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Abstract 

 

 A new potential energy function representing the conformational preferences of 

sequentially local regions of a protein backbone is presented.  This potential is derived 

from secondary structure probabilities such as those produced by neural network-based 

prediction methods.  The potential is applied to the problem of remote homolog 

identification, in combination with a distance dependent inter-residue potential and 

position-based scoring matrices.  This fold recognition jury is implemented in a Java 

application called JThread.  These methods are benchmarked on several test sets, 

including one released entirely after development and parameterization of JThread.  In 

benchmark tests to identify known folds structurally similar (but not identical) to the 

native structure of a sequence, JThread performs significantly better than PSI-BLAST, 

with 10% more structures correctly identified as the most likely structural match in a fold 

library, and 20% more structures correctly narrowed down to a set of five possible 

candidates.  JThread also significantly improves the average sequence alignment 

accuracy, from 53% to 62% of residues correctly aligned.  Reliable fold assignments and 

alignments are identified, making the method useful for genome annotation.  JThread is 

applied to predicted open reading frames (ORFs) from the genomes of Mycoplasma 

genitalium and Drosophila melanogaster, identifying 20 new structural annotations in the 

former and 801 in the latter. 
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 Efforts in recent years have succeeded in elucidating the complete genome 

sequences of many organisms.  A major challenge in the post-genomic era will be to 

determine the cellular functions of each protein and potential mutants, especially 

variations involved in disease.  Determining the three dimensional structure of a protein 

is a key step in acquiring a detailed understanding of enzymatic reaction catalysis and the 

interaction of proteins with other molecules.  However, predicting protein structure from 

its amino acid sequence remains one of the fundamental challenges of computational 

biology.  For those proteins with structures similar to one that has already been 

experimentally determined, this problem is largely reduced to locating the similar fold 

and correctly aligning it with the new sequence1.  For sequences with more than 25-30% 

identity to a protein of known structure, this can be accomplished by pairwise sequence 

alignment methods2; some of these tools, such as BLAST3 are still in widespread use 

today because of their speed.  More remote homologs must be detected through sequence 

profile-based methods such as PSI-BLAST4; 5 or by threading the sequence onto known 

folds using pseudopotential energy calculations1; 6.  The most accurate methods currently 

available are based on a combination of profile-based scoring and conformational energy 

evaluation7; 8; 9; 10; 11.  Accurate prediction of novel folds is particularly important for 

structural genomics efforts12, as proteins reliably assigned to the current repertoire of 

folds are often eliminated as candidates for experimental structure determination by 

structural genomics groups13. 
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 In order to model all proteins in newly sequenced genomes, it is not only 

necessary to recognize the structural templates associated with each gene sequence, but 

also to produce accurate alignments of the sequences to their structural templates.  

Current state of the art modeling tools such as MODELLER14 are critically dependent on 

accurate alignment to the template15.  While fold recognition accuracy has gradually 

improved over time, alignment accuracy has not improved significantly until recently8.  

Computational speed is also an important factor if we are to apply fold recognition 

methods to all the predicted gene sequences in large genomes.  Conformational energy 

methods based on non-local interactions, such as potentials of mean force between amino 

acid residues16 are powerful, but computationally expensive. 

 

 Several aspects of protein structure, such as solvent exposure of amino acid 

residues and secondary structure, may be predicted directly from the primary sequence 

using tools such as neural networks17; 18; 19.  This approach is usually computationally less 

expensive than threading, and the resulting predictions can be combined with existing 

threading methods.   Integration of these predictions has been shown to improve the 

accuracy of remote homolog detection9; 20; 21; 22.  However, these predictions have not 

been demonstrated to significantly improve alignment accuracy.  It is possible that this 

deficiency is caused by sub-optimal encoding of the structural predictions, or by 

inefficient combination of the prediction-based scoring terms with other metrics. 

 

 Direct comparison of the alignment accuracy of different methods is difficult, due 

to the lack of common benchmark data sets and even common measures of alignment 
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accuracy.  The latter measures generally fall into two categories: those based on the 

number of aligned residues in common with a reference alignment (i.e. Marchler-

Bauer23), and those based on correlation between contact maps of a model derived from 

threading and the correct structure (i.e. Panchenko8).  However, some improvement has 

clearly been shown in recent years in cases where one method has been directly 

compared to another on identical test sets.  For example, the FUGUE method24 was 

compared directly to CLUSTALW25 on a set of 27 remote homologs (< 20% sequence 

identity); average alignment accuracy improved from 32.6% to 51.1%. The COBLATH 

method10 was compared to PSI-BLAST on a set of 307 structural pairs.  Accuracy was 

assessed deriving models from the alignments and counting the number with root mean 

square deviation of less than 8Å from the correct structures; this number improved from 

202 models derived from PSI-BLAST alignments to 223 derived from COBLATH 

alignments10.  The 3D-PSSM9 method extends standard sequence-based methods using 

evolutionary relationships manually identified in the SCOP database26, along with 

secondary structure predictions and a solvation potential.  On a test set of 136 

homologous pairs of proteins undetectable by PSI-BLAST, 3D-PSSM was able to 

reliably detect 18% of the relationships9. 

 

 Improvement in methods has also been demonstrated through community 

participation in fold prediction servers, such as LiveBench27 and EVA28.  In particular, 

fold recognition methods based on the “meta-server” approach of combining structural 

models produced many separate servers running a variety of algorithms has been shown 

to produce more accurate models than any of the individual servers29; 30.  It is expected 
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that development of additional individual prediction methods will further enhance the 

accuracy of these meta-servers29. 

 

 In this paper, we present a new statistically derived potential, which represents the 

local conformational preferences of a protein backbone.  This potential is combined with 

other scoring metrics such as sequence profile-based matrices from PSI-BLAST and a 

distance dependent inter-residue potential16.  The combined method is tested on several 

benchmark data sets previously developed for comparison of threading methods20; 21.  

Both fold recognition and alignment accuracy are demonstrated to improve significantly 

over current methods such as PSI-BLAST.  We present results of our method on a recent 

set of LiveBench27 targets, for comparison with other prediction methods and to 

benchmark accuracy on a set of structures which were all released after development and 

parameterization of our algorithm were completed.  We also apply our method to ORFs 

from the Mycoplasma genitalium and Drosophila melanogaster genomes, to identify new 

structural and functional assignments and determine additional proteins which may be 

modeled. 

 

Results 

 

Alignment Accuracy 

 

 The Defay/Cohen benchmark set of proteins21 contains 126 structural matches 

(See Materials and Methods section).  Correct alignments were generated by structural 
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superposition, as described in the Methods section.  Alignments were generated for each 

of the sequence/fold pairs using global dynamic programming with several different 

scoring functions.  The Identity scoring method simply assigns a score of 1 for a match, 

and 0 for a non-match.   BLOSUM62 is a 20x20 scoring matrix used by default with 

BLAST3.  The position specific scoring matrix (PSSM) generated by PSI-BLAST4 using 

the sequence as a probe against the non-redundant sequence database ("nr") was also used 

as a scoring method.  Finally, several scoring functions based on secondary structure 

were tested, individually and in combination with the PSI-BLAST PSSM.  These are 

labeled P1 – P3.  P1 is a simple scoring function which assigns a score of 1 for a match of 

predicted secondary structure in the sequence with the known secondary structure in the 

fold, and scores 0 for a non-match; this is similar to the scoring system used by 3D-

PSSM9.   P2 is based on predicted secondary structure probabilities; a score from 0 to 1 is 

assigned based on the predicted probability of the sequence assuming the same secondary 

structure as the fold.  P3 is the new local backbone potential, described in the Materials 

and Methods section and shown in Figure 3.  Average accuracy for each scoring function 

is summarized in Table I. 

