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1 Previous Reviews

Previous reviews of the equations, numerical methods, and uses of models of lithium batteries
are given in references |1, 2, 3, 4]. We refer the reader to these reviews for references regarding
early works, and focus in this paper on work published since these reviews. However, we
acknowledge that much of the theory used in modeling lithium batteries was developed
previously for other battery systems, such as lead acid, alkaline zinc-MnQO,, molten salt LiAl-
FeS, and nickel-metal hydride. When citing the development of some model formulations,
we cite these original works even though they do not specifically apply to lithium batteries.

Early work on modeling lithium batteries, performed prior to the ready availability of
high-speed digital computers, used simplified models neglecting kinetic or concentration
effects, assuming constant properties, or neglecting the separator, in order to obtain a close
approximation to battery behavior within the limits of computational power available at the
time. Today’s computers can easily simulate the entire cell sandwich, obviating the need for
the simplifying assumptions used previously. We therefore see no need to review the history
of the development of the full-cell-sandwich model, and simply present the model in the best
form developed to date in section 3, followed by considerations of special situations which
are not essential to the basic modeling framework. Simplifying cases which have contributed
to our understanding of the lithium battery are presented in section 5. Finally, we discuss
applications of modeling, such as interpreting experimental data and optimizing geometric
parameters.

2 Features of the lithium battery

Figure 1 shows a schematic of a lithium battery. Lithium battery electrodes are usually
made by coating a slurry of the active material, conductive filler, and binder onto a foil
current collector. This porous configuration provides a high surface area for reaction and
reduces the distance between reactants and the surfaces where reactions occur. In these



porous electrodes, the electrochemical reaction is distributed over the surface of the particles
of active material, and will vary across the depth of the electrode due to the interaction
of potential drop and concentration changes in both the solution and solid phases. Porous
electrode theory is used to understand these interactions.

Most electrodes used in lithium batteries are insertion compounds. In an insertion re-
action, lithium ions from solution combine with an electron in the electrode to reside in an
interstitial site in the host lattice. Such materials exhibit long cycle lives because the elec-
trochemical reaction causes relatively little disturbance to the active material. They are also
rather convenient to model, because volume changes can usually be neglected, and there is
little change in the morphology of the electrode during cycling. In contrast to phase-change
electrodes, such as the Cd|Cd(OH), electrode, the potential of the solid material in inser-
tion electrodes varies with state of charge (i.e., lithium concentration). The combination of
lithium diffusion in the solid phase and the nonlinear dependence of the chemical potential
on lithium concentration lead to interesting situations in these materials.

The organic electrolytes used in lithium batteries generally exhibit nonideal behavior,
and usually concentrated solutions of 1 to 1.5 M are used. Moreover, mass transport in
the nonaqueous electrolytes used in lithium batteries often has a large impact on battery
performance at moderate to high current densities, and cannot be assumed to be negligible.
Fortunately, the electrolyte in most cases consists of a single salt in a homogeneous solvent,
a case which is easily treated rigorously by concentrated solution theory. The solvent may
be a single liquid, a mixture of liquids, a gel, or a polymer. Technically in solvent mixtures,
ions will interact differently with the different solvent components, causing gradients in
solvent composition as ions drag solvent molecules along with them during passage of current.
However, for realistic battery electrolyte conditions, the assumption that a solvent mixture
behaves as a single solvent does not appear to introduce significant error[5]. Electrolytes
with multiple salts and solvents can be treated using concentrated solution theory[6, 7, 8],
although experimental determination of the complete set of transport properties is difficult.
For an electrolyte of n ions and solvent species, n(n —1)/2 transport properties are required
to describe mass transport completely.

A battery consists of three regions: positive electrode, negative electrode, and separator.
The importance of considering interactions among mass transport and potential in the elec-
trolyte in all three regions when considering solution-phase limitations in one of the regions
has been demonstrated|9)].

3 Basic equations

In this section we describe the equations required to simulate the electrochemical performance
of porous electrodes with concentrated electrolytes. Extensions to this basic model are
presented in section 4. The basis of porous electrode theory and concentrated solution



theory has been reviewed by Newman and Tiedemann|[1]. In porous electrode theory, the
exact positions and shapes of all the particles and pores in the electrode are not specified.
Instead, properties are averaged over a volume small with respect to the overall dimensions
of the electrode but large with respect to the pore structure. The electrode is viewed as
a superposition of active material, filler, and electrolyte, and these phases coexist at every
point in the model. Particles of the active material generally can be treated as spheres. The
electrode phase is coupled to the electrolyte phase via mass balances and via the reaction
rate, which depends on the potential difference between the phases. All phases are considered
to be electrically neutral, which assumes that the volume of the double layer is small relative
to the pore volume. Where applicable, we also indicate boundary conditions that would be
used if a lithium foil electrode were used in place of a negative insertion electrode.

3.1 Potential in the electrolyte
We define the potential in the binary electrolyte to be measured by a reference electrode
that undergoes the reversible half-cell reaction

S_MZ + s, Mt + s,M, = ne” (1)

The gradient of the potential in the solution, as measured by such a reference electrode with
respect to another reference electrode of the same kind at a fixed position, is then determined
by|[10]
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In lithium batteries, one usually selects the reference electrode to be lithium metal, and a
1:1 binary electrolyte is generally used. Then s, =s_ =0, s, = -1, v, =n=1,and v = 2,
and the above equation reduces to
ig 2RT dln f:l:
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The second term on the right side accounts for concentration overpotential. In porous
media, the conductivity is corrected by the Bruggeman relation, x = €'°k,,, where ko is
the conductivity of the bulk electrolyte.

Since only potential differences, and not absolute potentials, are measurable, ®, has an
arbitrary datum as a boundary condition. Ref. [11] sets ® = 0 at the positive electrode-
current collector interface.



3.2 Potential in the solid

The potential in the porous solid (electrode) phase is determined from Ohm’s Law:

I— ig = —O'V(Dl (4)

where I — iy = i1 is the current in the electrode phase and the electronic conductivity of the
bulk solid is corrected for the volume fraction of the electrode by the Bruggeman relation,
0 = 0x(1 — €)'5. 04 is the conductivity of the nonporous composite (active + conductive
filler + binder) electrode.

This equation has one boundary condition in each electrode region. For galvanostatic op-
eration, the boundary condition in the negative electrode is 7o = I at the negative electrode-
separator interface, and in the positive electrode it is 75 = 0 at the positive electrode-current
collector interface. When all 6 governing equations are solved simultaneously, these bound-
ary conditions enforce the requirement that the potential in the solid phase be adjusted so
that the total amount of reaction across the electrode is equal to the applied current. For
potentiostatic operation, ®; |$:L_+LS+L+ Py |z—0=V.

3.3 Transport in the electrolyte
3.3.1 Dilute solution theory

Dilute solution theory is not often used in the treatment of lithium batteries, because most

electrolytic solutions used in lithium batteries exhibit concentrated behavior. However, dilute

solution theory becomes useful for cases such as the examination of side reactions such as

redox shuttles for overcharge protection, because concentrated solution theory becomes more

complicated when there are more than three species (anion, cation, and solvent) in solution.
The basic flux equation for dilute solution theory is
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where N; is the flux of species i across the apparent area of the electrode, N;/e is the flux
through the region occupied by the solution phase, and the mobility is usually related to the
diffusivity by the Nernst-Einstein equation, D; = RTu;. Dispersion can be included in this
equation if solvent velocity in the electrodes is significant|1], but this is rarely the case in the
thin cell configurations commonly used in lithium batteries. The effective diffusivity used in
this equation includes effects of tortuosity.
The electrostatic potential in solution is then obtained by recognizing that the current
density in solution is due to the net flux of ions:
iQ eF
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In dilute solution theory, this equation is used instead of equation 3.

3.3.2 Concentrated solution theory

Concentrated solution theory includes interactions among all species present in solutions
whereas dilute solution theory assumes that ions interact only with the solvent and not with
other ions. In addition, dilute solution theory assumes that all activity coefficients are unity.
There is substantial evidence that both liquid and especially polymer electrolytes used in
lithium batteries exhibit concentrated behavior[12, 13, 14, 15].

The foundation of concentrated solution theory is the Stefan-Maxwell multicomponent
diffusion equation|16, 17|,

C;Cj
szuz = RTZ —J (Vj — Vi) (7)
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where v; is the velocity of species ¢ in the interstitial solution phase with respect to a reference
velocity and D;; express the pairwise frictional interactions among species. This expression
relates the driving force for species motion to all of the pairwise interactions among the
components.

With the selection of a reference velocity, the Stefan-Maxwell equations can be inverted to
yield flux equations. We choose the reference velocity to be that of the solvent and consider
the case of a binary electrolyte, for which flux equations can be obtained for both the cation
and the anion. Since usually only the cation reacts in lithium batteries, the equations are
made simpler later on if we focus only on a mass balance for the anion. By electroneutrality,
the mass balance for the anion must be identical to that for the cation. The flux equation
for the anion obtained from inverting the Stefan-Maxwell equations is

_=— —ecVie + i +c_v, (8)

where the diffusion coefficient of the electrolyte, D, and the transference number ¢° with
respect to the solvent are related to the diffusion coefficients D;; by
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From porous electrode theory, the mass balance for the anion is

Oc_
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where aj_ is the reaction rate of the anion per unit volume. This equation involves averag-
ing over a region small with respect to the overall dimensions but large compared to pore
structure[18, 1]. The idea is to capture the essential behavior of a composite medium with-
out having to specify the shape and position of every pore in the porous electrode. Because
porous electrode theory treats the electrode as a superposition of solid and solution phases,
the electrochemical reaction enters the equation as a homogeneous term rather than as a
boundary condition. Substituting in the flux equation, one obtains

oc <1 dlnc") Ve BV 2t VE g6 (12)
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which was obtained using the relations ¢ = ==, po = v +v_p_ = p +vRT Inyim (def-
inition of chemical potential for the salt in the electrolyte), m = —f- (conversion between
molality and concentration), and z,v; = —z_v_ (charge balance for a binary electrolyte).
The chemical diffusion coefficient, D, is the property commonly measured for a binary elec-

trolyte, and is related to the diffusion coefficient of the electrolytes, D, by

dlnyy
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Convection in the electrolyte is usually negligible[19]; then the term involving v, can be
neglected. z, v, is 1 for most salts used in lithium batteries, and j_ is zero in the absence of
side reactions. If there is no change in volume in the electrode (i.e., the active material does
not change in volume as it reacts, and there is no side reaction that changes the electrode
porosity), then no mass balance for the solvent is needed. We discuss volume changes in
section 4.8. In the separator, V - i, = 0, and € is the volume fraction of electrolyte in the
separator (equal to 1 if no inert separator material, such as glass felt or porous polyethylene,
is used).

The form of the mass balance presented in equation 12 is the most convenient for treating
multiple reaction pathways, such as arise when treating side reactions, double-layer capac-
itance, or particle-size distributions (see section 4). In these situations, V - i may have a
complicated relationship to the local reaction rates, but the mass balance in the form of
equation 12 remains unchanged. A current balance for calculating V - iy is discussed in
section 3.6.

The boundary condition at a lithium foil electrode is that the flux of the anion is zero.
Then diffusion of the anion is balanced by migration:

0
% lp=0= —%, foil electrode (14)
The flux of the salt is zero at the current collectors of porous electrodes, where all of the
current is in the matrix phase:

€
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8—0 =0atz = L_+ L, + L, andz = 0, porous electrodes (15)
T

The concentration and flux are continuous at the interface between the separator and a
porous electrode.

