamiltonian; the calculation of 
the best coefficients in the chosen class of "effective" equations corresponds 
to the evaluation of the coefficients in the series for the renormalized Hamil­
tonians. Note that in the Hamiltonian case we average the right-hand-sides 
of the equations and in the analogous KdVB case we attempt to average the 
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solutions; this must be so becaus-e in the KdVB case we do not have the Hald 
theorems which guarantee that averaging the right-hand-sides produces the 
correct statistics for the solutions. One expects that the effective equation 
would have smoother solutions than the original equation and would require 
fewer mesh points to be properly approximated; in this sense the number of 
variables is decreased, though we choose not to change the scale of the av­
eraged solution and thus have no analogue of the relabeling of the variables 
in the Hamiltonian case. 

We initially looked for an effective equation in the class of equations of 
the form 

(8) 

where v ~ 0, a ~ 0, {3 ~ 0 were constants. This form was suggested by the 
work of Barenblatt et al. [8],[9]. The average solution is 

ll·xH/2 
u(x) = f u(s)ds, 

x-l/2 

where u is a solution of equation (2) es, and f is dimensionless. The prob­
lem is to find the value of the parameters in the effective equation which 
minimizes 

I= m]n I:= lu(x)- v(x + zWdx. 

The shift z is needed because the problem is translation invariant, and the 
numerical procedures can produce a shift that has no intrinsic significance. 
We found that the last term in equation (8) had little effect on the minimum 
of I and could safely .be omitted. The effeCtive equation thus has exactly 
the form of the original equation but a different value of the coefficient v (or 
alternately, a different Reynolds number). The dispersive term can also be 
omitted (as ~as done by Barenblatt [8]), see also below, but we do not do 
so mostly for esthetic reasons. 

5 Dimensional analysis and similarity 

We briefly remind the reader of the fundamentals of similarity theory [5],[6). 
Suppose a variable a is a function of variables a1 , a2, ... , am, b1 , b2, ... , bk, 
where in some system_ of units a1 , .•. , am have independent units while 
the units of bt, ... , bk, can be formed from the units of at, a2, ... , am. 
Then there exist ·dimensionless variables II = a IIi = a;1 b; "im , 

a~l ···a~m ' al ···am 
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i = 1, ... , k, where the a;, a;k are integers, such that II is a function of the 
II;: 

(9) 

This is just a consequence ofthe requirem~nt that a physical relationship 
be independent of the units of measurement. Suppose the variables II; are 
small, and suppose one assumes that the function <1> (about which we know 
nothing at this stage) has a non -zero finite limit as its arguments tend to 
zero; then II rv constant, and one finds a power ~onomial relation between a 

and the a;. The resulting relation is invariant under a group of scaling trans­
formations generated by chang-es in the units. A similar argument works if 
the IIi's are very large. If the function <1> does not have the assumed limit, 
it may happen that for II1 small, <l>(IIt) = IIi<l>'(II1 ) + ... ,where the dots 
denote lower order terms, q is a constant, the other arguments of <1> have 
been omitted and <1>' has a finite non-zero limit. One can then obtain a 
power monomial expression for a in terms of the a; and b1 , with undeter­
mined powers which must be found by other means. The resulting power 
relation is an incomplete similarity relation, and the corresponding group 
of transformations under which the relationship is invariant is Barenblatt's 
renormalization group. A relation between Barenblatt's RNG and more 
standard definitions ofthe RNG is discussed in [7]. 

A logarithmic change of variables can transform the problem of deter­
mining exponents in incomplete similarity into a wave propagation problem 
where the wave velocity is unknown, see [5)-;[6], and applications in [2]. In 
our current problem the wave ve~ocity is determined in advance. 

6 Numerical results 

In summary; we consider the equation 

1 
UUx = R Uxx + Uxxx, ux( -oo) = 0, u( -oo) = 1, u( +oo) = 0, (10) 

approximated numerically as described above, define u, consider an effective 
equation of the form 

where v = v( v, x) satisfies the same boundary conditions as u, and look for 
v = Veff which minimizes 

r+oo 
I(v) = m}n }_oo (v(x + z) -_u(x))2 dx. 
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Figure 3: The mean-square difference I as a function of the viscosity v 

The general situation is shown in Figure 1, where we have plotted u, u, for 
R = 60, and v for v = Veff = 4.42; z = -.4. 

In Figure 3 we plot I(v) as a function of v for R = 60, f = 12. I(v) first 
decreases fast, then slowly, and then increases. For smaller values of R and 
f, there is a local minimum at the point where the rapid decrease becomes 
. a slow decrease; since this local minimum disappears for larger values of 
f we pay no attention to it here. The value Veff is .v at the minimum of 
I(v); the flatness of the curve at that point, especially for large values Of 
R, can make the minimization of I rather painful, and rather than use 
sophisticated minimization routines we found the minima by tabulation. 
Note the resemblance of the procedure to system identification methods. 

In Figures 4, 5 we plot Veff as a function of R with f = 20, in Figure 4 
in regular coordinates and in Figure 5 in log-log coordinates. We see that 
Veff, the renormalized or eddy viscosity, increases as the "bare" viscosity 
1/ R decreases. This is plausible because as 1/ R decreases the fi'uctuations 
in u increase and the portion of the x-axis in which there are oscillations 
increases. From Figure 5 we conjecture that Veff is proportional to Ret with 
a= 3/4 (a least square fit gives a= .7506). If indeed this is the case, one 
can obtain an effective equation from this scaling relation even when R is 
too large for an affordable solution of the original equation. 