 

 Several results are apparent from Table I.  First, there is approximately a 9% 

improvement in alignment accuracy when combining the new local potential (P3) with 

the PSI-BLAST PSSM, compared to using the PSSM alone.  The results of differences in 

accuracy on individual sequences (which are not weighted by sequence length) form a 

distribution with a mean of 10.3% ± 1.5%, and a standard deviation of 17.1%.  Second, 

there are significant differences in accuracy depending on how secondary structure 
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predictions are encoded.  Consider exact matches to the structural alignment, ASNS0, 

and those scores that accommodate a tolerance of ±1 or ±4 residues, ASNS1 and ASNS4.  

By comparing the ASNS0 and ASNS4 columns, it is apparent that all secondary structure 

prediction-based potentials (P1-P3) were effective at producing an accurate rough 

alignment of secondary structure elements, while allowing small shifts of 1-3 residues.  

Purely sequence-based scoring methods such as BLOSUM62 and PSI-BLAST showed a 

smaller difference between ASNS0 and ASNS4.  The new local potential (P3) performed 

better at the ASNS0 level than the other two prediction-based scoring methods, P1 and 

P2:  the distribution of the differences in ASNS0 between P3 and P2 for individual 

sequences has a mean of 5.4% ± 1.4%; the equivalent distribution of differences in 

ASNS0 between P3 and P1 has a mean of 9.3% ± 1.7%, so P3 is significantly more 

accurate than P2 or P1.  This improvement may be due to separate parameterization of 

Gly, Pro, and Asn residues in the new potential; separate parameterization of these 

residues could lend P3 some of the advantageous properties of sequence-based scoring 

methods.  The new local potential (P3) also performed better in combination with PSI-

BLAST than the probability-based potential, P2.  For both P2 and P3, 9 possible 

weighting combinations with the PSSM were tested, ranging from 10% P2 (or P3) and 

90% PSSM, to 90% P2 (or P3) and 10% PSSM.  The optimal results for each, which 

occurred at 60% P2 and 70% P3, are reported here.  Because the relative scales of both 

local potentials and the PSSM are arbitrary, no conclusion about the importance of 

secondary structure can be drawn from the higher weighting of the local potentials. 

 

Estimation of Alignment Accuracy 
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 Although the accuracy of the combined scoring function is significantly better 

than for other methods tested (the mean improvement in accuracy over the next best 

method is 4.9% ± 1.6%), there is considerable variation among individual proteins.  

Percent accuracy values for each of the 126 structural matches form a distribution with a 

mean of 57.7% and a standard deviation of 32.9%, leading to great uncertainty in the 

value of any alignment for further modeling.  The method performs significantly better 

on more homologous sequences.  For the 56 structural matches with 12% or greater 

sequence identity in the structural alignment, accuracy forms a distribution with an 

average of 88.6% and a standard deviation of 8.9%.  Unfortunately, sequence identity in 

the structural alignment cannot be measured a priori, and sequence identity in the 

calculated alignment does not correlate well with accuracy (data not shown). 

 

 One metric which does correlate well with accuracy, and can be measured in the 

calculated alignments, is average alignment score.  This is the total score, including gap 

penalties, resulting from the dynamic programming calculation, divided by the number of 

aligned residues.  The 49 matches with the best average scores also have significantly 

more accurate alignments; alignments in this subset are 88.6% accurate on average, with 

a standard deviation of 9.9%.  A plot of accuracy versus alignment score is shown in 

Figure 1.   Alignment scores are sorted into eight bins of equal width, and the average 

and standard deviation in accuracy within each bin are plotted.  This principle was used 

to derive a rough estimate of the accuracy of any alignment based on the average 

alignment score; details are given in the Methods section. 
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Additional Test Sets 

 

 Alignments were also performed on the Fischer/Eisenberg test set, using the same 

scoring methods tested on the Defay/Cohen set.  Optimal gap penalties and relative 

weighting when combining the new local potential with the PSI-BLAST PSSM were not 

recalculated.  Structural matches and sequence alignments were calculated in several 

different ways.  For direct comparison to the Defay/Cohen test set results, structural 

matches and correct sequence alignments were calculated using MINAREA.  This data 

set includes 128 structural matches, a result similar to the number of matches in the 

Defay/Cohen set.  Results on these structural matches are shown in Table II, columns 1-4.  

For comparison to other groups, the 68 structural matches (one per sequence) used in the 

original work20 were tested.  Results are shown in the last column of Table II. 

 

 On the Fischer/Eisenberg test set, results are somewhat more accurate when tested 

on the Fischer/Eisenberg structural matches than on the matches identified by MINAREA.  

The Fischer/Eisenberg structural matches contain only the best match possible for each 

sequence; MINAREA identifies 128 possible structural matches, an average of almost 

two per sequence.  The MINAREA set includes more remote homologs, for which results 

are less accurate.  For most methods tested, the accuracy on the Fischer/Eisenberg data 

set is somewhat lower than on the Defay/Cohen data set.  This is likely due to a larger 

number of multi-domain proteins in the Fischer/Eisenberg set.  Because all tests were 

performed using global alignments, rather than local, the method does not perform as 
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well when on larger proteins with multiple domains.  However, results are qualitatively 

similar; the improvement resulting from integration of the new local potential with the 

PSI-BLAST PSSM is reduced from 9% on the Defay/Cohen set to 5-6% on the 

Fischer/Eisenberg set.  Other methods have also been tested on the Fischer/Eisenberg set.  

The ASNS0 of GenTHREADER alignments is reported for 44 structural matches 

correctly identified by the method; accuracy was calculated relative to reference 

alignments created using the structural superposition program SSAP31.  The average 

ASNS0 of GenTHREADER on these matches, weighted by alignment length, is 44.7%7.  

For the same 44 matches, the average ASNS0 of the combined scoring function described 

above is 58.2%.  The calculated ASNS0 on this subset is larger than for the entire set 

because GenTHREADER's accuracy is not reported for pairs which were not ranked first 

by its fold recognition algorithm; the other 24 pairs are presumably more difficult. 

 

 Both the Defay/Cohen test set and the Fischer/Eisenberg test set were submitted 

to the 3D-PSSM server.  Because 3D-PSSM is only available as a server and not as a 

downloadable program, the fold library could not be controlled.  The current 3D-PSSM 

fold library contains proteins with at least 70% sequence identity to every protein in both 

test sets, with 100% identical sequences available for the majority of proteins in both sets.  

Interestingly, the 100% identical matches were not always the top hit returned by the 

server.   Alignment accuracy could only be directly compared when the 3D-PSSM server 

returned a match to a fold which was identical to one of the proteins in the Defay/Cohen 

or Fischer/Eisenberg fold libraries.  For the Defay/Cohen test set, 19 of 126 matches 

could be directly compared.  On these, all statistics were statistically indistinguishable, 
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with 3D-PSSM 1.6% ahead on ASNS0 and the combined P3/PSI-BLAST scoring 

function 2.3% better on ASNS4.  For the Fischer/Eisenberg test set, 28 of 128 matches 

could be compared.  On these matches, 3D-PSSM performed significantly better than the 

combined P3/PSI-BLAST potential (average results weighted by alignment length:  58% 

vs. 49% for ASNS0, and 85% vs. 68% for ASNS4).  However, these results are not 

expected to be indicative of performance on newly sequenced proteins, because very 

similar test sequences were included in the 3D-PSSM fold library and presumably the 

training set.  For the P3/PSI-BLAST potential, similar sequences were excluded from 

training sets as described in the Methods section. 

 

Accuracy of Structural Models 

 

 Although direct measures of alignment accuracy are useful for comparing 

methods, it is also informative to compare the quality of the implied structural models.  