When ion-exchange polymers (ionomers), for which ¢ = 1, are used for the electrolyte,
no mass balance equation is needed, because the concentration of cations is fixed by the con-
centration of immobile anions. In this case, only one transport property, the conductivity,
is needed, as opposed to the three transport properties (x, D, and tS) needed to charac-
terize concentrated solutions and the two transport properties (D, and D_) used for dilute
solutions. The transference number for cations is equal to 1 in ionomers.

3.4 Transport in the solid

The porous solid phase in most lithium batteries contains particles which can be modeled as
spheres. The active material of the insertion electrodes used in most lithium-ion batteries
consists of mobile cations, mobile electrons, and immobile host matrix. If one neglects the
effects of stress and anisotropic diffusion, then transport of lithium ions can be described as
above, yielding

Ocg
ot
Since the active material is generally a good electronic conductor, ¢ ~ 1 and the last term

can be neglected. If volume changes in the solid are negligible, then v, and ZE—Z’ are zero,
and the mass balance reduces to

(16)
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with the boundary conditions
oc, oc, .
v lr—o= 0 and — DSE lr=r= JLi+ [ (18)

and initial condition ¢4(t = 0,7) = 2.

From the boundary condition at the edge of the particle, one sees that any changes to
calculations of the reaction rate will be coupled to the mass balance in the solid.

Under this framework, diffusion within a solid particle is considered, but diffusion between
adjacent solid particles is neglected. Since the length scale between particles is much larger
than the length scale within a particle, this simplification should not introduce much error.



3.5 Reaction rate

A rate equation is needed to determine the dependence of the local electrochemical reaction
rate on concentration and potential. Usually, the Butler-Volmer rate equation is used

. lexp <aaF(¢1 — - U)) . (_ acF (1 — ¢y — U))] (19)

RT RT

The surface overpotential, ¢; — ¢ — U, is the deviation from the thermodynamic potential
difference between the solid and solution at the existing surface concentrations. U is the
open-circuit potential of the solid material evaluated at the surface concentration of the
solid with respect to a hypothetical lithium reference electrode in solution just outside the
diffuse part of the double layer, at the same local electrolyte concentration, and is a function
of solid concentration in insertion electrodes. Thus, U must be specified as a function of
intercalant concentration but not as a function of electrolyte concentration. This equation
is coupled to the equations 3 and 4 for potential in the solid and electrolyte, and sets the
surface overpotential with respect to the local potential in solution and potential in the solid
required to force the reaction.

The magnitude and dependence on solid concentration of U vary considerably among
different insertion materials. The shape of the open-circuit-potential profile has a large effect
upon the simulation results, and accurate data for this property measured with respect to
a lithium reference electrode are very important, especially when one is comparing full-cell-
sandwich simulations with experimental data. Verbrugge and Koch|[20] fit the open-circuit
potential of carbon fiber by using a polynomial expansion for the excess Gibbs free energy
(Wohl expansion), and this expansion matches the measured U well for the disordered carbon.
For cases in which such an expansion does not capture the effects of ordering in the active
material, we recommend that a careful emperical fit to measurements of the open-circuit
potential be used in the simulations.

The anodic and cathodic transfer coefficients, a, and ., correspond to the fractions of
the applied potential which favor the anodic and cathodic directions of the overall reaction,
respectively. The dependence of exchange current density on concentration is given by

i =z’o,,.ef]‘[< G )% (20)
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where g ,.s is the exchange current density measured at the reference concentrations c; .
For an elementary step, v; = fs; if species i is a reactant in the anodic direction and
vi = (B—1)s; if species i is a reactant in the cathodic direction, where s; is the stoichiometric
coefficient (positive for anodic products) and (3 is the symmetry factor representing the
fraction of the applied potential that favors the cathodic direction of the elementary step[10].
For complex reactions involving multiple elementary steps, 7;, aq,, and . may be complicated
functions of the symmetry factors for each elementary step, and 7; may differ from «, and



a,.[10]. Presently, reaction mechanisms at electrode interfaces, particularly in the presence
of the solid-electrolyte interphase, are not understood in great detail. Fortunately, the rapid
kinetics of electrodes used in lithium batteries reduces the importance of the exact reaction
mechanism in the battery model. In the absence of more detailed information about reaction
mechanisms, the reaction can be assumed to be first order in lithium-ion concentration in
the electrolyte and lithium concentration in the insertion electrode, which means that «,, .,
Vi, , and 3+ are equal to 0.5. While the assumption that v+ = o, is not necessarily true
for a complex reaction mechanism, such an assumption is commonly used in the literature
and will be used in the following equations.

At a lithium foil electrode or at a phase-change electrode, the solid concentration is
constant. At an insertion electrode involving the reaction

LiO; = Lit + O, + e~ (21)

the exchange current density is given by

io = F(ka)* (kc)* (Csymaz — €5)™ (€5)* (c)* (22)

where (¢smaz — Cs) is the concentration of unoccupied sites in the insertion material. Thus,
the exchange-current density tends to zero as the solid concentration approaches either 0 or
Cs,mazx-

Some models|2| of polymer electrolytes have treated the polymer as having a fixed number
of sites Cpqe for lithium ions on the polymer lattice. The reaction, e.g., at the lithium foil
electrode, was then expressed as

Li+0,=Lite, +e 23
p p

leading to the following expression for the exchange current density:

io = F(ka)® (ke)* (Cmaz — €)* (c)™ (24)

There is not much experimental evidence for or against this hypothesis, given the uncer-
tainties in the nature of the polymer-solid interface. However, because exchange-current
densities for most electrodes used in lithium batteries tend to be high, the precise nature of
the kinetic rate constants is not of large importance.

Since the reaction-rate equation is algebraic, it requires no boundary condition.

3.6 Current balance

The rate of production of species ¢ per unit volume is aj;. In the most general case, a
species can be produced by heterogeneous electrochemical reactions or homogeneous chemical
reactions:



aji = ajin + Y SikTh (25)
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where aj;, is the net flux of species 7 due to electrochemical reaction normal to the active
material surface and 7 is the rate of the k' chemical reaction. For an electrochemical
reaction expressed by

> M7 — ne” (26)
i
the faradaic reaction of species 7 is related to the rate of electrochemical reaction by
. as; .
Qip = — n}; in (27)

and 17, is determined by a kinetic relationship as described in the previous section.
By electroneutrality, a current balance relates the divergence of the current to the net
pore-wall flux due to reaction:

For the case of multiple electrochemical reactions,
Viip =) aing (29)
!

and

) as;; .
in — : n 30
aji. El o n (30)

The boundary condition on this equation is that the divergence of the current is zero in
the separator.

3.7 Energy balance

An energy balance is required to calculate the heat generated by the cell and the temperature
changes in a cell or stack of cells. In this section, we discuss the equations needed to calculate
the heat generated by the cell. Since most lithium cells are very thin (less than 300 ym
thick), temperature gradients perpendicular to the electrodes are neglegible, allowing peltier
heats of individual electrodes, transport entropy, and thermal diffusion to be neglected.
The heat generation therefore need not be calculated as a function of position across an
individual cell. Once known, this heat generation can be inserted into a standard heat
transfer equation, including conduction, convection, and radiation as appropriate for the
battery geometry, to calculate temperature changes across a tall cell or battery stack. Such
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models are generally concerned with temperature gradients in two- or three-dimensions. We
review multidimensional modeling in section 4.11. Newman [21] discusses issues that arise
when the temperature varies perpendicular to the electrodes.

The form of the energy balance commonly used in modeling batteries is

Q:I(V U+T8U) a7
where Q is the rate of heat transferred to the system from its surroundings. This equation
states that heat is generated due to the presence of resistance to the passage of current
I(V —=U) and due to reversible heat effects I(T0U/0T). This equation assumes that no heat
is generated by relaxation after the current is turned off. Several authors have compared
heat-generation predictions using this energy balance for a single cell to experiment|22, 23].

While this form of the energy balance is accurate enough for many cases of interest, it
does ignore several facets of heat generation. Bernardi et al.[24] describe a more general
form of the energy balance which includes heats of multiple reactions, mixing, phase change,
and changes in heat capacity. They use this model to describe the heat generation in a LiAl
| molten LiCl, KCI | FeS cell, including the effects of two reaction steps in the FeS electrode,
precipitation of LiCl, and heat of mixing in the molten salt electrolyte. Heat required to
form concentration gradients during the passage of current is released upon relaxation of
those gradients after interruption of the current. If the second derivative of the enthalpy of
the electrolyte with respect to mole fraction of one component of the electrolyte is positive,
then the heat released during relaxation is exothermic.

Rao and Newman|25] present a form of Bernardi et al.’s energy balance which is conve-
nient for examining heat-of-mixing effects across insertion compounds, in which the open-
circuit potential varies with state of charge:

(9T P dt
where c; is the local hthlum concentration in the solid averaged over the cross-sectional area
of the electrode, the integral is over the entire cell, and the reaction rate i, is positive for
an anodic reaction. This equation reduces to equation 31 only for the case of a uniform
reaction rate or constant Ugy, where the enthalpy potential is given by Uy = U — Tg—g.
Because it involves the local reaction rate, rather than the overall applied current, it can be
used to treat heat effects of self-discharge and the formation and relaxation of concentration
gradients across the insertion electrode. While it treats heat of mixing across the electrode,
it does not include heat of mixing within the electrolyte or within individual particles of the
active material[26]. Since all three sources of heat of mixing are of comparable magnitude, it
is perhaps not prudent to include only one of them in the energy balance. For electrolyte and
electrode materials with transport properties sufficiently high to be of interest for commercial
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batteries, with their typically thin cells and small particles, the heat of mixing terms will be
small relative to resistive and entropic terms|26].

One of the characteristic features of lithium-ion batteries is the use of insertion compounds
as active materials. Ordering effects of lithium on the insertion lattice cause the entropy of
reaction, T0U/OT, to be of significant magnitude and to vary strongly, even changing sign,
with state of charge[27]. Knowledge of the entropy of reaction as a function of state of charge
therefore is required for accurate prediction of heat generation from batteries containing
insertion electrodes.

Physical properties such as x, ig, and D generally display an Arrhenius dependence
on temperature. Therefore, as the temperature of the battery increases, these properties
increase, the resistance of the cell decreases, and the rate of heat generation decreases.
These effects tend to even out temperature distributions across a stack compared to what
would be predicted using constant physical properties|28]. In opposition to this trend, the
rate of heat generation from side reactions may increase with increasing temperature[29].

3.8 Solving the governing equations

The previous sections describe the six equations (equations 3, 4, 12, 17, 19, and 28) necessary
to describe the electrochemical performance of the cell. Solving these equations yields the
dependent variables ¢, ¢g, ®1, @5, 72, and 7. The governing equations involve three ordinary
differential equations, two partial differential equations, and one algebraic equation. If ex-
plicit calculation of both ®; and ®, is not needed, they may be combined into one variable,
n = ®; — ®,. If explicit calculation of both j and 75 is not required, then equations 19 and
28 may be combined into one equation.

In all but the most simplified cases, the coupled governing equations must be solved
numerically. Use of variable physical properties and /or Butler-Volmer or Tafel kinetics makes
the governing equations nonlinear. Several different numerical techniques have been used
in the literature, including finite difference with control volume formulations for the mass
and charge balances|2, 3, 30], finite elements|6, 31|, and the method of lines[32, 33]. Time
derivatives are handled using Crank-Nicholson formulations or higher-order variations of
implicit methods.