As we have shown in the preceding section, one has 

Veff = 4>(R, f) 

where .q> is an unknown dimensionless function, and we are interested in the 
case where both R and f are large. The suggestion here is that 4>( R, f) = 

10 ~. 
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Figure 6: Vef f as a function off for R = 60 

R314ip(f), an incomplete similarity relation. 
Note that in fluid mechanics one also expects Veff, the eddy viscosity, 

to increase with the Reynolds number R defined by the "bare" (i.e. real) 
viscosity. For example, one can use the scaling laws for the intermediate 
region of wall-bounded flow [16] to derive an eddy viscosity of the form 
1/eff = cl - c2~R' with cl 2: 0, c2 2: 0. However, the increase is much 
slower. This qualitative difference is due to the geometric facts already 
mentioned, and also to the lack of any stochastic structure in the oscillatory 
wave train (for the importance of this last element, see e.g. [17]). In either 
case, the effect of the bare viscosity propagates from one scale of description 
to the next and is never forgotten. Note that in the fluid dynamics problem 
incomplete similarity a:lsd plays a key role, as must be the case if the effect 
of the bare viscosity propagates to averaged descriptions of the phenomena. 

In Figure 6 we display the dependence of Veff on f for R = 60. What is 
surprising at first sight is that Veff is not approximately constant as f changes, 
but of course it cannot be because of the boundary conditions. This is the 
kind of phenomenon that one encounters in wave propagation analyses of 
time-dependent scaling, and the relationship between the present problem 
and those other studies, if any, remains to be elucidated. The relationship 
between Veff and f thus displays an incomplete similarity as well. 

In Figure 7 we show the mean square difference I at v = Veff between the 
mean solution u and the solution v ofth.e effective equation, for R = 60 and 
various values of£. As expected, this difference goes down monotonically. If 
the dispersive term in our effective solution is dropped the curve is changed 
very little and we do not display the result. Barenblatt's conjecture that 

12 
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Figure 7: Mean-square difference between the mean solution and the best 
approximation as a function of l for R = 60 

the dispersive term is not significant after averaging is thus justified. 
Note that when T = I(veff) decreases, the mean solution is increasingly 

well approximated by a self-similar solution (the solutions of vvx = VVxx with 
our boundary conditions, for different values of v, can be mapped on each 
other by a change of the length scale). A self-similar solution is approached 
as l increases and one approaches a fixed point of the RNG - indeed, 
we conjecture that self-similar solutions are the scaling fields of RN G fixed 
points (i.e., solutions that scale simply near those fixed points), and thus 
Barenblatt's RNG- is a restriction of more general RNG's to the eigenspace 
of the relevant eigenvalues in the neighborhood of the fixed points. We shall 
discuss this issue in detail in a separate paper. 

Finally, we consider the validity of the asymptotic analysis of Barenblatt 
et al. (see equation (5)). Barenblatt et al. looked for an equation satisfied 
exactly by a mean solution, while we are content to look for an equation 
that produces an approximation to that mean in an L2 sense; as we have 
just seen, the difference decreases when l increases. Clearly, equation (5) 
does not hold in the major part of the wave system where Vx "' 0 when v is 
identified with ii for large £, and thus 1/hydro is very large. However, one can 
check whether it holds in the transition region where ii "' v varies rapidly. 
The width of the transition region can be defined as x 2 - x 11 where x 1 , x2-

satisfy v(xi) = 0.75 and v(x2)= 0.25; 1/hydro is then 

1
X2 · 2 . 

1/hydro = (x2- xi) ( v- u) dx. 
XI 

The ratio 1/hydi:o/Veff is plotted in Figure 8 for l = 20 and several values of 
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Figure 8: Validation of the Barenblatt asymptotic solution 

R. The error in the ratio is substantial because x2 - x1 is not large and the 
number of mesh points in the transition zone is rather small (of order 10). 
Note that one of the assumptions in Barenblatt's theory is not satisfied­
with our parameter values the width of the !ransition zone is comparable 
to the wave length of the dispersive waves. · Under these conditions,· the 
closeness of the ratio to one is a surprising confirmation of Barenblatt 's 
theory. 

These calculations were run in a computational domain of width 2X 
between 200 and 400 (depending on the length of the wave train), generally 
with 1024 mesh points, and with a time step k equal to the smallest of: 0.3h 
(to keep the a9.vection term stable), 2h2 j R, 2h3 (to keep overall accuracy), 
where his the mesh size. The calculations were run up to a timeT = 200. 

7 Conclusions 

We have set up an analogy between real-space renormalization (and thus 
optimal prediction algorithms) and the spatial averaging of the stationary 
KdV-Burgers equation. The analogy leads to incomplete similarity rela­
tions between "bare" and "renormalized" or "eddy" diffusion, and allows 
us to check and extend earlier averaging calculations; it also leads to in­
teresting conjectures. regarding the relation between renormalization and 
self-similarity. A procedurs similar in principle can be constructed for time­
dependent problems, but requires substantial further technicalities, as will 
be explained in subsequent work. Note that the most interesting parts of 
our analysis result from the fact that we are dealing with partial differential 
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equations rather than with systems of ordinary differential equations. 
The specific relation between viscosity on different scales is quantitatively 

different here from what is seen in hydrodynamics, as it should be in this very 
special model, but the model, like the N avier-Stokes equations, does exhibit 
a persistent ,effect of the bare viscosity as the scale of the model increases, 
expressed through an incomplete similarity. One of the reasons for picking 
the KdV-Burgers model for study is the fact, explained in (18], that vortex­
stretching in the Navier-Stokes equations induces dispersive behavior and 
is the main source of small-scale oscillations, like the dispersion here; we 
shall attempt to extend the method of the present paper to that interesting 
situation. 
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