Because alignment accuracy is a major factor influencing model quality15, accurate 

alignments are a necessary but not sufficient prerequisite for accurate models.  Models 

were built for each sequence in the Defay/Cohen and Fischer/Eisenberg test sets from 

calculated alignments to the optimal fold library templates using MODELLER14 version 

6v2 with default options (the ‘model’ routine with one model).  Models were compared 

to the correct structures using MaxSub32.  To compensate for inaccuracies caused by the 

modeling procedure rather than the alignments, we also built “optimal” models from the 

correct alignments (calculated from a structural superposition; see Methods section) and 

calculated MaxSub scores for these models. 
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 Results on the two data sets were very similar.  The optimal models calculated 

from the correct alignments had average MaxSub scores of 0.49 in each set, out of a 

possible 1.0 for a perfect model.  This difference reflects limitations in the automated 

modeling procedure and structural dissimilarities between the fold templates and the true 

structures.  Rankings for other methods were similar to the rankings for alignment 

sensitivity.  Average MaxSub scores for each method and data set are shown in Table III.  

The best predicted models in each set were produced by a combination of the new 

secondary structure prediction-based potential and the PSI-BLAST PSSM. 

  

Fold Recognition Accuracy 

 

 Although a simple combination of the new local potential with the PSI-BLAST 

PSSM improves alignment accuracy and some aspects of fold recognition accuracy, fold 

recognition accuracy is further enhanced using a jury method.  This method is described 

in detail in the Methods section and outlined in Figure 4. 

 

 The Defay/Cohen test set contains 58 sequences for which at least one structural 

match is present in the fold library.  Using the "one-to-many" test of fold recognition 

accuracy, described in the Methods section, the probability of finding a match among the 

top N hits was calculated for several scoring methods.  Results for the PSI-BLAST PSSM, 

a combination of the new local potential with the PSI-BLAST PSSM, and the fold 

recognition jury are compared in Figure 2. 
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 While the PSI-BLAST PSSM correctly identifies a matching fold as the top hit 

for 67% of the test sequences, subsequent hits are less likely to identify correct matches.  

The chance of a correct fold occurring anywhere among the top five hits is 74%, and the 

chance of a correct fold occurring anywhere in the top 20 hits increases to only 82%.  The 

combination of the new local potential and the PSSM is less accurate for the top hit (65% 

vs. 67%), but more useful for finding a correct match among the top five hits (77% vs. 

74%) or top 20 hits (92% vs. 82%).  Potential users of the threading tool would 

presumably be most interested in the accuracy of the first hit, or first several hits, as 

further investigation of possible structural matches might be conducted manually or with 

the help of more specific and time sensitive algorithms.  Therefore, the fold recognition 

jury was tuned to obtain maximum accuracy among the top five hits.  The resulting 

accuracy for the top hit was 79% (vs. 67% for the PSI-BLAST PSSM), and an accuracy 

rate of 88% was obtained for the top three hits.  However, little additional benefit is 

gained from examination of hits beyond the best three; the combination of the PSSM with 

the new local potential becomes more reliable when considering more than 15 possible 

candidates. 

 

 Fold recognition tests were also performed on the Fischer/Eisenberg benchmark 

set, using the set of 68 matches supplied by Fischer as the correct standard.  As in other 

studies7, matches containing at least one common domain classified in the same 

homologous superfamily in the CATH33 structural database were also counted as correct, 

resulting in a total of 213 possible structural matches.  The PSI-BLAST PSSM correctly 
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identifies a matching fold as a top hit in 75% of the test sequences.  The probability of a 

correct match increases to 84% among the top five hits, and to 87% among the top 20 hits.  

As with the Defay/Cohen benchmark set, the combination of the new local potential and 

the PSSM is less accurate for the top hit (69% vs 75%), but more accurate when the top 

five hits (85% vs 84%) or the top 20 hits (93% vs. 84%) are considered.  The jury method 

is more accurate than either of the other methods, finding a match as the top hit for 76% 

of the sequences, 93% in the top five, and 96% in the top 20.  The jury method compares 

favorably with other fold recognition methods tested on the same data set.  

GenTHREADER7 finds a match as the top hit for 74% of the sequences, with 82% in the 

top five and 94% in the top 20.  All sequences in the Fischer test set were also submitted 

to the 3D-PSSM server9.  Because the fold library could not be controlled and contained 

many of the test sequences, results with more than 25% sequence identity to the 

submitted sequence were ignored.  Folds returned by the 3D-PSSM server were mapped 

to CATH superfamilies, allowing an overlap of up to 10 residues at each end of the 

sequences.  In cases where a single fold overlapped several CATH superfamilies, a match 

with any of them was counted as correct.  3D-PSSM found a match as the top hit for 65% 

of the sequences, with 88% in the top five, and 96% in the top 20.  However, these results 

are not directly comparable to those reported for the jury method or GenTHREADER, 

since the 3D-PSSM library is larger than the Fischer fold library. 

 

 The complete jury method, including estimation of fold recognition accuracy as 

described in the Methods section is implemented as a Java application called "JThread."  

JThread also performs sequence alignment on potential structural matches, using the 
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optimal alignment parameters described above.   In addition to identifying a large 

percentage of correct structural matches, a fold recognition method is most useful for 

annotation if it produces a low rate of false positives.  JThread was parameterized on the 

Defay/Cohen data set, so all annotations on that set with estimated accuracy >99% were 

indeed true positives.  On the Fischer/Eisenberg data set, 58 structural matches 

(representing 32 of the 68 sequences) were annotated at confidence levels of >99%.  Of 

these, three matches (all immunoglobulins) initially appeared to be false positives.  

However, two of the three structures have been classified as immunoglobulins in a more 

recent version (2.0) of CATH, and assigned the same CATH code as the potential 

matches predicted by JThread.  A third protein (PDB code 1PFC) remains unclassified in 

CATH.  Examination of the 1PFC structure and its headers indicates that it is also an 

immunoglobulin domain, as predicted by JThread. 

 

LiveBench results 

 

 JThread was used to predict folds for a recent set of LiveBench27 targets, to 

benchmark accuracy on a set of structures which were all released after development and 

parameterization of our algorithm were completed.  LiveBench Set 6 includes 98 

sequence targets, and is pre-filtered to exclude “easy” targets for which a similar PDB 

sequence can be detected using BLAST.  All targets, as well as all proteins in the JThread 

fold library, have recently classified in SCOP version 1.63, which allows accuracy to be 

benchmarked based on manual annotation by an expert.  The structure 1IYA was 

superseded in the PDB  by 1J3G, which was substituted for purposes of this analysis.  
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JThread predicted 36 matches, covering 12 sequences, with >99% confidence.  

According to SCOP, all 36 predicted folds were classified in the same homologous 

superfamily as the corresponding target protein.  Predictions made at lower confidence 

were also examined.  Of the top matches for 98 targets, 24 (24%) were in the correct 

superfamily, and 3 more (3%) were in the correct fold but different superfamilies, 

possibly indicating detection of analogous folds.  When the top 5 predictions for each 

target were examined, 28 targets (29%) had at least one match in the correct superfamily, 

and 10 (10%) more had matches in the correct fold but different superfamilies.  Within 

the top 10 predictions, 33 (34%) were predicted in the correct superfamily, and 11 (11%) 

more were predicted in the correct fold.  Within the top 20 predictions, 39 (40%) were 

predicted in the correct superfamily, and 15 (15%) more were predicted in the correct 

fold.  As these statistics were compiled on a set of proteins assembled after the 

development and parameterization of JThread, they give an unbiased sampling of the 

accuracy of the algorithm in making nontrivial predictions for newly sequenced proteins.  

Unfortunately, due to time and memory requirements of JThread, it is currently 

impractical to provide a server which could participate in ongoing LiveBench27 or EVA28 

evaluations. 