For this type of model based upon the fundamental laws of transport, kinetics, and
thermodyanmics, a large number of physical properties is required, as listed in table 1.
These properties may all be functions of composition and temperature, in particular, U, k,
D, t%, and D,. A summary of the experiments required to measure the parameters needed
for the model is given by Doyle and Newman|[34]. A full-cell sandwich model of a lithium
battery using the above equations was first presented by Doyle, Fuller, and Newman|2, 11].
This model has been validated several times by comparison with experimental discharge and
charge data over a wide range of current densities for various lithium and lithium-ion cell
chemistries|35, 36].
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4 Special situations

4.1 Transport in insertion electrodes

Transport in insertion compounds is perhaps one of the easiest solid transport situations
to model, because there is no phase change or generation of new product compounds, and
volume changes are generally negligible. Therefore, the morphology of the electrodes is
relatively constant, and only diffusion need be considered.

4.1.1 Constant diffusion coefficient

If the solid diffusion coefficient can be approximated as a constant, then equation 17 is a
linear partial differential equation. Then the concentration in the particle resulting from a
time-varying rate of reaction at the surface can be obtained by superposing the concentration
changes resulting from simple step changes in concentration at the surface. Each step change
is initiated at a different time ¢,, and the effect of that step at future times is damped as
the response decays. In the limit as the time step goes to zero, the flux into the particle can
be expressed by Duhamel’s superposition integral|37, 38|

Oc, t Jcg 0C,
(R = [ SRS

where ¢(r,t) is the dimensionless concentration resulting from a unit step change in con-
centration at the surface of the particle. We see that calculation of the flux into the particle
requires only knowledge of the history of the surface concentration of the particle, and we
do not need to keep track of the concentration within the particle. This simplification saves
computer memory and computation time.

This initial-value type integral equation can be calculated numerically using the method
presented by Wagner[39] and Acrivos and Chambre[40]. The time-derivative of ¢, can be
approximated numerically by % 603 = % Substituting into equation 33 and discretizing
time into time steps %, yields:

(Rt — 8)dé (33)

oc,

_ n_2 . _ .
8 (R ¢ ) (Cs,n cs,nfl)Al_{_ Z (cs,j—|—1 Cs,j)An_j (34)

At = At

where

D, Cs acs
= An = altn) — alta-1) R/ dg——/ (R, €)de (35)

The summation in equation 34 is divided to 1llustrate that the summatlon can be stored and
updated at each time step.! The Laplace transform can be used to obtain series expansions

'Equation 34 often has been presented in dimensionless form|[2, 41]. To avoid confusion, we present it
here in dimensional form.
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for a(t). At long times,

5> L1 o (o) o

n—1

a(t) = %

n

At short times,

alt) = -7 +2 (%)0'5 {1 + 22 lexp (#) — ny/n/rexfe (n/ﬁ)] } (37)

where 7 is dimensionless time defined as 7 = tD,/R?. Doyle|41] states that evaluating three
terms of the short-time solution or five terms of the long-time solution provides sufficient
accuracy. The long-time solution is used when 7 is greater than 0.06. The above equations
were derived for spherical particles. Doyle also provides series solutions for a(7) for other
shapes of particles such as parallel slabs and cylindrical rods (neglecting edge effects and
considering only 1-D transport in each geometry).

4.1.2 Variable diffusion coefficent

If the variation of the solid diffusion coefficient with lithium concentration is significant,
then the diffusion equation is nonlinear and the above simplification does not apply. For an
electrode composed of spherical particles, a pseudo-two dimensional approach is required,
in which the radial diffusion equation (equation 17) is solved at each mesh point across
the porous electrode. A set of radial nodes is then required to compute the radial solid
concentration profile at each linear position in the electrode. Note that equation 17 is
derived using the gradient in chemical potential, and assumes only that volume changes
are negligible and that all current is carried by electrons in the solid phase. The chemical
diffusion coefficient, D;, used in equation 17 is related to the binary diffusion coefficient
derived from the Stefan-Maxwell equations, D (also called the binary interaction parameter),
by the relationship presented earlier (equation 13) for concentrated solutions:

cr dIny,
D,=D—(1
C (1+ dln@) (38)

0

Following convention in the literature, we have changed here from a molal scale to a fractional
occupancy scale, defined by ps = pf + vRT In¥,.0, where © = ¢;/¢; maz is the fraction of
lithium sites in the lattice which are occupied. Then in equation 16, the term 1 — 4iic

dlncg
dln Cs,mazx

should be replaced by 1 — .. For insertion compounds, the thermodynamic factor is
related to the open-circuit potential by?

2Some authors define the thermodynamic factor as 1+ 422 = — @£ U and then combine the (1 - ©)
term with the binary interaction parameter.
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While D may vary less with concentration than does the chemical diffusion coefficient, McK-
innon and Haering[42] provide a theoretical basis for how D varies with concentration, de-
pending on attractive and repulsive interactions in the lattice. There is a vast experience
with materials for which D varies with concentration[43, 44, 45]. The assumption that D
is independent of lithium concentration may be valid for some electrode materials, such as
carbon fiber[46]. However, since this assumption has no theoretical basis, it should be used
only with caution and verified with measurements of the diffusion coefficient as a function
of concentration.

While use of a variable diffusion coefficient increases simulation accuracy, it also increases
simulation time by up to an order of magnitude, depending on the number of radial nodes
used. Therefore, in some cases it is desirable to use a constant diffusion coefficient. This
constant should be some average value of the true variable diffusion coefficient. The question
arises, what average value of the diffusion coefficient to use for a material that exhibits a
diffusion coefficient that varies with state of charge? Paxton and Newman[47] present one
method for selecting an average diffusion coefficient. The procedure involves setting up a
separate simulation for a single spherical particle with variable diffusivity and performing
many simulations at different values of dimensionless surface reaction rate, ® = Daf;ziw,
where D, is the maximum diffusivity, ¢ mae, is the maximum solid concentration, jy, is the
surface flux due to reaction, and R is the radius of the spherical particle. The simulations
are then repeated for constant diffusivity, and the value of D, which gives the best match to
surface concentration predicted with the variable diffusivity is selected at each value of ®.
For small values of ®, variations in the solid diffusion coefficient have negligible effects on cell
performance. In this manner, one obtains a relationship between the best value of diffusivity
to use and ®. One can then use this relationship in the full cell simulation. For the full cell
simulation, ® is calculated assuming a uniform reaction rate: ® = 3 Daca maifaneactm, where
L is the electrode thickness and €400 1S the volume fraction of active material. Paxton and
Newman compare two alternatives for defining “best match”.

Verbrugge and Koch describe how to scale the radial dimension when formulating the ra-
dial diffusion equation to improve numerical simulations over a wide range of time scales|20].
Mao and White[48] present a method for arranging the matrix when solving pseudo-two
dimensional problems that reduces computation time.

1+

4.2 Transport and volume change in phase-change electrodes

Several phase-change electrodes are currently being researched for use in lithium-ion bat-
teries, such as lithium-tin and other binary and intermetallic lithium alloys for negative
electrodes, and LiFePO, and variants thereof for positive electrodes. In these materials, the
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reaction occurs as a moving front through the particle of active material rather than as dif-
fusion down a continuous concentration gradient as in insertion compounds. The new phase
must be nucleated at the surface of grains before the phase can propagate through a grain,
resulting in a nucleation overpotential. The nucleation overpotential is observed as a sharp
dip and then rise in the cell potential at the beginning of discharge. The phase-propagation
process can be treated with a shrinking-core model, as described in Appendix C of ref. [49]
and as applied in the case of LiAl[19].

This type of phase-change reaction is distinct from the dissolution-precipitation reaction
which occurs in the Pb, PbO,, Ag, and Cd electrodes. In a dissolution-precipitation reaction,
one solid phase (e.g. Pb) dissolves electrochemically (e.g. to form Pb?*), combines with an
ion in solution, and the product precipitates (e.g. PbSO,). Methods for modeling mass
transfer and nucleation kinetics in dissolution-precipitation reactions have been described
[18, 50, 51, 52, 53, §].

Some of the materials recently being considered for use as positive electrodes, such as
LiFePO,, are actually insulators rather than electronic conductors. In this case, the as-
sumption that the transference number of electrons is unity is not valid, and semiconduct-
ing effects may need to be considered. Treatment of semiconducting effects in electrodes
has been reviewed in the case of the nickel hydroxide electrode[54, 55| and photovoltaic
electrodes|56, 57].

4.3 Nonporous insertion electrodes

Nonporous electrodes are of interest for thin-film microbatteries, especially all-solid-state
batteries, and for measurements of the solid diffusion coefficient and exchange-current den-
sity, since these measurements require knowledge of the surface area. In the nonporous
geometry, no electrolyte, binder, or filler is present in the electrode. Then only two govern-
ing equations apply. The electrode has a planar geometry. Let x = 0 be the electrode-current
collector interface, and x = L be the position of the electrode-separator interface. The first
governing equation is Ohm’s law in the solid,

I=—oV, (40)

with the boundary condition

. CYaFw S _a’cF S
I'=1 [exp< R:/Z7 ) - eXp( RTn )] (41)

where 7, is the surface overpotential as defined earlier,

ns =@ (x=L)— Dy(x=L) — Ulcs(x = L)) (42)
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and we see that this boundary condition couples the potential in the solid to the potential
in solution and the surface concentration in the electrode. If o is a constant, then equation
40 can be integrated directly to yield ®;(L) — ®;(0) = —Z£.

The second governing equation is the planar diffusion equation for lithium transport in

the solid film
de, 0 oc,
T (Da_> (43)

ocg _ I d Ocg
oz == ~Fp, 4 5y
and initial condition ¢s(x,t = 0) = ¢?.

For a constant diffusion coefficient and boundary conditions of constant current (galvano-
static operation) or constant surface concentration (e.g., for a potential step experiment), this
equation can be integrated directly|58|. For nonconstant boundary conditions but constant
diffusion coefficient, the equation can be solved using Duhamel’s superposition integral[59].
With an arbitrarily variable diffusion coefficient, the equation must be solved numerically.

with boundary conditions

lomo= 0 (44)

4.4 Particle size distribution

The battery model described above assumes that the active material in the porous electrodes
exists in small spherical particles of uniform size. In a real battery, the particle size may be
nonuniform. A particle size distribution is modeled numerically by categorizing the particles
into size bins, and then treating each bin as a separate phase in the electrode. While
each particle size has the same material properties, the particles may experience different
reaction rates and thus solid-phase concentrations. The reaction rate equation 19 is computed
separately for each particle size bin. The current balance then becomes

V- ig = Z aﬂ;n,l (45)
l

where the summation is over the bins of particle sizes. Different particle size bins may
have different specific interfacial areas, calculated from a; = 3¢;/ R for spherical particles. A
separate solid material balance of the form of equation 17 is written for each particle-size bin.
The equations for the potential in the electrolyte and solid remain unchanged, and the mass
balance in the electrolyte is unaffected if the form of equation 12 is used. The equation for
the potential in the solid is unchanged because the averaging employed in porous electrode
theory is over regions that include several particles. Therefore, the solid-phase potential is
the same in particles of all sizes at a given position. This analysis neglects any effect of
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radius of curvature on surface energy and therefore on chemical potential; this assumption
is valid for particle radii of order nanometers or larger.

Darling and Newman|60| examine the effects of a particle-size distribution by considering
the simplified case of binary distributions in which the volume fractions of the two particle
sizes are chosen in such a way that the active-material volume fraction (and thus mass),
surface area, and average particle size are the same among all the distributions examined.
Thus, the only physical parameter changed in Darling and Newman’s simulations is the
presence of two particles sizes, thereby isolating the effect of a particle size distribution.
The authors show that an electrode with a particle-size distribution, all else held constant,
exhibits larger solid-phase resistance and longer relaxation times than an electrode with
uniform particle size. The effect is most pronounced under conditions of nonuniform current
distribution across the electrode, such as at high currents or flat dependence of the open-
circuit potential on solid concentration.

Figure 2 shows the potential of the surface of the particles as a function of time during
a charge and discharge of a Li | LiMnyO, evaluated at the concentration of the surface
of the particle. The concentration in the two particle sizes is identical as long as semi-
infinite diffusion exists. Once the solid concentration gradients extend to the middle of the
particle, restricted diffusion behavior takes over, and the concentration in the smaller particle
will change faster than the concentration in the larger particle. The solid concentration
overpotential (difference between actual cell potential and surface potential) is therefore
larger in the larger particles. Therefore, for electrodes with the same average particle size,
surface area, and volume fraction of active material, the electrode with the most nonuniform
particle-size distribution will have the largest overpotential and slowest relaxation times.
Another way to think of this is that, in any particle-size distribution, there must always be
particles of size larger than the average, and these larger particles will always have larger
resistances and time constants for diffusion. For a particle-size distribution with different
surface areas, the kinetic overpotential will be larger on the particle size of smaller surface
area a.

Particles of different sizes will pack differently than particles of a uniform particle size, and
the packing density will affect the porosity of the electrode. Nagarajan et al.|61| addressed the
question of how to optimize the particle-size distribution to increase electrode utilization for
a 1C-rate discharge, given a correlation between packing density and particle size determined
by Yu et al.[62] (neglecting effects of the conductive filler and binder on packing). In essence,
this paper tries to optimize the electrode porosity by changing the packing density in the
electrode. Nagarajan et al. also demonstrate how a higher fraction of smaller particles can
improve electrode response to a high-current pulse discharge.
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4.5 Double-layer capacitance

Double-layer capacitance is of interest when modeling ac-impedance behavior and also when
simulating response to rapid current pulses. Small modifications to the current balance are
required to account for charging of the double layer[63]. These modifications also appear in
the mass balance equation for the electrolyte, since it includes the divergence of the current
as a homogeneous consumption term. In many cases, the magnitude of the concentration
change due to double-layer adsorption may be negligible, and then only the modified current
balance is needed. The current balance is

where j; , is the molar flux of species 7 away from the electrode surface due to heterogeneous
electrochemical reaction. If we are to include double-layer charging, then this flux has both
faradaic and capacitive components:

AJipn = QJi,f + CdtJi,di (47)
where here we have accounted for the possibility that the interfacial area for double layer
charging may include the conductive filler and therefore be different from the interfacial area
for faradaic reaction. A mass balance on the excess charge in the solution side of the double
layer is

ar’;

i 48

ot Jidl (48)
Since the interface as a whole is electrically neutral, a charge balance on the double layer
yields

where ¢ is the charge on the electrode side of the double layer (assumed to be all at the
surface of the conductor). Combining equations 46, 47, 48, and 49, we have

(50)

) , 0
Vg =aF ) zjis+ adla_;]
1

Capacitance is defined by

dq d(¢1 — ¢2)

ML b .2 ol
dt dt (51)

For lithium batteries with binary electrolytes, the faradaic flux of the anion is zero. Thus

our final form of the current balance becomes
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V- iy = G,Fj_hf + adle (52)

One can show that|64]

O dg (61— )
Jidl = ZZF dq ot

where the dependence of double-layer adsorption on electrolyte concentration and tempera-

ture have been neglected. To get a mass balance for the electrolyte that includes double-layer

capacitance, we substitute equations 47 and 53 into the mass balance (equation 12) to obtain

(53)

6(: 7:2 0 o\
GE = V'GDVC— F Vt++a(1 —t+)j+,f
C dg; dg_\ 0(¢1 — ¢2)
. ~ o i+ o 4
ale (t_ dq +t_|_ dq) ot (5 )

where ‘fl—‘f; indicates the change in surface excess concentration of species ¢ in response to a

change in the charge on the electrode. Since information about surface charges is difficult to
obtain, we can assume that only cations are adsorbed. Then dg—‘ =0 and dg—* = —1. Note
that the signs of these terms, equation 53, and the last term in equation 54 are reversed if
q is defined as the total charge on the solution side of the double layer, rather than on the
electrode side as used here. The final mass balance is independent of this definition.

Ong and Newman|65] describe issues of casting these equations into finite-difference form
and derive a characteristic time for the decay of capacitive effects upon a step change in
galvanostatic current. The time constant is approximately L?aqC (% + %), and is on the

order of 1 to 100 milliseconds for typical insertion electrodes.

4.6 Film resistance

It is well known that a passivation layer, called the solid-electrolyte interphase (SEI), forms
on the surface of the negative electrode (and likely on the positive electrode to some extent
as well) due to reaction with the electrolyte. This layer will add a resistance for reaction to
occur. The exact nature of the SEI is not well understood. There is evidence that the film
on the carbon and lithium electrodes is inhomogeneous, possibly porous, composed of more-
reduced species (e.g. LipCOj) on the side bordering the active material and less-reduced
species (e.g. lithium alkyl-carbonates) on the side bordering the electrolyte. A model of
transport and reaction in the SEI layer could be based on previous works on passivation
layers formed in other systems, e.g., corrosion of iron[66, 67|, or it could expand upon
models of the LiCl layer in lithium-thionyl chloride batteries[68, 69].

For the purposes of modeling the overall cell-sandwich behavior, it is not necessary to
know the exact details of the SEI layer. Instead, one can assign some overall resistance to
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the film, and include this resistance in the electrode kinetics. Given that the film is believed
to consist of solid lithium salts, it is logical to model transport through the film to a first
approximation by migration alone, in which case the film is analogous to a resistor in series
with the reaction (no diffusion resistance in the film)[35]. The surface overpotential used in
the Butler-Volmer equation should then include the potential drop across this film, so that
the modified Butler-Volmer equation has the form

. [ <OéaF(§/>1 —¢2—U—jFRfilm)> <—OécF(¢1 —¢2—U—jFRfilm)>]
in, = 10 |€xp — €xp
RT RT
(55)

The film resistance affects the reaction-rate distribution by increasing the kinetic resis-
tance, which makes the reaction rate more uniform. There is evidence that the composition
of the film depends on electrode potential, and that the film dissolves and reforms as the cell
is cycled. Then it might be appropriate to consider a film resistance which varies with local
potential.

In addition to the film resistance around the particles of active material, there may
be a contact resistance due to imperfect contact between the electrode and the current
collector[70]. This contact resistance is separate from interparticle contact resistance in the
bulk of the electrode, which is included in the electrical conductivity o of the composite
electrode material. Contact resistances at the current collector would have a different effect
on the current distribution than a film resistance, because this contact resistance would occur
only at the boundary of the electrode rather than being distributed throughout the entire
surface area of active material like the film resistance. The ohmic potential drop from the
contact resistance is treated by simply subtracting I R.,ntqc¢ from the cell potential.

4.7 Side reactions

Side reactions include electrolyte oxidation and reduction, lithium deposition, redox shuttles
for overcharge protection, corrosion of current collectors, self-discharge, conversion of active
material to inactive phases, and other degradation mechanisms, as reviewed by ref. [4]. Side
reactions can affect the performance of lithium-ion cells by lowering the coulombic efficiency,
creating an imbalance in the state of charge between the positive and negative electrodes,
consuming cyclable lithium, increasing cell impedance, or protecting against potentially more
deleterious effects of overcharge.

Side reactions can be divided into two categories for the purposes of modeling. The
first category includes side reactions which do not involve or produce soluble species other
than the electrolyte and solvent, and include lithium deposition and solvent oxidation to
form solid products. These types of side reactions are treated with little modification to
the framework developed in section 3 other than the addition of a kinetic equation for the
side reaction. The second category includes any side reaction which does involve more than
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three components in the solution phase, such as redox shuttles. In this case, the governing
equations must be modified to add a mass balance for the new component and to include
the concentration overpotential of this component.

Darling and Newman|36] describe the methodology for modeling the first category of side
reactions, in which the only species in the solution phase are the electrolyte and solvent. The
side reaction is modeled by adding a second reaction to the current balance:

Vil = amin,m + asin,s (56)

where i, ,, is the current flux due to the main reaction (lithium insertion) and i, is the
current flux due to the side reaction. i, , could be the sum of multiple side reactions. Here
Darling and Newman have allowed for the possibility that the surface area upon which
the side reaction occurs could be different from that of the main reaction. For example,
electrolyte oxidation may occur on the surface of the conductive filler, whereas the main
reaction occurs only on the surface of the active material. The effects of the side reaction are
coupled to the mass balance in the solid and in the electrolyte, in that V - i appears in the
electrolyte mass balance, equation 12, and ¢, ,, determines the flux of lithium into the solid.
The total current in the cell is determined by boundary conditions such as galvanostatic or
potentiostatic operation. Note that it is possible for i, , and 4, to have opposite signs.
For example, self-discharge on the positive electrode could occur by coupling a side reaction,
e.g., S — St 4 e, with the main reaction Li* + e~ + ©, = Li©,. The net current could
then be zero while the state of charge of the electrode decreased due to self-discharge.

Like the main reaction, the side reaction can be described by the Butler-Volmer equation,

. . CVa,s}? Ofc,sF
n,s = 20,s [eXp ( RT 775,5) — €xXDp <_ RT 775,5)] (57)

where the surface overpotential for the side reaction is defined as

Ns,s = ¢1 - ¢2 - Us - Fstfilm (58)

where U, is the reversible thermodynamic potential of the side reaction defined with respect
to a lithium reference electrode at the same solution composition. U, can be specified as a
function of electrode composition or temperature if such information is available. Compu-
tation can be simplified somewhat by assuming that the side reaction is irreversible or the
reversible potential of the side reaction is much different from the electrode potential (and
therefore the Tafel approximation can be used), or that the rate constant of the side reac-
tion is very large and the overpotential is small (and therefore linear kinetics can be used).
Tafel kinetics may be more appropriate for electrolyte degradation reactions, whereas linear
kinetics may be appropriate for lithium deposition|4]. For irreversible reactions, a reversible
potential is not really defined and does not appear independently in the kinetic expression.
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For example, if the Tafel approximation is used, then, e.g., for an anodic reaction,

aa,sF(¢1 - ¢2 - Us - jsFRfilm)
RT

tn,s = 10,s €XP <

_aa,sFUs> (aa,sF(¢1 - ¢2 - ]SFszlm)>
——— ) eXp

= %08 XP ( RT RT

and we see that U, can be incorporated into the exchange current density for the side reaction,
and is not measured separately.

If the rates of side reactions on the two electrodes are different, then the total flux of
lithium into one electrode will not be equal to the total flux of lithium out of the other
electrode. An imbalance of the state of charge between the positive and negative electrodes
will result. This imbalance effectively leads to a loss of cyclable capacity.