 

Mycoplasma genitalium genome 

 

 Mycoplasma genitalium (MG) is the smallest bacterial genome, with 480 

predicted open reading frames (ORFs)34.  It has therefore been used to test several 

recently developed fully automated methods for structural annotation19; 35; 36.  We applied 



 18

the pipeline method described in the Methods section to this genome to identify in 

structural annotations for 270 (56.2%) of the ORFs.  However, as the first methods in the 

pipeline are the local alignment algorithms BLAST and PSI-BLAST, a significant 

number of annotations covered only part of the sequence of the corresponding ORF.  For 

example, the ORF MG104 is 725 amino acids long, but only a single domain of 72 amino 

acids could be annotated as having significant structural similarity to a known RNA 

binding domain (PDB code 1SRO).  Nevertheless, 213 of the 270 annotations (78.8%, or 

44.3% of the ORFs) accounted for at least 50% of the sequence of the corresponding 

ORF.  In total, the structural annotations account for 78,265 of the 174,959 residues 

(44.7%) in the MG genome.  If short insertions (10 residues or fewer) are included in 

these statistics, the numbers increase to 217 annotations (80.3%, or 45.2% of the ORFs) 

covering at least 50% of the sequence of the ORF, and 80,315 residues annotated (45.9%).  

All annotations for MG are summarized on our web site 

http://www.cmpharm.ucsf.edu/~jmc/mg/. 

 

 Of the 270 annotations, 112 (41.4%, or 23.3% of the ORFs) were obtained using 

BLAST.  An additional 138 annotations (51.1% of the annotations, or 28.7% of the 

ORFs) were obtained using PSI-BLAST.  The remaining 20 annotations (7.4% of the 

annotations, or 4.1% of the ORFs) were obtained using JThread.  Although the number of 

additional annotations which were found using JThread (but not PSI-BLAST) was 

relatively small, it included some additional annotations which were missed by automatic 

application of BLAST and PSI-BLAST.  For example, three predicted ribosomal proteins 

(MG155, MG161, and MG174) are over 60% identical to the sequences of the matching 
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PDB structures.  However, these matches were not found by BLAST or PSI-BLAST, due 

to the low complexity filter used in these algorithms.  Although a different choice of 

BLAST parameters (eliminating the filter) might have alleviated this problem, this would 

likely have increased the potential for false positives.  These cases illustrate the difficulty 

of setting up a fully automatic annotation system, and the importance of applying a 

pipeline procedure including several different methods to the annotation problem.  We 

will discuss two additional examples in more detail: 

 

ORF MG111:  Phosphoglucose Isomerase 

 

 Phosphoglucose isomerase is a key enzyme in the glycolytic pathway, and 

therefore likely to be found even in the smallest bacterial genomes.  MG111 could not be 

annotated as related to a protein of known structure by either the BLAST or PSI-BLAST 

algorithms.  However, it was predicted to have structural similarity to a structure of 

phosphoglucose isomerase (PDB code 1BOZ) by JThread. 

 

To assign functional as well as structural similarity, it is important to verify 

conservation of functionally important residues.  Residues which are conserved in 

phosphoglucose isomerase enzymes from 42 different species were obtained from the 

PROSITE database37.  A sequence alignment to the enzyme structure and an estimation 

of the alignment accuracy were calculated as described above.  The resulting alignment is 

estimated to be over 88% accurate, and reveals complete conservation of all 22 conserved 

residues from the PROSITE motif.  Therefore, the annotation of MG111 as 
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phosphoglucose isomerase is fairly certain, and the sequence alignment could be used to 

produce a low resolution model of the structure with homology modeling tools such as 

MODELLER14.  As corroborating evidence that MG111 is phosphoglucose isomerase, 

the same structural classification is also made by the 3D-PSSM algorithm9.  This 

prediction could be easily confirmed through biochemical analysis. 

 

ORF MG265:  an enzyme with unknown function 

 

 MG265 is a conserved hypothetical protein with unknown function.  MG265 

could not be annotated as related to a protein of known structure by either the BLAST or 

PSI-BLAST algorithms.  However, it was predicted to have structural similarity to a 

domain from L-2-haloacid dehydrogenase (PDB code 1QQ5, chain A) by JThread.  This 

annotation implies that MG265 forms a multi-domain structure including a Rossmann 

fold. 

 

 In this case, an accurate sequence alignment could not be calculated (estimated 

alignment accuracy of only 27%), so a quantitative measure of the conservation of 

functionally important residues could not be determined.  Furthermore, a reliable model 

cannot be constructed without a more accurate alignment.  Structures containing a 

Rossman fold are frequently enzymes which use the Rossman fold domain to bind the 

substrate or a co-factor38.  However, in this case, the specific type of enzyme cannot be 

determined without additional experimental work. 
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Drosophila melanogaster genome 

 

 The fruit fly (Drosophila melanogaster) genome39 contains 13,608 predicted open 

reading frames (ORFs), comparable in size to the 35-40,000 genes predicted for the 

human genome40.  It is therefore a good benchmark for annotation methods applicable to 

large eukaryotic genomes.   We applied the pipeline method, resulting in structural 

annotations for 6717 (49.4%) of the ORFs.  Although the fraction of annotated genes is 

similar to that for MG, the fly has a greater proportion of genes for which the annotation 

covers only part of the sequence of the corresponding ORF.  Only 2938 of the 6717 

annotations (43.7%, or 21.6% of the ORFs) accounted for at least 50% of the ORF 

sequence, compared to 78.8% of the MG annotations.  In total, the structural annotations 

account for 1,430,851 of the 6,600,557 residues (21.7%) in the fly genome.  These 

numbers may be smaller compared to the MG because the fly contains more long, multi-

domain proteins (average ORF length is 485 residues in the fly, vs. 364 in MG), and no 

effort was made to annotate additional regions of an ORF once one region had been 

structurally annotated.  It is also possible that because MG genome is more compact, a 

larger percentage of these proteins are conserved in multiple species, and thus have a 

greater change of homology to a protein which has been studied and structurally 

characterized.  A recent survey of genomic ORFans (proteins with no detectable 

sequence similarity to proteins in other genomes) found no remaining ORFans in MG, 

but as many as 33% in larger bacterial genomes41.  All annotations for Drosophila 

melanogaster are summarized on our web site http://www.cmpharm.ucsf.edu/~jmc/fly/. 
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 Of the 6,717 annotations, 2,719 (40.5%, or 20.0% of the ORFs) were obtained 

using BLAST.  An additional 2,999 annotations (44.6% of the annotations, or 22.0% of 

the ORFs) were obtained using PSI-BLAST.  The remaining 801 annotations (11.9% of 

the annotations, or 5.9% of the ORFs) were obtained using JThread.  These numbers 

suggest that the lower annotation rate in the fly relative to MG is due to a greater number 

of remote homologs or ORFans, rather than simply being the result of longer proteins. 

BLAST and PSI-BLAST are local alignment algorithms, and capable of identifying a 

single domain in a multi-domain protein.  However, the annotation rates for these 

algorithms were both lower in the fly than in MG.  JThread, which uses a global 

alignment algorithm, would be expected to miss some multi-domain proteins, because the 

fold library contains only single domains.  However, the annotation rate for JThread was 

over 40% higher in the fly, indicating a relative abundance of remote homologs. 

 

Common superfamilies annotated in M genitalium and D melanogaster 

 

 All structural annotations were identified by superfamily from the SCOP database 

(version 1.53).  SCOP is a manually curated database which aims to identify structural 

and evolutionary relationships between proteins of known structure26.  The superfamilies 

most represented in structural annotations of Drosophila and MG are summarized in 

Table IV.  The ten most common superfamilies from each species are shown.  Three 

superfamilies occur in the top five rankings of each species.  The first, P-loop containing 

NTP hydrolases, is a very diverse family including kinases, G proteins, motor proteins, 

and the ATP-binding subunits of some transporters.  This superfamily occurs 41 times in 
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MG and 331 times in Drosophila.  The second superfamily, immunoglobulin-like 

domains, occurs frequently in proteins attached to cell surfaces; it occurs 6 times in MG 

and 258 times in Drosophila.  Finally, the colicin superfamily is a small family limited to 

a coiled coil motif found in several related toxins produced by Escherichia coli.  Despite 

the application of the low complexity filter (SEG) in combination with PSI-BLAST (see 

Methods), many proteins from both Drosophila and MG were annotated by PSI-BLAST 

as having similarity to this domain.  In a similar study using PSI-BLAST to annotate MG 

genes, proteins with coiled coil regions were identified using a separate procedure 

specialized for detection of these regions35.  In the Müller et al study, the number of 

coiled coil proteins in the MG genome was estimated as 4 or 5, compared to the 16 found 

in MG by PSI-BLAST in this study (325 such regions were found in Drosophila).  