Arora et al.[71] use the equations presented above to simulate lithium metal deposition on
carbon negative electrodes during overcharge. Lithium metal deposition will occur wherever
the potential of the electrode is driven more negative than the potential of lithium metal,
i.e., where & — &5 — U; < 0. Since all potentials in this work are with respect to a lithium
reference electrode, Ur; = 0. Such a situation might occur when there is excess positive
electrode capacity, when large charging currents are used, or when the cell is charged to
voltages much larger than its open-circuit potential at full state of charge. A graphical
illustration of how potential varies across the carbon electrode is given in figure 3. We see
that the threat of lithium deposition emerges 115 minutes into this C/2-rate charge. The
surface of the deposited lithium will react with the electrolyte, causing a resistive material to
coat the active material, reducing the amount of cyclable lithium in the system, and clogging
pores.

Arora et al. use the calculated rate of side reaction to explore the its effect on film
resistance. Assuming that the lithium deposition reaction occurs uniformly about the surface
of the spherical carbon particles, the rate of growth of the deposit thickness d4eposit 1S

aédeposit - Y7
deposit _ _ ; 17 60
5 J (60)

where V is the molar volume of the lithium deposit. They then use this deposit thickness to
estimate the increase in film resistance:

0 epost
Rdeposit(t) = sz dl: d (61)
Rgim = Rser + Raeposit(t) (62)

The summation is over the number of different layers which comprise the lithium deposit
(this equation assumes the layers behave in series). For example, Arora et al. assume that
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the lithium deposit is composed of lithium metal and Li;COg, which is formed when the
lithium metal reacts with the electrolyte. k; is the ionic conductivity, and z; is the fraction
of the total deposit thickness composed of species i. Since the exact nature of electrolyte
reaction with lithium metal is not known and depends strongly on a large number of factors
including impurities, z; is taken to be an adjustable parameter. 1 — x;1pium determines what
fraction of the lithium deposited is made irreversibly unavailable for further cycling in the
battery. Rggs is the film resistance of the SEI layer present before any overcharge reactions
occur (see section 4.6).

Factors which alleviate driving the potential of the carbon surface to zero will reduce
lithium deposition. These factors include increasing the negative:positive active-material
mass ratio, reducing the cutoff voltage on charge, reducing the electrode thickness and par-
ticle size, and reducing the applied current density. A larger film resistance decreases the
potential driving-force for lithium deposition and thus its rate. Therefore, lithium reaction
with the electrolyte to form a resistive film will decrease the lithium deposition rate. A
more uniform reaction rate, which could be achieved by slower reaction kinetics, lower solu-
tion resistance, or a sloping dependence of open-circuit potential on state of charge, would
also reduce the rate of lithium deposition by avoiding driving the potential to zero at the
electrode-separator interface before the rest of the electrode is fully charged. Finally, Arora
et al. indicate that for a given amount of coulombs of charge reaction, the total amount of
lithium deposition is reduced by using taper charging rather than galvanostatic charging.

The second category of side reactions includes those which involve species in solution
other than the main electrolyte and solvent. For example, one might be interested in how
Mn*? from the dissolution of the positive electrode migrates to the negative electrode and
plates out on the surface of the negative electrode, or in examining whether a soluble product
of electrolyte reduction at the negative electrode could cause capacity fade by reacting at the
positive electrode. In addition to the modification to the current balance given in equation
56, the governing equations must be modified to include a mass balance for the soluble species
and to include the concentration overpotential of this species in its kinetic equation. The
modifications can be handled either with full concentrated solution theory, a combination of
concentrated solution theory and dilute solution theory, or by dilute solution theory alone.

Treating the system with full concentrated solution theory involves inverting the Stefan-
Maxwell equations for all species involved in solution, yielding a flux equation for each species.
The flux of each species is coupled to the flux of all other species in these equations, and
n(n — 1)/2 transport properties are required. In addition, the expression for the potential
in solution as measured by a reference electrode, equation 2, will be modified to include
gradients in chemical potential of all species present. The governing equations for an impurity
ion|7, 52|, impurity solvent[69], and both impurity ion and solvent[8] have been derived. A
kinetic expression of the form of equation 57 for each side reaction completes the set of
governing equations. Uj is defined with respect to a lithium reference electrode at the same
solution composition, and all concentration overpotential is included in ®s.
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For impurity species present in dilute concentrations, some may find it more convenient
to treat the species using dilute solution theory, which accounts only for interactions of the
dilute species with the solvent. Rigorously, equation 12 was derived for a binary electrolyte
with no impurity species in the solution. While it is not completely rigorous to treat one
species with dilute solution theory while treating the main electrolyte with equations derived
from concentrated solution theory in the absence of the impurity species, the error may be
small. The flux of the dilute species is given by equation 5. The mass balance for the main
electrolyte remains unchanged. If ®, is defined by equation 3, then U; must be defined as
a function of the concentration of the impurity species in order to include the concentration
overpotential of the impurity species in the kinetic expression, equation 57. The Nernst
equation, Us = U2+ RT In¢;/c?, is often used to account for the concentration overpotential
of dilute species i. If @, is defined by equation 6, then U, should not be defined as a function
of solution composition.

The flux equation, from either concentrated or dilute solution theory, is then inserted
into the material balance for the species:

80,-

“at

The reaction term aj; includes the sum of the main and side electrochemical reactions and

also chemical reactions, as indicated in equations 25 and 30. Possible chemical reactions

of interest in lithium batteries include salt precipitation and homogeneous electrolyte de-

composition. Once the rate of the side reaction is added to the model, it can be used to

calculate various possible effects of the side reaction in addition to consumption of current.

For example, one could calculate the change in porosity due to precipitation of products of

the side reaction[19]. Precipitation of solid species might also affect the surface area of active
material available for reaction|50].

A redox shuttle is an example of a desirable side reaction that prevents overcharge. In
this situation, a dissolved species R is selected that can be oxidized to species O at some
potential close to the maximum desired potential of the cell. O can diffuse away from the
positive electrode to be reduced again at the negative electrode, creating an internal short
circuit. One might model a redox shuttle by assuming that initially the shuttle is in its
reduced form and that the overpotential for reduction of O is very high at the negative
electrode, so that the concentration of O is zero at the negative electrode. Narayanan et
al.[72] give an analysis of the effect of potential on redox shuttle current for the case of
nonporous electrodes in which the only current is the shuttle current, the diffusivities of the
oxidized and reduced species are equal, and migration is neglected.

Side reactions can introduce error into the measurement of physical properties in three
ways|73]. Current is consumed by the side reaction, introducing error into calculations of the
amount of current that went into the main reaction. Bulk concentrations of salt or solvent
may change if the side reaction is substantial, and soluble products of reaction may affect the

= —V-N; + aji (63)
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activity of the electrolyte. Finally, the side reaction causes the potential of the electrode to
be a mixed (corrosion) potential. The last effect is the most important for measurements of
transference numbers using symmetric lithium | lithium cells. It is commonly assumed that
the lithium electrode is covered and protected by the SEI layer. However, there is strong
evidence that, in many situations, the protection is not complete and side reactions involving
the solvent or anion continuously occur. If a concentration gradient exists across the cell,
then the mixed potential at the working and counter lithium electrodes will not be the same.
The error introduced by the corrosion potential is most significant on concentration-cell
measurements at low salt concentrations. Simulations of the type described in this section
can be used to analyze how much error is introduced by the side reaction|73|. It may be
preferable to use a less reactive reference electrode, such as LiyTi5O12[74], to reduce this
error.

Several works have explored the effects of side reactions in other battery systems in great
detail, and their methodologies are applicable to lithium batteries|59, 75, 76, 77, 8].

4.8 Volume changes and velocity in the electrolyte

Where volume changes and/or solvent velocity are of issue, two equations are needed in
addition to the mass balance on the electrolyte. The first is a material balance on the
solvent:

ot ot
The second relates the change in porosity due to volume change in the 7 solid phases by j

electrochemical reactions occuring at rate i, ; and by & chemical reactions occuring at rate
Tk:

Co (ﬁ +V- Vo> = 0co —v,- Ve, + aj, (64)
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Changes in porosity cause changes in the velocity of the solvent by pushing the electrolyte
out of or into the pores. Changes in porosity would also effect effective properties such as
conductivity (see below). For example, a large electrode volume expansion may increase the
effective electronic conductivity while decreasing the effective ionic conductivity, resulting in
increased reaction closer to the separator at the expense of reaction within the electrode[78|.
Such considerations are generally negligible with insertion electrodes, which achieve high re-
versibility and thus long cycle life by the very virtue of involving minimal displacement of the
active material. However, volume change is of considerable importance in alloy electrodes
and systems such as the lithium thionyl-chloride primary battery. In such cases, a reservoir
of electrolyte may be incorporated into the battery design to accomodate volume change.
Pollard and coworkers[19, 8| include an electrolyte reservoir in a 1-dimensional model by
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treating it as a well-mixed region of variable thickness and negligible impact on mass trans-
fer between the separator and positive electrode. While a reservoir of variable volume is an
effective method for treating changes in electrolyte volume, it is an approximation to the true
behavior of an electrolyte reservoir, which usually sits on top of the electrodes. Improve-
ments to modeling the effect of the electrolyte reservoir on the distribution of electrolyte
concentration within the electrodes require a two-dimensional model[79, 80].

Equations 64 and 65 assume that all change in electrode volume is compensated by
change in electrolyte volume fraction. This assumption neglects any effects of mechanical
stress on changes in electrode area and/or thickness, and may be a poor assumption for
alloy or phase-change electrodes|81]. Calculation of such changes in electrode volume would
require knowledge of the mechanical properties of the battery container.

4.9 Effective properties in porous media

The values of k, D, and ¢ used in equations 3, 12, and 4, respectively, are reduced within
the porous electrode relative to their bulk values due to the tortuous path which the ions
in solution must make around the solid particles or which the electrons must make around
the electrolyte-filled pores. Generally, the effect of volume fraction ep and tortuousity of the
phase of interest on property P in that phase is accounted for by the Bruggeman relation[82],
P = ¢pP, /7, where 7 is the tortuosity and is usually related to the porosity by 7 = e=%°.
Because the flux N is defined with respect to superficial area as opposed to electrolyte area,
D already gets multiplied once by € in the mass balance, so D = De*>.

In gel electrolytes, in which a liquid electrolyte is imbibed into a polymer matrix, calcula-
tion of the effective diffusivity and ionic conductivity based on the apparent volume fraction
of electrolyte in the polymer may be complicated by solvation of the polymer by the solvent,
increased tortuousity presented by the polymer, and possible interactions of the ions with
solvating groups on the polymer. One way to handle these effects empirically is to treat the
tortuosity as an adjustable parameter which is fit to measurements of diffusivity in actual
gels[35]. This empirical tortuosity parameter appears to depends on the nature of the gel’s
environment, such as whether the gel is mixed into a porous electrode or free-standing|70].
Such effects may be due to preferential adsorption of the polymer to the solid surface.

Tortuosity also plays a large role in the effective transport properties of polymer elec-
trolytes because obstruction of the sequential motion of polymer chains can block mechanisms
of ion transport[83] and because adsorption of the polymer to particles of active material or
conductive filler may cause the formation of nanometer-thick glassy polymer films around
the solid particles|[84]. A better understanding of the effects of tortuosity, polymer-electrode
surface forces, and polymer chain length on transport in polymer and gel electrolytes is
needed for more accurate treatment of effective transport properties in these systems.

Interparticle contact is of critical performance to the behavior of lithium batteries. Most
lithium-ion electrodes contain 2 to 15 wt% conductive filler, such as carbon black, in order to
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maintain contact among all the particles of active material and in order to reduce ohmic losses
in the electrodes. Presently, there are few models available for predicting contact resistance,
and the effect of the weight fraction of conductive filler on the overall electronic conductivity
of the composite electrode must be determined experimentally. Doyle et al.[35] demonstrate
how the full-cell-sandwich model can be used to determine what minimum value of effective
electronic conductivity is needed to make solid-phase ohmic resistance negligible. Then, one
need only measure the effective conductivity of the composite electrode as a function of
filler content, and one need not run separate experiments on complete cells to determine the
optimum filler content. Modeling techniques for predicting effective electronic conductivities
of composite electrodes are under development, and hold promise to aid in optimizing filler
shape and volume fraction[85].

4.10 Use of mass-transfer coefficients

Porous electrode theory treats the inherently random geometries of porous electrodes by
using quantities appropriately averaged over the randomly-shaped pore volume, solid volume,
pore-wall area, or electrode cross-sectional area|l, 18]. The kinetic equation 19 involves
the potential of the solid at the solid-electrolyte boundary, the potential of the electrolyte
(which is a function of electrolyte concentration) at the electrolyte-solid boundary, and the
exchange-current density evaluated at the electrolyte concentration at the electrolyte-solid
boundary. However, the equations presented in this review treat only the average potential
and electrolyte concentration at a given position (radial variations in solid concentration are
calculated either by the superposition integral or by using a pseudo 2-dimensional geometry,
see section 4.1). Thus, the averaging inherent to porous electrode theory introduces some
(usually very small) degree of error. Mass-transfer coefficients can be introduced to try to
compensate, such as by using an effective mass transfer equation, j, = —kn (¢ — cyau), to
solve for the concentration at the pore wall. Tsaur and Pollard[8| report that mass transfer
within pores has a significant effect on cell performance only for species present in small
concentrations. Levich[86] and Wang et al.[31] review mass-transfer coefficients in detail.

4.11 2- and 3-dimensional effects

A one-dimensional model assumes that gradients in potential are negligible in the two di-
rections parallel to the current collectors. Such an assumption is valid for laboratory-scale
cells, which are generally small and/or use thick, highly conducting current collectors. When
scaling up a cell to a full-scale battery, one may be interested in how potential varies along
the current collector due to ohmic drop, and how this potential drop affects the current
distribution within the battery. In large batteries, ohmic drop down the current collectors
may be significant enough to affect the current distribution, with a higher current closer to
the tabs. A two- or three-dimensional model may be desirable then in order to optimize the
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electrical conductivity (i.e., thickness) of the current collector, length of electrodes, shape of
the current collector, and position of tabs, with respect to overall cost, weight, or volume of
the cell [87, 88, 89, 90, 91]. They can also be used to understand the potential distribution
within the cell and how that distribution affects experimental measurements|92]. The model
can either solve the full governing equations treating current and flux as vector quantities, or
it can couple the full model for behavior perpendicular to electrode to a simplified resistor-
network model for effects parallel to the electrodes[90]. Bernardi et al.[80] review two- and
three-dimensional battery models and present results for a lead-acid cell.

In the spiral-wound geometry (also called a jelly roll), the radius of curvature of the
electrodes decreases as the radius of the spiral increases, thereby creating a two-dimensional
geometry. Spiral-wound geometries have been treated by Evans and White[93] and Pod-
laha and Cheh|94]. Podlaha and Cheh describe a methodology to simulate a spiral-wound
configuration with a one-dimensional model consisting of multiple cell layers connected by
"virtual" current collectors. They compare simulations of a spiral-wound alkaline cell to that
of a bobbin cell with equivalent total reactant surface area.

The primary focus of two- and three-dimensional models of lithium batteries has been
to determine the temperature distribution across a large cell or battery stack[95, 96]. The
temperature profile across a lithium battery stack is of interest because the rate of cell
degradation increases with increasing temperature. As the capacity of the hotter cells in
a series-connected stack fades, they will become prone to overcharge and overdischarge,
situations which can potentially lead to thermal runaway. Chen and Evans|97| analyze the
thermal response of a battery stack to a hot spot created by a short circuit in one cell.

The Biot number is defined as Bi = hL/k, where h is the heat-transfer coefficient with the
surroundings, L is a characteristic length of the battery, and k is the effective thermal con-
ductivity. If the Biot number is greater than 0.1, then temperature gradients in the battery
cannot be neglected. Newman and Tiedemann|98| discuss how thermal aspect ratios (L?/k)
affect the maximum stack temperature for the case of uniform heat generation. Baker and
Verbrugge[89| analyze how nonuniformity in the secondary current distribution, caused by
ohmic losses along the current collector, can lead to nonuniformity in the temperature profile
of a large cell. They assume constant physical properties and linear kinetics. The analysis
uses the perturbation technique to extend the one-dimensional secondary current distribu-
tion for porous electrodes derived by Euler and Nonnenmacher[99, 100] to two dimensions,
assuming that all current in the porous electrodes and electrolyte flows perpendicular to the
current collectors, and all current in the current collectors flows parallel to the curent col-
lectors. A series solution for the temperature profile in the direction parallel to the current
collectors is then derived. They find that their parameter L, which depends on the electrical
conductivity of the electrodes and current collectors, &, €, thicknesses of the cell and current
collectors, 49, and cell height (see their Table IT and equation 21), determines the importance
of considering two-dimensional variations in the secondary current distribution. For I < 1,
two-dimensional effects can be neglected.

29



As discussed in section 3.7, transport and kinetic properties generally exhibit an Ar-
rhenius dependence on temperature, leading to a lower rate of heat generation at higher
temperatures. Accurate thermal modeling therefore requires coupling of the electrochemical
model to the thermal model through the temperature dependence of the physical properties.
Several different techniques for such coupling have been presented. Song and Evans|[101]
solve the coupled equations directly, and present results for a lithium polymer bipolar stack
under different thermal management conditions. Pals and Newman present two methods for
simplifying the computational time. In the first method, an effective heat-transfer coefficient
is computed as a function of cell position in a bipolar stack|28]. In the second, an isothermal
model for a single cell is used to compute the heat generation of a cell presently at that
temperature within a stack[102]. This method introduces some error regarding the effect
of the thermal history of a cell. Verbrugge[103] presents a method for reducing the compu-
tational power required to simulate the two- or three-dimensional current and temperature
distribution (for the case of constant concentration and linear kinetics) for a battery stack
composed of many cells. All of these papers show that the improved transport and kinetics
at higher temperature lead to a more uniform stack temperature compared to simulations
with constant properties.

5 Analytic Solutions for Special Cases

Solutions to simplified forms of the governing equations can prove useful for several reasons.
An analytic solution provides a closed-form relationship between independent and dependent
variables, which allows calculation of kinetic and transport properties from experiments
designed to meet the requirements of the limiting case. They provide dimensionless terms and
closed-form relationships that make it easier to identify the effects of different variables and
to identify which forces are dominating behavior. Finally, analytic solutions provide a useful
starting point for optimization. Many analytic solutions are for “steady-state” operation.
Strictly speaking, there is no steady state in the operation of lithium-ion batteries, because
the lithium concentration in the active material is continually changing, thereby changing
the potential of the active material. The assumption of steady state allows one to examine
effects of other parameters in the absence of change in the active material.

An analytic solution for the steady-state current and potential distributions in a porous
electrode neglecting any concentration variations was determined early in the development of
porous electrode theory|100]. The ratio of ohmic resistance to kinetic resistance determines
the uniformity of the secondary current distribution across the porous electrode. For Tafel ki-
netics, this ratio is § = 2£IE (% + %), and for linear kinetics it is v? = (o, + a) %OTLQ (% + %) [1].
If either of these dimensionless numbers is large, then ohmic resistance dominates kinetic
resistance, and the reaction rate will be higher at the separator-electrode interface than in
the middle of the porous electrode. L/v (or L/§ for high currents) is a measure of the
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penetration depth of the electrode, i.e., how far the reaction penetrates the electrode before
concentration gradients in the electrode and electrolyte drive the reaction further. Increasing
the thickness of the electrode beyond the penetration depth has little effect on the reaction-
rate distribution and thus the overpotential across the electrode. For pure concentration

resistance, neglecting all ohmic and kinetic resistance, the penetration depth is L/, where
AL
Vi = nFeszDicioo[ ]

The combination of ohmic resistance in the solid and solution phases (neglecting all
concentration and kinetic resistance) with transient consumption of active material forms
the basis of the reaction-zone model[104, 105|, which predicts that the reaction-rate distri-
bution will move as a front across the porous electrode, consuming the active material at
the separator-electrode interface first, when the electronic conductivity of the solid phase is
much higher than the ionic conductivity of the electrolyte phase. Doyle and Newman|106]
expanded the reaction-zone model to the case where potential in the active material varies
linearly with state of charge. Atlung et al.[107] treated and verified experimentally[108]
a similar problem but for ionic and electronic conductivities of equal magnitudes. The
reaction-zone model is particularly relevant to studying current distributions and maximum
attainable utilization in batteries with ionomer and molten salt electrolytes, in which con-
centration gradients have a zero or small effect on cell behavior. Full simulations including
kinetics and concentration variations showed results similar to the reaction-zone model for
cells with molten salt electrolytes|78, 19]. The reaction-zone model is less appropriate for
electrolytes with lower diffusion coefficients.

Doyle and Newman[109]| present the limiting current for the case of uniform current
density in a porous electrode.> The limiting current across the separator (assumed to have
a porosity of 1.0) and porous electrode depends on the porosity €, separator thickness L,
and ratio of the thickness of the electrode to that of the separator r = L, /L, as given by

FDec
T, = £ G 66
1)L 0 %
where
1 (1+47)?
flre) = 2(1+er) * 2red/2
1 € er 1 e(l+7r)

S T A G 67
eriten 372 72 3 (67)

3There has been a misunderstanding in the literature[3] as to how this solution was obtained. Recall that
when solving the steady-state form of a transient problem, the initial condition enters in as a constraint that
the total mass of electrolyte is constant. Eq. 20 of Doyle and Newman’s paper contains a typographical
error; the second term on the right side should be positive, not negative. In addition, the time constant for
solution depletion with a current spike given in eq. 42 is not the time constant used in equations 56 and 57.
These equations use the time constant derived when the delta-function reaction rate is left in the differential
equation[110], as opposed to being treated as a boundary condition as presented in their Appendix B.
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In addition, the authors compare times for the concentration to become depleted for the
case of solution diffusion with uniform current, solution diffusion with a current spike at the
separator, and solid diffusion at short and long times. Their figure 8, which plots ratios of
these limiting times, allows a qualitative estimate of whether solution-phase diffusion, solid-
phase diffusion, or ohmic drop dominates capacity limitations, depending upon the physical
parameters of the system. Atlung et al[111] describe the concentration gradients in the solid
for the limiting case of uniform current density at short and long times.

Darling and Newman|112] provide an analytic solution, using Laplace transforms, to the
linearized problem at short times after current is turned on, in order to examine the spike in
current that forms at the separator-electrode interface when the exchange current density is
very large.