Therefore, the rate of false positives in this superfamily is expected to be significant in 

both MG and Drosophila annotations. 

 

 It is also interesting to observe common superfamilies in MG which have not 

diverged significantly in Drosophila.  Four superfamilies occur among the ten most 

common in MG, but have fewer than 20 members annotated in Drosophila.  These 

include the anticodon binding domains of Class I and II tRNA synthetases (each of which 

has 6 annotated members in MG, and 10 or 11 annotated members in Drosophila).  Other 

superfamilies are a domain of SRP/SRP receptor G proteins (5 members in MG and 7 in 

Drosophila) and ribosomal fragments (6 members in MG and 15 in Drosophila).  The 

relative lack of specialization in these families may indicate that the functions, while 

important, are optimally performed by a small number of proteins. 



 24

 

New predictions made by JThread 

 

 Of the 801 Drosophila annotations made by JThread, 692 (86%) are predicted to 

be structurally similar to proteins from SCOP families in which no member is found by 

BLAST or PSI-BLAST.  547 of the JThread annotations (68%) are novel at the SCOP 

superfamily level, and 223 (28%) are novel at the SCOP fold level.  These predictions 

cluster into 34 newly annotated folds, 58 new superfamilies, and 86 new families.  

JThread annotations showed greater structural diversity than predictions produced by 

BLAST or PSI-BLAST.  Although JThread produced 12% of the Drosophila annotations, 

17% (86/515) of the SCOP families were annotated only by JThread. 

 

 Examination of these new annotations reveals some relative strengths and 

weaknesses of the JThread and BLAST/PSI-BLAST algorithms.  As is the case with 

JThread annotations of MG, one of the newly annotated groups of folds includes 

structures similar to phosphoglucose isomerase (PGI).  One of these, CG8251, is 69% 

identical in sequence to a structurally characterized PGI from rabbit (PDB code 1DQR).  

Two other genes, CG1345 and CG12449, are 38% identical in sequence to a structurally 

similar enzyme, the isomerase domain of glucosamine 6-phosphate synthase (GLMS).  

All three of these also contain PROSITE motifs suggesting conservation of function.  An 

additional 18 annotated sequences range from 10% to 24% identity with a known 

structure, but functional conclusions cannot be drawn because the expected accuracy of 

the sequence alignment was too low (20-27%) to allow further modeling.  Another 
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similarity to the MG annotations was the discovery of 2 genes, CG3661 and CG14148, 

with structural similarity to ribosomal protein L14; sequence identity with the known 

structure ranges from 33-39%.  In both the PGI and ribosomal protein L14 families, the 

high degree of sequence identity of annotated genes with known structures suggests that 

sequence-based search methods such as BLAST should be able to annotate the genes, but 

were unable to for unknown reasons. 

 

Proteasome predictions 

 

 An interesting example of a fold for which BLAST and PSI-BLAST found no hits 

in Drosophila, but for which JThread found numerous examples, is the fold family 

containing proteasome alpha and beta subunits.  In eukaryotic cells, most proteins are 

degraded via the ubiquitin-proteasome pathway42.  The core of this pathway is a barrel-

shaped proteolytic core complex, the 20S proteasome.  This particle is composed of 28 

subunits, two copies each of 7 alpha subunits and 7 beta subunits.  Two rings of beta 

subunits are flanked by two rings of alpha subunits, forming the barrel structure.  

Catalytic degradation of proteins is performed by three of the beta subunits.  Although 

much of the regulation of proteasome catalysis occurs in a 19S particle which is attached 

at each end of the barrel, regulation by selective expression of subunit isoforms is also 

known to occur.  In mammals, an immune response stimulates expression of three 

additional active beta subunits, each of which replaces a specific beta subunit from the 

original particle.  This “immunoproteasome” is implicated in processing of antigens for 

presentation by MHC class I molecules.  In Drosophila, testes-specific isoforms of 
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proteasomes have been cloned; however, nothing is known of their functional role42.  

JThread identifies 36 proteins from the SCOP fold family which includes proteasomes 

and similar hydrolases, including 25 for which the expected alignment accuracy with a 

known structure is 87% or better.  In some of these gene products, the catalytic residues 

are conserved; others are likely to be inactive isoforms.  The large number of genes 

suggests that selective expression of active and inactive isoforms of proteasome subunits 

may play a role in the regulation of protein degradation in Drosophila.  Further modeling 

of the proteins and experimental characterization of the expression patterns of these genes 

may shed further light on this hypothesis. 

 

Discussion and Conclusions 

 

 As the number of completely sequenced genomes increases, there is a growing 

need for computational tools to aid in understanding the cellular functions of the gene 

products.  Determining the three dimensional structure of each protein is a key step in 

acquiring a detailed understanding of enzymatic reaction catalysis and the interaction of 

proteins with small molecule ligands and other proteins.  Because computational 

modeling tools require an accurate alignment of a new sequence to a template protein 

with known structure, it is important to develop tools which can accurately calculate 

these alignments.  We have shown that a combination of existing sequence-based 

potentials with a new local potential based on secondary structure predictions creates a 

significant improvement in alignment accuracy over current methods.  In addition, use of 

the JThread algorithm in a genomic annotation pipeline reveals a significant number (5-
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10%) of additional annotations, many of which could be used to produce structural 

models. 

 

 The pipeline method of genomic annotation reveals several strengths and 

weaknesses of JThread and other current methods.  First, the size of newly sequenced 

eukaryotic genomes demonstrates the need for fast algorithms.  JThread relies on 

homologous sequences identified by tools such as PSI-BLAST.  Thus, the speed of the 

algorithm is limited by the time required to PSI-BLAST a single protein.  This currently 

averages about 10 minutes on a Pentium III class computer, or about 100 days to test 

every protein in a typical eukaryotic genome.  Although multiple computers can perform 

this computation in parallel, this demonstrates that algorithms even a single order of 

magnitude slower than PSI-BLAST could easily become computationally prohibitive.  

Although computational power is increasing, the number of sequences and genomes to 

process may be increasing at an even faster rate.  Second, the pipeline revealed several 

proteins which were only identified by JThread, but which were similar enough to 

proteins of known structure that sequence-based methods would have been expected to 

identify them.  This problem reveals the difficulty of choosing a single set of parameters 

in a fully automated genome annotation method.  Finally, the large number of coiled coil 

and other non-globular proteins identified by PSI-BLAST and JThread emphasizes the 

need for filtering of these proteins early in an annotation pipeline.  Specialized 

computational tools may be needed to identify these proteins, which can create difficulty 

for algorithms tuned to perform on water-soluble, globular proteins. 
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 Predictions made by JThread should be of special interest to biologists who have 

a focused their interest in modeling a particular protein of unknown structure.  Compared 

to other current methods, JThread has a greater probability of placing a true structural 

match high in a ranked list of possible fold candidates.  Even in cases where a detailed 

annotation cannot be made by any method, thorough examination and modeling of 

several candidates, combined with expert knowledge of a protein of interest, may lead to 

a structural model. 

 

 Additional improvements to JThread are expected in several areas.  First, 

accuracy of the algorithm could be increased through the use of additional non-local 

potentials such as more accurate inter-residue potentials or a potential that explicitly 

evaluates the burial of hydrophobic side chains.  Second, algorithms for secondary 

structure and solvent exposure prediction should continue to increase in accuracy as the 

number of known sequences increases.  In addition, structural genomics initiatives should 

produce a more uniform sampling of the universe of possible protein folds than is 

currently available in the PDB.  This should result in more cases where an impossible 

fold recognition target becomes merely difficult.  Finally, use of a local alignment 

algorithm and additional attempts to annotate small sections of a protein sequence which 

were not annotated during the initial evaluation should greatly increase the coverage of 

annotated sequence space in existing genomes. 