Table 2 lists time constants for various physical phenomena that occur in batteries.
Perhaps the most important time constant for design of a battery is the characteristic time
of discharge, ejectrode/ I, Where I is the applied current and gejectrode is the coulombic capacity
of the electrode as calculated from the volume fraction of active material, electrode thickness,
cell area, and specific coulombic capacity of the active material. Ratios of time constants
reveal the relative time scales of physical phenomena. For example, if the the ratio of
diffusion time in a solid particle to discharge time is < 1, then solid diffusion limitations are
negligible in that electrode. For a given electrode, the particle size at which solid diffusion
will become limiting is that at which this ratio approaches 1[11|. If the ratio of diffusion
time in the electrolyte to discharge time is < 1, then a pseudo-steady-state concentration
profile is established in the electrolyte early in the discharge process.

6 Applications for models

6.1 Understanding limiting factors

One of the most useful aspects of computer simulations is that they allow us to ask “What
if?”: What if we could make the separator infinitely thin, would that remove problems from
concentration polarization? What if we increased the transference number at the expense of
conductivity, would we gain increased performance? These questions are particularly relevant
for the development of polymer electrolytes. Since the three transport properties for a binary
electrolyte, x, D, and 9, all vary substantially with temperature and concentration, and all
of these properties are affected by the nature of the polymer and salt, determining which
polymer would yield the best performance would require a large number of experiments and
would be difficult to analyze. However, simulations can be run easily to compare performance
of different polymers in order to evaluate tradeoffs among the transport properties, such as
the tradeoff between transference number and conductivity|113] as shown in figure 4. Thomas
et al.[114] show that most of the concentration depletion in polymer electrolytes occurs inside
the porous electrode, rather than in the separator, and discuss the limit of gains that can
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be achieved through thinner separators alone. Figure 5 shows the simulated electrolyte
concentration for a Li | polymer electrolyte | V4O13 cell during a C/3-rate discharge, for
polymers of two sets of transport properties: those that meet USABC goals ("ideal") and
those with the properties of the best polymer available today at 40°C.

Doyle et al.[2| examine the tradeoffs involved with using a higher salt concentration in
polymer electrolytes. Conductivity in polymer electrolytes generally displays a maximum
at about 1 to 1.5 M salt concentration. One might then choose to use a salt concentration
which yields this maximum conductivity. However, because concentration gradients form
upon passage of current, in some operating regimes lower overall resistance might be achieved
by using a higher salt concentration. The somewhat lower conductivity in the separator may
be more than compensated by the higher conductivity in the porous electrode.

Doyle et al.[35] show how the full cell-sandwich model can be used to determine maximum
and minimum salt concentrations in the cell as a function of time, position, and current
density, in order to evaluate the risk of salt precipitation and the effect of salt depletion on
accessible capacity. Experiments verified the model’s prediction that salt depletion would
limit accessible capacity upon high discharge rates in Bellcore-style plastic lithium batteries.
Figure 6 compares model predictions to experimental discharge curves at currents ranging
from the C/5 to 7C rate for a Bellcore cell. Figure 7 shows profiles of electrolyte concentration
at different times during one of these discharges, at the 3C rate (6.25 mA/cm?). The time
at which the potential drops steeply during discharge corresponds to depletion of salt in
the cathode. Most of the concentration polarization is in the porous electrodes, not in the
separator. The simulations indicated that increasing the electrolyte volume fraction within
the electrodes would reduce concentration polarization and ohmic drop more than would
reducing the separator thickness, and this was confirmed by experiments. Ref. [11] evaluates
how increasing the salt concentration can increase the accessible capacity by delaying the
time at which concentration is driven to zero, and describes how the model can be used to
evaluate the maximum concentration that can be used at a given current density before salt
precipitation becomes a concern.

While most modeling studies concern themselves with the behavior of the system during
passage of current, the relaxation of the system after current is interrupted is of interest
for measurement of diffusion coefficients and for determination of cell response to sequential
charge-discharge cycles. The governing equations remain unchanged. Fuller et al.[115] ex-
amine the relaxation of a nonuniform solid concentration, created during passage of current
with a nonuniform current distribution. Current flows within the electrode (but with no
net current out of the electrode) because of the driving force of the nonuniform state of
charge and, to a lesser extent, because of the concentration gradients in the electrolyte. If
the open-circuit potential varies steeply with state of charge, then the electrode will rapidly
tend towards a uniform concentration. However, if the open-circuit potential varies little
with concentration, then there is little driving force for electrochemical equalization in the
solid phase. The extreme case of relaxation in a phase-change electrode, in which the open-
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circuit potential is constant with state of charge, results in little change in the nonuniform
distribution of utilization upon relaxation[116|. Fuller et al. show how the presence of a
nonuniform solid concentration is actually beneficial when the current is reversed, because
reactants are piled up closer to the reacting region (separator-electrode boundary).
Relaxation phenomena affect the accuracy of the “signature-curve” method for obtaining
capacity wvs. discharge rate in a minimum amount of time[117]. In the signature-curve
method, an initially fully charged cell is first discharged to a cutoff voltage at the highest
rate, Cq, and the capacity it achieves at that rate is recorded. To determine the capacity at
the next highest rate, Cy, rather than recharging the cell and then discharging it again at
the C, rate, the cell is allowed to relax after the end of the previous C; discharge, and then
discharged at the C, rate to the same cutoff voltage. The capacity recorded at the rate C,
is the sum of the capacities achieved in this manner for rates C; through C,. This method
saves the time of performing separate discharges and charges at each rate. Ideally, the rest
time prior to the next discharge at the C,; rate is just long enough to allow the cell to relax
to the conditions which would have existed if one had discharged the cell at the C,,,; rate
from full charge to the state of charge reached at the end of the previous C,-rate discharge.
This time is somewhat less than the characteristic time for relaxation of gradients in the

state of charge across the electrode, given by 7 = %.

6.2 Optimizing geometric parameters

There are several geometric parameters that can be controlled in the manufacturing and
design processes: volume fractions of each phase, especially the electrolyte volume fraction;
solid particle diameter; thickness of the electrodes; and separator area, which determines the
current density for a given overall applied current. In addition, the initial salt concentration
in the electrolyte and the positive-to-negative capacity ratio are design parameters. Modeling
can greatly reduce the amount of experiments needed to optimize these parameters. A full-
cell simulation model can be coupled to an optimization algorithm to determine the values
of the geometric parameters that yield some optimum objective. The objective must be
clearly defined by the designer, and could be maximum energy density or maximum average
power density for a given discharge time, maximum peak power density at a specified depth
of discharge, or some tradeoff between power and energy, such as the “knee” in a Ragone
plot[87]. The optimization procedure tells one the optimum geometric parameters which
maximize the performance of materials with given thermodynamic, kinetic, and transport
properties. One can then use this information on maximum theoretical performance to
compare different materials and to evaluate goals.

Optimizations of lithium-polymer batteries for electric vehicles[114| and lithium-ion bat-
teries for hybrid vehicles|[118, 11] have been presented. Chiang and Hellweg[119] optimize not
just the porosity of the electrode, but how the porosity should vary across an electrode, for
maximum power and energy density. The porosity should be higher closer to the separator,
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where the highest rate of reaction occurs. Newman|[105] presents an optimization methodol-
ogy to achieve maximum energy density for the case of a battery in which the assumptions
of facile kinetics, constant concentration, negligible ohmic drop in the electrode phase, and
constant open-circuit potential apply. A lithium battery using an ionomer electrolyte might
fall under this category. In this case, the optimal values of geometric parameters such as elec-
trode thickness, area, and porosity depend on the dimensionless parameter T = Urtq/qL?,
where %, is the design time of discharge and ¢ is the coulombic capacity of the electrode per
unit volume.

Of particular interest in the design of lithium-ion batteries is the optimization of the
positive-to-negative capacity ratio|4]. The issue of balancing capacity is of acute importance
in nonaqueous batteries because of the absence of a benign overcharge reaction such as the
hydrogen and oxygen evolution reactions which occur in aqueous systems. In the absence of
side reactions, one would make the capacities of the positive and negative electrodes nearly
equal, with the electrode which behaves more favorably at the end of charge and discharge
being limiting. However, in the presence of side reactions, particularly the formation reac-
tion to form the SEI layer on the carbon electrode, determining the optimum balance can
be more difficult. One must balance the penalties of having excess mass in either electrode
against the risks associated with overcharging or overdischarging particular electrodes|[120].
Given experimental data for how much cyclable lithium is consumed by a given side reaction,
e.g., SEI formation, models can help one assess the likelihood of risks such as lithium depo-
sition when the negative electrode is undersized or undesirable phase transitions or solvent
oxidation when the positive electrode is undersized, in order to find the balance of electrode
capacity that maximizes energy density without comprimising safety or cycle life.

6.3 Interpreting experimental data
6.3.1 Measuring transport properties

As mentioned earlier, electrolytes used in lithium batteries are usually concentrated, binary
electrolytes that exhibit nonideal behavior. In addition, polymer and gel electrolytes are
opaque, highly resistive, and sticky, and therefore their transference numbers are not easily
measurable using traditional techniques such as the Hittorf or moving boundary methods.
Recent theoretical studies have described the substantial error involved in measuring trans-
ference numbers with techniques that assume ideal behavior[14, 15], and have described how
experimental data can be interpreted rigorously using concentrated-solution theory to obtain
transference numbers. One method is the galvanostatic polarization technique|[121, 122, 123]:

meo F(mD)Y2 dInc
1-12) =
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where m is the slope of a A® vs. [ t; / 2, where A® is the potential across the electrolyte after
galvanostatic polarization at current I for time ¢;, and % is the variation of open-circuit
potential with electrolyte concentration.

Pollard and Comte[15] analyzed how to obtain the salt diffusion coefficient and transfer-
ence number from ac impedance for the case of a binary electrolyte (three species) and for
the case of a binary salt in a mixture of two solvents (four species). For the three-species
case, the transference number is determined by

o _ Zw(0)eAD
(L= 12)jop = 2 5= _p | Zu(0)eADe (69)
neo e vkl (L GE)

where Z,,(0) is the width of the arc related to transport resistance on a Nyquist plot and
the equation allows for the general case in which any of the three species may be involved
in reaction at the electrodes. Note that the quantity ¢?/z;v; is independent of the choice of
speciation in the electrolyte (e.g., degree of dissociation), and it is this quantity which appears
in equation 12. Pollard and Comte also present methods to test whether a binary electrolyte
obeys the assumptions of dilute solution theory and whether an electrolyte behaves as a
three-component or four-component solution.

Darling[30] has discussed how a distribution of particle sizes in a porous electrode can
affect the accuracy of measurements of the solid diffusion coefficient using the galvanostatic
intermittent titration (GITT)[124], restricted diffusion|[125|, and ac impedance[126] methods.
At short times, as used in GITT, the particles behave like semi-infinite media, and the
response is independent of the particle-size distribution. At long times, as used in restricted
diffusion and ac impedance, the response is affected by particle size. Therefore, the GITT
technique, in cells properly designed to minimize solution-phase diffusion effects (i.e., thin
electrodes and use of a reference electrode or thin separator) is preferred for measuring
solid diffusivities. Darling uses an analytic solution to the impedance of a porous electrode,
neglecting transport in the electrolyte, to derive the following correction to the ac impedance
method:

i eiRzz

Dy = Dsapp™~ (70)
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where ¢, is the volume fraction of active material in the electrode, the summation is over
all particle sizes and their respective volume fractions in the electrode, D, is the actual
solid diffusion coefficient at a given state of charge, and D; ,,, is the apparent solid diffusion
coefficient one would measure under the assumption that the electrode consisted of uniformly-
sized particles of radius R,,, with the same volume fraction and surface area as the actual
electrode. As described by Ho et al.[126], for spherical particles D; 4, is extracted from the
resistance R; and capacitance C} of the electrode extrapolated to zero frequency by the
formula
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Verbrugge and Koch|46] provide an analytic solution for the potential of a cell during a
GITT experiment for the case of a variable diffusion coefficient, given by equations 38 and
39 with a constant binary interaction parameter, and an open-circuit potential which follows
a Wohl’s expansion for the excess Gibbs free energy. Zhang et al. [127] compare model
simulations to experiments of cyclic voltammetry on a single particle of lithium manganese
oxide spinel.