 

 Annotations of Drosophila melanogaster and Mycoplasma genitalium are 

available on our web site, at http://www.cmpharm.ucsf.edu/~jmc/genomes/  
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Materials and Methods 

 

Data Sets 

 

 JThread was developed and tested on a library of 58 sequences and 305 folds used 

in a previous threading study21.  Structures of all proteins were determined by X-ray 

crystallography to at least 2.5 Å resolution. Structural matches were determined by the 

structural superposition program MINAREA43, using the same cutoff as in the previous 

study (a ratio score of 0.2 or lower) for assigning structural similarity.  In order to mimic 

blind structure prediction challenges, the true structures of the 58 test sequences and their 

homologs (more than 25% sequence identity) were not considered.  This procedure 

identified 126 structural matches, an average of 2.2 per sequence. "Correct" sequence 

alignments were determined from the structural superposition, using MINAREA.  This 

procedure uses dynamic programming between the template and target, based on the Cα-

Cα distances in the structural alignment, and does not require gap penalties.  The 

resulting alignment is filtered to remove aligned residues with an inter-Cα distance 

greater than 6 Å, and aligned segments shorter than 2 residues. 

 

 Further testing was done using a library of 68 sequences and 301 folds introduced 

by Fischer & Eisenberg20 and commonly used to benchmark threading studies7; 10; 24. 
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 Testing was also performed on a set of 98 targets downloaded from the 

LiveBench27 server.  Performance on LiveBench Set 6, which was most recently 

completed, was evaluated. 

 

 Genomic threading was carried out using all predicted ORFs from Mycoplasma 

genitalium and Drosophila melanogaster, downloaded from www.ebi.org.  The 

Mycoplasma genitalium genome contained 480 sequences, and the Drosophila 

melanogaster genome 13,308.  These sequences were threaded against a fold library 

derived from the ASTRAL database of protein domains44; 45, version 1.50.  The 30% 

identity subset was used, from which proteins with incomplete structural information 

were discarded.  The resulting fold library contains 2123 folds from a diverse set of 

protein families. 

 

 Inter-residue pair potentials were used in the fold recognition jury (described 

below).  These were calculated using the method of Sippl16), on the same non-redundant 

database of 681 proteins used to train and test the Pred2ary46 program.  Potentials 

between Cβ atoms (Cα for Glycine residues) were used. 

 

Multiple Sequence Gathering 

 

 Multiple homologs for each protein used in the study were obtained using PSI-

BLAST4 version 2.0.7 and the "nr" database of non-redundant sequences from NCBI 

(downloaded 11/19/1999).   All default options (0.001 e-value cutoff for inclusion of a 
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sequence in the matrix calculations, filtering turned on) were used, except that the 

maximum number of rounds was set to 10.  In cases where the position-specific scoring 

matrix (PSSM) used by PSI-BLAST was required for alignment calculations, this matrix 

was obtained using the checkpoint feature of PSI-BLAST. 

 

Secondary Structure Prediction 

 

 Secondary structure predictions for all proteins threaded in the study were 

obtained using the Pred2ary46 program.  For each residue of every sequence, Pred2ary 

predicts the probability of helix, strand, and coil.  These are normalized to sum to 1.0, 

and correspond well to the actual probabilities when compared for large data sets.  For 

soluble, globular proteins, the largest of the three probabilities corresponds to the correct 

secondary structure with an average accuracy of over 75%; either the first or second 

alternative is correct at 94% of the positions46.  The "large" jury size was used for all 

predictions.  Both the Defay/Cohen and Fischer/Eisenberg benchmark sequence sets 

contain proteins similar (more than 25% identical) to proteins in the training sets used to 

train some of the neural network jurors.  Because these networks would produce more 

accurate predictions than could be expected in a truly blind test, they were eliminated 

from the large jury during prediction of the secondary structure of the proteins in question.  

During genomic threading trials, sequences similar to any protein of known structure 

(including those used previously in the Pred2ary training sets) were pre-filtered and 

annotated using BLAST or PSI-BLAST (as described below). 
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Alignment Method 

 

 All alignments were done using global dynamic programming47 with an affine 

gap penalty48.  Unaligned ends for both proteins being aligned were treated as gaps and 

penalized accordingly.  Penalties for gap opening and extention were optimized 

individually for every scoring method or combination of scoring methods, using the 

nonlinear optimization method of Hooke and Jeeves49.   The method of Hooke and Jeeves 

is a heuristic search tool, and therefore not guaranteed to find the global optimum.  

However, it is very useful for optimization problems in which the objective function (in 

this case, alignment accuracy) is difficult to calculate directly from the parameters.  In 

order to decrease the number of tunable parameters in the method and minimize the 

possibility of over-adaptation to a particular data set, the parameters were optimized 

using the Defay/Cohen data set, and not re-calculated for different data sets. 

 

Measurements of Accuracy 

 

 Alignment accuracy for each method was calculated by comparing the calculated 

sequence alignments to the alignments generated by MINAREA from the structural 

superposition.  Percent accuracy was measured by dividing the number of correctly 

aligned residues in the calculated sequence alignment by the number of residues aligned 

(to any residue, but not a gap) in both the structural and calculated alignments.  

Alignment sensitivity (ASNS) was also calculated, by dividing the number of correctly 
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aligned residues by the number of residues aligned in the structural alignment.  Because 

the former measure is more sensitive than the latter to the number of residues aligned in 

the dynamic programming calculation, ASNS was used as the measurement of accuracy 

when developing parameters for each method. 

 

 Several different levels of stringency were considered when measuring alignment 

accuracy.  At the most stringent, or 0 tolerance level, aligned positions had to be identical 

in the calculated and structural alignments.  At the ±1 tolerance level, a shift of one 

residue in the calculated alignment was considered to be correct.  Automated structural 

alignment algorithms often differ at the 0 tolerance level, but agree at the ±1 threshold21.  

A tolerance level of ±4 was also tested, corresponding to alignment differences of one 

helical turn.  ASNS measured at a non-zero tolerance level is denoted with the level used; 

for example, ASNS1 indicates a ±1 tolerance level. 

 

 Fold recognition accuracy was measured by comparing all folds in a library to a 

given sequence, and ranking them according to a score calculated by a single method or 

jury of methods (described below).  We use the "one-to-many" measure of successful 

fold recognition35; a sequence is considered to be correctly recognized if any structural 

match is ranked as the top hit, regardless of the rankings of other possible structural 

matches for that sequence.  Different methods are compared according to the percentage 

of sequences for which a structural match is ranked as the top hit.  Because for many 

"real life" fold recognition problems it is feasible to build and examine several alternative 

models, we also calculated the percentage of sequences for which a structural match was 
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found anywhere in the top N hits.  For optimizing the parameters of our method, it was 

also desirable to calculate a measure of accuracy which was very sensitive to small 

changes in fold ranking.  We therefore also calculated the average rank of structural 

matches, and the reciprocal weighted average rank.  The reciprocal weighted rank is 

useful in parameter optimization, because it places more emphasis on improvements in 

the relative rankings of structural matches which are already ranked fairly highly, while 

lowering the importance of structural matches which are ranked far down the list.  

However, we consider both these calculated measurements to be of less practical interest 

to users of the method than those previously discussed. 

 

Design of Local Backbone Potential 

 

 An overview of the local backbone potential is shown in Figure 3.  The Pred2ary 

program46 predicts the probability of helix, strand or coil occurring at each position in a 

sequence.  At sequence position i, these probabilities are denoted pi (Helix), pi (Strand), 

and pi (Coil) respectively.  The predicted secondary structure probabilities were used to 

calculate the expected distribution of backbone dihedral angles for each residue in the 

sequence. The expected distribution of dihedral angles is computed for each residue using 

equation 1: 
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The distributions p(φ,ψ | secondary str) are constant, and taken from a large, non-

redundant set of known structures46.  Because of their unusual dihedral angle preferences, 

the distributions for Gly, Pro, and Asn residues are calculated separately; other residue 

types are grouped into a single category.  The expected φ,ψ distribution is unique to 

every residue, although it will be identical between residues with the same secondary 

structural probabilities and type.  This distribution is then transformed into an energy 

potential using the quasichemical approximation50, as shown in equation 2: 

 

∆Gi(φ,ψ ) = −kT *  ln
pi(φ,ψ )

pref (φ,ψ )

 

 
  

 

 
   (2) 

 

The reference distribution pref(φ,ψ) is a frequency distribution computed over all residues 

in the database, regardless of secondary structure.  Because this potential is scaled 

arbitrarily relative to other potentials, the kT factor is ignored. 

 

Combination of Potentials 

 

 Scoring methods which can be used directly in dynamic programming algorithms, 

such as residue identity-based scoring matrices, and the local potential, were simply 

added to each other in the dynamic programming matrix.  When multiple methods were 

combined, each component was weighted with a single, normalized coefficient.  These 

coefficients were optimized manually. 
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 Several scoring methods that rely on inter-residue pair potentials (e.g. Sippl16) 

cannot be directly applied in the dynamic programming algorithm.  Iterative double 

dynamic programming methods have been used in these cases for individual threading 

calculations.  However, this approach would slow the algorithm sufficiently to make 

genome-wide threading infeasible.  Scores for these methods were calculated only for 

alignments which were created using dynamic programming with a different scoring 

method or combination of methods. 

 

Estimation of Alignment Accuracy 

 

 For some scoring methods, the average score (the total score from the dynamic 

programming method, divided by the number of aligned residues) was observed to 

correlate well with the accuracy of the alignment.  Average scores were translated into 

estimates of the alignment accuracy (such as estimated ASNS1) using a method similar to 

that used for translating raw neural network output values into estimated secondary 

structure probabilities in previous studies46.  Scores from a set of known sequence/fold 

pairs (the Defay/Cohen set) were used to parameterize the method.  The scores were 

sorted into 100 ranges of equal width, encompassing the entire set of observed values.  

Because some ranges included a sparse amount of data (less than 10 observed values), 

these ranges were expanded symmetrically in each direction until they included at least 

10 data points.  The average and standard deviation of alignment accuracy measures 

(such as ASNS0, ASNS1, etc) in each range were then measured, creating a lookup table 

which translates observed scores into estimates of alignment accuracy.  Estimates of the 
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accuracy of new alignments are looked up from the table according to the calculated 

average score; scores which are outside the range in the table are assigned estimated 

accuracy values corresponding to the nearest score in the table. 

 

Jury Method for Fold Recognition 

 

 Optimal fold recognition accuracy was obtained using a jury of multiple scoring 

methods, shown in Figure 4.   Each of eight jurors used a single scoring method or 

combination of methods:  

Juror 1:   

 The scoring method used was the PSI-BLAST PSSM obtained by using the 

protein sequence to be recognized (the “test sequence”) as a probe against the “nr” 

database, as described above in the section on Multiple Sequence Gathering.  Gap 

penalties which had been optimized for alignment accuracy tests were used. 

Juror 2: 

 The scoring method used was a combination of the local backbone potential and 

an averaged PSI-BLAST PSSM.  In alignment accuracy tests described above, a 

combination of 70% local backbone potential and 30% PSI-BLAST PSSM was found to 

be optimal, so these weights and the associated optimal gap penalties were used for this 

juror.  The only difference between the scoring scheme used here and that used in the 

alignment tests is that the PSI-BLAST PSSM contribution was replaced with an average 

of PSI-BLAST PSSM scores over multiple homologs of the fold sequence (gathered 

using the “multiple sequence gathering” method described above).  Gaps in the latter 
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alignment did not contribute to the average score at each position.  Because the number 

of detected homologs was often large, this scoring method was relatively slow compared 

to the other jurors. 

Juror 3: 

 This juror is similar to Juror 2, except that the alignments were computed using a 

combination of the local backbone potential and an unaveraged PSI-BLAST PSSM 

(exactly as in alignment tests).  The resulting alignment was then scored using the same 

scoring method used by Juror 2.  This resulted in an improvement in computational speed 

relative to Juror 2. 

Juror 4: 

 Alignments were computed as for Juror 3, and then scored using inter-residue pair 

potentials calculated using the method of Sippl16.  The “frozen approximation”51 was 

used:  the score for placing a residue from the query sequence at a given position in a 

template fold was calculated relative to native residues from the fold.  No gap penalties 

were used in scoring the alignments. 

Juror 5: 

 Juror 5 was the same as Juror 4, except the same gap penalties used in calculating 

the alignments were also used in scoring the alignments. 

Juror 6 

 Juror 6 was the same as Juror 4, except that the “frozen approximation” was not 

used.  The score for placing a residue from the query sequence at a given position in a 

template fold was calculated relative to other residues from the query sequence which 
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had been aligned to different positions in the fold.  Residues which had been aligned to 

gaps did not contribute to the score. 

Juror 7: 

 Juror 7 was the same as Juror 6, except the same gap penalties used in calculating 

the alignments were also used in scoring them. 

Juror 8: 

 Alignments were computed as for Juror 3, and then scored using a combination of 

the potential used for scoring Juror 2 and the potential used for scoring Juror 7.  The 

scoring potential for Juror 8 contained equally weighted contributions from the two 

scoring potentials used by Jurors 2 and 7. 

 

Combination of Jury Scores 

 

 As shown in Figure 4, each juror scores a given sequence against all folds in a 

fold library using its scoring method as described above.  For every combination of 

sequence, fold, and juror, the total score, average score (total score divided by the number 

of aligned residues), and Z-score are calculated.  The Z-score is calculated from the total 

score, relative to the ensemble of scores produced by the same sequence and juror, 

against every fold in the fold library.  The Z-score measures the number of standard 

deviations the total score is below the mean score of the ensemble.  For every sequence 

and fold pair, the total, average, and Z scores contributed by each juror are combined 

linearly to produce a single raw score for the pair, as shown in equation 3: 
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A linear, weighted, combination was used instead of a more sophisticated method (such 

as a neural network) in order to limit the number of tunable parameters of the method and 

to facilitate interpretation of the results.  In addition, many of the weights were set to zero 

in order to limit the complexity of the method.  Our optimal jury of 8 methods used only 

17 non-zero parameters, out of a possible 24 (8 x 3). 

 

 The jury weights were optimized in several steps, using the Defay/Cohen data set.  

Initial weights were solved via least squares, with the desired raw score for each 

sequence/fold combination set to the MINAREA ratio score from the structural 

superposition.  As a lower MINAREA ratio score represents a closer structural match, 

sorting the list of folds according to the raw scores from the initial round of optimization 

should provide some initial separation between the structural matches and non-matches.  

However, to achieve greater accuracy at separating matches from non-matches, direct 

optimization towards this goal was necessary.  All 24 weights were further optimized 

using the method of Hooke & Jeeves49.  The reciprocal weighted average ranking of the 

structural matches was used as the objective function.  This function was useful because 

it is sensitive to small changes in ranking, and because improvements in ranking among 

low-rated sequence/fold pairs are given more weight than improvements in ranking 

among other pairs. 
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 In order to limit the complexity of the method, an iterative procedure was used to 

eliminate some of the weights (setting them to zero).  Starting from the initial set of N 

converged weights, each was set in turn to zero, and the remaining N-1 weights were re-

optimized using the same objective function.  The set of N-1 weights resulting in the 

lowest value of the objective function was retained as the initial set of weights from 

which to begin the next round of elimination.  The best set of weights from each round 

was further optimized towards an objective function which we thought would be more 

relevant to the protein modeling community.   For each sequence, folds are sorted 

according to the raw scores, and the total number of structural matches among the top 5 

hits was calculated; this value was maximized as an objective function.  We found that 7 

of the initial 24 weights could be eliminated without reducing this objective.  After that, 

further elimination of weights resulted in a decrease in the metric.  Therefore, the set of 

17 weights which produced the maximum number of structural matches among the top 5 

hits was used by the fold recognition jury.  The final 17 weights are available from the 

authors upon request. 