6.3.2 Correcting open-circuit potential measurements for side reactions

One of the important features of the insertion compounds used in lithium batteries is the
complex variation of their thermodynamic potential with lithium concentration. However,
the precise relationship between potential and lithium concentration can be obscured when
side reactions introduce error into the calculation of lithium concentration from the amount of
current passed. Darling and Newman|[36] show how a simple spreadsheet model can be used
to correct the effects of side reactions on open-circuit-potential measurements. Data from a
few slow-scan voltammetric or slow-rate galvanostatic cycles are entered into a spreadsheet
with columns of time, current, potential, and apparent lithium concentration, ¥, as calculated
from Faraday’s law using the measured current and time. If there are side reactions, curves
of potential plotted against apparent y will not return to the same starting value of y after
a cycle. The apparent y is then converted to y’, the actual lithium concentration corrected
for side reactions, by

y'(t) =y'(t—1)+ (y(t) —y(t — 1)) + Ay(t) (72)

where Ay(t) is the amount of lithium reacted by side reactions in the time interval At, which
Darling and Newman calculate using the Tafel equation (for an oxidative side reaction)

F
Ay(t) = U Atexp (aa’s V)

RT
As mentioned in equation 59, ¥ includes both the exchange current density and the
open-circuit potential of the side reaction and is given by

(73)

v (74)

ALagig (—aa,sFUs)
= ex
Q RT
where AL is the volume of the electrode, (Q is the capacity in coulombs of the active material

in the electrode, and ¥ has units of s™!. One adjusts the value of ¥ and o, until the
charge-discharge curves all begin and end at the same value of y.
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6.3.3 ac impedance

Meyers et al. [128] present analytic solutions for the impedance of a porous insertion electrode
with film resistance, neglecting mass transport in the electrolyte. They present simplified
forms of the equation for a single particle and for high-, moderate-, and low-frequency limits,
and discuss when solid-phase diffusion overlaps with charge-transfer resistance and also the
capacitive effects of the slope of the open-circuit potential. In addition, they demonstrate
how to include a distribution of particle sizes in the analytic solution.

When solution-phase mass-transport impedance is also of interest, numerical simula-
tions can be performed. Doyle et al.[63] have demonstrated how numerical simulations of
ac impedance can be used to understand the contributions of different aspects of a cell to
its measured impedance spectrum. With a model, one can simulate different components
(separator, electrodes with and without solid, solution, film, charge transfer, and ohmic
resistances) separately by making relevant parameters infinite or zero. These different com-
ponents can then give insight into the impedance of the full cell (see figure 8). For example,
they demonstrated how effects due to distributed resistances within a porous electrode and
due to the slope of the open-circuit potential could be confused with solid diffusion limita-
tions, and show how ignoring these effects could lead to large errors when calculating solid
diffusion coefficients from ac impedance data on porous electrodes.

7 A brief mention of other kinds of modeling

This review has discussed only continuum-scale models. Other types of models are also
used in the study of lithium batteries. Emperical models are used to predict battery life
by extrapolating experimental results. Statistical mechanical models help in understanding
transport on the molecular level and also in understanding thermodynamic properties of
insertion compounds. For example, molecular dynamic simulations can be used to under-
stand and predict diffusion in multicomponent solutions, and Monte Carlo simulations can
illustrate how polymer motion impacts salt transport in polymer electrolytes. Finally, ab
tnitio calculations can be used to predict oxidation and reduction potentials and interaction
potentials, in order to understand mechanisms of solvent decomposition, to guide discovery
of novel electrode materials, and to provide information on interatomic forces needed for
statistical mechanical simulations.

8 List of symbols
a surface area of active material per volume of electrode (m™!)

¢ salt concentration in the electrolyte (mol/m? of solution)
¢; concentration of species 7 (mol/m?)
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¢s concentration of lithium in the solid insertion electrode (mol/m?)

cr total concentration of salt and solvent (mol/m3)

C double-layer capacitance (F/m?)

C, heat capacity (J/m?K)

D; diffusion coefficient of species i in dilute solution theory (m?/s)

D salt diffusion coefficient (m?/s)

D diffusion coefficient based on thermodynamic driving force (m?/s)

D, diffusion coefficient of lithium in an insertion electrode (m?/s)

D;; diffusion coefficient for interaction of species i and j (m?/s)

f+ mean molar activity coefficient of an electrolyte

F Faraday’s constant, 96487 C/equiv

in, transfer current normal to the surface of the active material (A /m?)

ip exchange current density (A/m?)

iy current density (A/m? superficial area) in the electrolyte

I total current density in the cell (A/m?)

J total flux due to reaction (mol/s-m? of active material)

k thermal conductivity (W/m?-K)

ko, k. rate constants for the anodic and cathodic directions of a reaction

k., mass transfer coefficient (m/s)

L thickness of an electrode (m)

L., Ly, L_ thickness of positive electrode, separator, or negative electrode (m)
m molality (mol/kg)

M; symbol for the chemical formula of species ¢ or molecular weight (g/mol)
n number of electrons involved in a half reaction

N; flux of species 7 (mol/s-m?of apparent area)

q charge on the electrode side of the double layer (C/m?)

g; surface charge density of species 7 on the solution side of the double layer (C/m?)
Q heat-generation rate (W/m?)

r radial position across a spherical particle (m)

i Tate of chemical reaction &k (mol/s-m?)

R universal gas constant, 8.3143 J/mol-K, or radius of a particle (m)

Ryiim effective resistance of a solid-electrolyte interphase (€2-cm?)

s stoichiometric coefficient, positive for anodic products

t time (s)

t? transference number of species 7 with respect to the solvent velocity

T temperature (K)

u mobility (cm?-mol/J- s)

U thermodynamic potential measured with respect to a lithium reference electrode (V)
v velocity (m/s)

V cell potential (V)
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V molar volume (m?/mol)

x position across cell (m)

y stoichiometry of lithium in an insertion electrode
z; charge of ion 1

Greek

« transfer coefficient

B symmetry factor for an elementary reaction

e volume fraction (of electrolyte unless otherwise specified)

['; excess concentration of species i in the double layer (mol/m?)

k effective ionic conductivity (S/m)

p chemical potential (J/mol)

v; moles of ion 7 produced when a mole of its salt dissociates

v number of moles of ions into which a mole of electrolyte dissociates

o effective electronic conductivity of a porous electrode (S/m)

© fraction of total lithium insertion sites which are occupied by lithium

O, site on the lattice of the insertion material which can be occupied by lithium
O, site on the lattice of a crystalline polymer which can be occupied by lithium salt
® potential

v+ mean molal activity coefficient

v; exponent for the dependence of 7y on the concentration of species ¢

Superscripts
o property is with respect to solvent velocity or initial condition
© secondary reference state of the chemical potential

Subscripts

a anodic

c cathodic

dl double layer

e electrolyte

f faradaic

1 species 1

lim limiting current

m main reaction

n electrochemical flux normal to surface of active material
o solvent in an electrolytic solution
s side reaction

1 electrode phase

2 electrolyte phase
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— anion
+ cation
oo bulk property
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Table 1: Parameters required for the model. Values must be specified for both electrodes.
All material properties can be functions of composition and temperature.

thermodynamic kinetic transport geometric
U 19 D a
p (of all components) «,, «. D, L, L, L_
Cs,mazx Rfilm ti R
fx K e(of electrolyte, active, and filler)
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Cp
ou/oT
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® v, is a measure of the current distribution in a porous electrode under linear kinetics

with a film resistance|65]: v; = aL? (i + %) / (sz'lm + %) -

47



Table 2: Time constants of different physical phenomena

Time constant Phenomena
electrode/ I discharge of an electrode of coulombic capacity gejectrode
R?*/D, diffusion in a spherical particle
L*/D diffusion in the electrolyte

22;‘_" >+cosh vg ] 2

2vg sinh v

raCT? (4 +1) |2

v 2
nEVactive L€

double-layer charging of a porous electrode®

relaxation of gradients in utilization across an electrode

(80U /90)
Figure 1: Diagram of a lithium-ion cell.
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Active F|IIer Separator Collector
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Material
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Figure 2: Equilibrium potentials at the surface of particles of two sizes during a charge and
discharge. The larger particle has a larger concentration overpotential. From ref. [60].
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Figure 3: Profiles of ®; — ®, across a porous petroleum coke electrode at different times
during a C/2-rate (-1.146 mA /cm?) charge. Time since the beginning of charge is indicated
in minutes. After 106 minutes, the potential near the separator interface has dropped below
the potential for lithium deposition. From ref. [35]
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Figure 4: Ragone plot for Li | LiMn,O, cells with different electrolytes. Solid lines: ionomer
(unity transference number) with conductivity indicated as parameter. Dashed line: polymer
electrolyte with ¢4 = 0.2, D= 7.5x10™® cm?/s, and conductivity of 2 to 3.5x10™* S/cm
(depending on electrolyte concentration). For this system, the higher transference number
of the ionomer outweighs its lower conductivity when the decrease in conductivity is less
than a factor of 10. From ref. [113].
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Figure 5: Electrolyte concentration across a Li | polymer | VO3 cell during C/3-rate dis-
charge for a polymer with x = 107® S/cm, ¢9=0.3, and D=10"" cm?/s ("ideal") and a
polymer with k = 10™* S/cm, 5 = 0.1, and D=6x10"? cm?/s ("available" at 40°C). The
separator is 50 microns thick. The polymer with poorer transport properties develops a large
concentration polarization within the positive electrode that severely limits the utilization of
the active material. Simply making the separator thinner will not solve this problem. From
ref. [114].
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Figure 6: Cell potential during discharge at rates ranging from C/5 (0.4167 mA /cm?) to 7C
(14.56 mA /cm?) for a Bellcore-style plastic lithium ion cell. Markers: experiment. Lines:

simulation. From ref. [35].
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Figure 7: Salt concentration profiles for the same cell as figure 6 during galvanostatic dis-
charge at 6.25 mA /cm? (3C rate). The separator region is set off by dashed lines. Time
since the beginning of discharge is given in minutes. After eleven minutes into the discharge,
the electrolyte is depleted in the cathode. From ref. [35].
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Figure 8: Simulated impedance of a Li | PEOgLiCF350; | LiTiS; cell. The base case
is the impedance of the full cell. The components of this impedance can be elucidated
by progressively setting parameters to have zero impedance. Thus, first we see that the
semicircle is due to kinetic impedance and that solid diffusion has little effect, then that
solution-phase diffusion within the porous electrode is responsible for much of the shape of
the impedance spectrum at low frequencies, and finally that ohmic drop and the capacity of
the porous electrode are responsible for a 45° slope at moderate frequencies that shifts to a
verticle line at low frequencies. From ref. [63].
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