 

Raw scores produced by the jury are translated into estimated probabilities that a 

sequence/fold pair is a structural match using a method similar to that used to produce 

estimates of the alignment accuracy.  A lookup table translating raw scores into structural 

match probabilities was created using the raw scores from the Defay/Cohen data set. Raw 

scores were grouped into 100 bins ranging from the minimum to maximum value of the 

score.  To correct for sparse data, the width of each bin was allowed to expand until each 

contained at least 10 data points.  The probability of finding a structural match in each 
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bin was then measured.   Raw scores for new sequence/fold pairs are translated into 

approximate probabilities of being a structural match using the table. 

 

Genomic Threading 

 

 Open reading frames (ORFs) from genomic data are annotated using a pipeline of 

programs.  First, the BLAST program3 is used to search for hits against "pdbaa", the 

BLAST database of sequences from the current release of the Protein Data Bank52 of 

solved structures.  This is a very fast procedure, requiring several seconds of CPU time 

per ORF on a modern workstation (800 MHz Intel Pentium-III).  Sequences for which 

BLAST produces a hit with an e-value of less than 10-4 are annotated and excluded from 

further processing.  This should correspond to an error rate of about 1 in 10,000 

annotations. 

 

 The second round of searching uses the more sensitive tool, PSI-BLAST4.  The 

PSI-BLAST program is run twice per ORF.  In the first run, the "nr" database of non-

redundant sequences is used in order to create a position-specific scoring matrix (PSSM) 

and gather multiple sequences.  All default options (0.001 e-value cutoff for inclusion of 

a sequence in the matrix calculations, filtering turned on) were used, except that the 

maximum number of rounds was set to 10.  In the second run, the PSSM from the first 

run is used to perform a search in the "pdbaa" database, with only a single round of 

searching.  Any hits with e-values of less than 10-4 are collected as annotations.  

Although this e-value implies an error rate of 1 in 10,000, a study of the true error rate of 
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PSI-BLAST35 found the error rate corresponding to e-values of 10-4  to be higher, on the 

order of 1 in 100.  The processing time for this second round of searching is more 

significant, requiring approximately 10 minutes on average per ORF on a standard 

desktop machine. 

 

 The set of aligned sequences gathered using PSI-BLAST in the second round is 

used as input to Pred2ary46 to predict the secondary structure of the unknown sequence.  

Along with the PSSM obtained in the second round, this is sufficient data to apply the 

jury threading procedure using the fold library obtained from the ASTRAL database 

(described above).  For folds with non-zero estimated probabilities of being a structural 

match, a sequence alignment is also calculated.  The resulting probabilities and 

alignments are stored in a database for later retrieval and analysis.  All possible structural 

matches with an estimated probability of greater than 99% are annotated. 
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Table I:  Accuracy of different scoring methods on the Defay/Cohen test set.  Data in 

the % Accurate column is calculated using a tolerance of ±1.  Scoring methods are 

described in the text.  ASNSN is alignment sensitivity (see text for definition) calculated 

using a tolerance of ±N. 

 

Scoring Method % Accurate ASNS0 ASNS1 ASNS4 

Identity 37.7 25.8 35.7 55.2 

BLOSUM62 48.1 36.4 45.3 63.4 

P1 - Predicted 2ary (Simple) 40.3 15.4 38.8 64.7 

P2 - Pred. 2ary (Probabilities) 45.3 20.3 43.8 69.4 

P3 - Pred. 2ary (φ/ψ) 45.9 25.4 43.8 66.9 

PSI-BLAST 53.0 40.5 48.6 63.9 

P2/PSI-BLAST combination 55.4 41.3 52.0 73.8 

P3/PSI-BLAST combination 62.0 47.0 56.8 75.1 

 

 



 53

Table II:  Accuracy of different scoring methods on the Fischer/Eisenberg test set. The 

rightmost column shows accuracy calculated for Fischer/Eisenberg matches, and the 

other columns show accuracy calculated for MINAREA matches.  Data in the % 

Accurate column is calculated using a tolerance of ±1.  Scoring methods are described in 

the text. 

 

Scoring Method % Accurate ASNS0 ASNS1 ASNS4 Fischer % 

Accurate 

Identity 35.7 24.8 33.9 53.4 35.9 

BLOSUM62 46.6 34.1 44.3 64.6 48.3 

φ/ψ 44.4 24.1 42.0 66.4 50.6 

PSI-BLAST 53.0 39.1 49.9 66.7 57.5 

φ/ψ/PSI-BLAST  

     combination 

58.0 41.8 53.2 69.7 63.4 
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Table III:  MaxSub scores for models created from alignments using different scoring 

methods on the Defay/Cohen (D/C) and Fischer/Eisenberg (F/E) test sets. 

 

Scoring Method D/C Average F/E Average 

Identity 0.21 0.19 

BLOSUM62 0.27 0.25 

φ/ψ 0.22 0.20 

PSI-BLAST 0.28 0.29 

φ/ψ/PSI-BLAST combination 0.34 0.32 

Correct Alignments 0.49 0.49 
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Table IV:  Common superfamilies annotated in Mycoplasma genitalium (MG) and 

Drosophila melanogaster (Fly). 

 

 MG Fly 

Superfamily description Rank Frequency Rank Frequency 

P-loop containing NTP hydrolases 1 41 2 331 

ConA-like lectins/glucanases 2 27 12 123 

Colicin 3 16 3 325 

Immunoglobulin 4 6 5 258 

Nucleic acid binding proteins 4 6 58 23 

Translation factors 4 6 58 23 

Ribosome and ribosomal fragments 4 6 82 15 

Anticodon binding domain of class I aa- 

  tRNA synthetases 

4 6 100 11 

Anticodon binding domain of Class II  

  aaRS 

4 6 108 10 

FAD/NAD(P) binding domain 10 5 32 45 

Domain of SRP/SRP receptor G proteins 10 5 140 7 

Zn finger, C2H2 - - 1 336 

Heme-dependent peroxidases - - 4 268 

Trypsin-like serine proteases - - 6 244 

Interferon-induced GPB1, C-terminal  

  domain 

13 4 7 199 

Protein kinase-like 33 1 8 195 

L domain-like - - 9 191 

Transducin, gamma chain - - 10 177 
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Figure Legends 

 

Figure 1:  Alignment Accuracy vs. Average Alignment Score 

 Alignment scores are sorted into eight bins of equal width, and the average and 

standard deviation in accuracy within each bin is plotted (error bars indicate one standard 

deviation). Alignment accuracy is calculated using a tolerance of ±1. 

 

Figure 2:  Fold Recognition Accuracy 

 Using the "one-to-many" test of fold recognition accuracy, described in the 

Methods section, the probability of finding a match among the top N hits was calculated 

for several scoring methods. 

 

Figure 3:  Calculation of Local Backbone Potential 

 The Pred2ary program46 predicts the probability of helix, strand or coil occurring 

at each position in a sequence.  These are used to calculate the expected distribution of 

backbone dihedral angles for each residue in the sequence, using equation 1.  The 

expected distribution is translated into a pseudopotential using equation 2. 

 

Figure 4:  Fold Recognition Jury 

 Eight jurors use different scoring methods to evaluate the compatibility of a test 

sequence with each fold in a fold library.  The total score, average score, and Z-score for 

each sequence/fold/juror combination are calculated as described in the text.  These are 
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combined into a single raw score for the sequence/fold combination using equation 3.  

The raw score is then translated into an estimated probability of a sequence adopting a 

given fold, as described in the text. 
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