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Addressing strongly interacting matter in the region of energy density where the hadronic gas
phase coexists with the quark-gluon plasma phase, we discuss how thermodynamic consistency can
be used to constrain the equation of state for uniform matter and we illustrate the method by
constructing a Tc-dependent family of thermodynamically consistent equations of state based on
simple spline interpolations between the gas and plasma phases.
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Strongly interacting matter is expected to exhibit a
first-order phase transition from a hadronic gas to a
quark-gluon plasma with an associated critical tempera-
ture Tc ≈ 150 − 200 MeV. The exploration of this fun-
damental phenomenon has long been the focal point of
relativistic heavy-ion physics.

The identification of useful experimental signals is de-
pendent on our ability to develop suitably realistic mod-
els for the dynamical evolution of the system. Micro-
scopic transport treatments are hampered by the fact
that the relevant degrees of freedom differ in the two
phases. This basic problem is absent in fluid dynamics,
which is inherently macroscopic, and such a framework
is therefore well suited for propagating the system as it
expands through the region of phase coexistence where
the microscopic structure of the system changes. The
fluid-dynamical framework has the additional advantage
that its key physics ingredient, the equation of state p(ε),
is precisely the central object of inquiry. However, the
calculation of the equation of state of strongly interact-
ing matter in the region of phase-coexistence presents a
daunting challenge and it is necessary to employ approx-
imate forms when studying this important part of the
phase diagram.

When a system has a first-order phase transition, then
its thermodynamic potential presents a convex anomaly
and the corresponding thermodynamic quantities, such
as temperature and pressure, have a non-monotonic de-
pendence on the energy density [1]. The presence of a lo-
cal convexity implies the existence of two separate phase
points that have a common tangent and which may there-
fore coexist in thermodynamic equilibrium, with the re-
sulting (average) energy density being determined by the
relative proportion of the two phases. Thus, throughout
this region of phase coexistence, systems prepared in spa-
tially uniform configurations are thermodynamically un-
stable since they can be rearranged into more favorable
configurations by phase separation. The region of coexis-
tence naturally divides into three sectors: the two regions
near the boundaries where the thermodynamic potential
is still locally concave and the central sector where it is lo-
cally convex. In the concave sectors, a spatially uniform
configuration is metastable and phase separation occurs
by nucleation since a finite disturbance is required to trig-

ger the separation. By contrast, in the central sector
where the concavity is present, even infinitesimal devi-
ations from uniformity will become amplified and phase
separation will thus occur spontaneously. Under such
circumstances, uniform matter is mechanically unstable
and will exhibit spinodal decomposition, the end results
of which is the spatial separation of the initially uniform
system into a macroscopically non-uniform configuration
with the hadron and plasma phases coexisting in ther-
modynamic equilibrium.

Traditionally, fluid-dynamical treatments have sup-
pressed these instabilities by replacing the pressure func-
tion p(ε) through the unstable region by the constant
value pc associated with a phase mixture having the
same average energy density (see Refs. [2–4], for exam-
ple). However, since a spatially separated phase mixture
cannot develop instantly, due to the energy transport
required, it is necessary to investigate the dynamics of
the associated decomposition process. This issue was ad-
dressed recently in a study that employed a cubic spline
function for the equation of state in the coexistence re-
gion and then obtained simple expressions for the result-
ing spinodal growth rates [5]. That simple treatment
suggested that the degree of amplification achieved dur-
ing the traversal of the spinodal phase region may be
sufficient to make the ensuing spinodal pattern useful as
a diagnostic tool for probing the hadronization process.

The present Brief Report focusses on thermodynamic
consistency in the construction of the equation of state
of strongly interacting uniform matter in the phase-
coexistence region, a property that is generally not
present in a simple spline approximation.

We consider first thermal equilibrium of a spatially uni-
form single-phase system in the thermodynamic limit.
Since the present note merely serves to illustrate how
thermodynamic consistency may be incorporated, it is
preferable to consider the simplest scenario. The chem-
ical potentials are therefore taken to be zero. However,
it is expected that the first-order phase transition occurs
only when the baryon chemical potential exceeds a cer-
tain critical value, so it is important to adapt the method
appropriately to any specific scenario under study. While
this critical value must ultimately be determined exper-
imentally, very recent lattice calculations suggest that it
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is in fact relatively small [6]. If this is indeed the case,
our present results would then hold approximately for
the midrapidity region at RHIC.

In the thermodynamic limit, the energy E, the entropy
S, and the free energy F = E − TS are all proportional
to the volume V ,

E(V, T ) = V ε(T ) , (1)

S(V, T ) = V σ(T ) , (2)

F (V, T ) = V f(T ) , (3)

and, with the chemical potentials fixed, the reduced
quantities ε, σ, and f = ε − Tσ depend only on the
temperature T . The pressure and the entropy are given
as partial derivatives of F ,

p(T ) = −

(

∂F

∂V

)

T

= −f(T ) , (4)

S(V, T ) = −

(

∂F

∂T

)

V

= −V
df

dT
. (5)

We thus have σ = −df/dT = dp/dT . (This result
also follows from the Maxwell relations of thermodynam-
ics which express the mathematical fact that the mixed
derivaties of the thermodynamic potential are identical,
∂2F/∂T∂V = ∂2F/∂V ∂T , i.e. ∂p/∂T = ∂S/∂V = σ.)
This relation implies d(Tσ) = d(ε + p). Furthermore,
since Eq. (4) implies dp/dT = σ + Tdσ/dT − dε/dT , we
also have Tdσ/dT = dε/dT . Hence the following rela-
tions hold generally,

dp = σdT , (6)

dε = Tdσ . (7)

We refer to these as the Maxwell relations.
As discussed above, it is possible for two such ther-

modynamic phases to coexist when the thermodynamic
potential for the uniform system has a convex anomaly.
The two coexisting phase points are then those that de-
fine the common tangent. In addition to having the same
temperature Tc, the existence of a common tangent im-
plies that the two phases also have the same pressure pc

(since (∂F/∂V )T = −p).
We now consider this type of situation and address the

form of the thermodynamic functions through the inter-
mediate region of energy density where a uniform config-
uration is mechanically unstable (or at most metastable)
against separation into the two coexisting thermody-
namic phases. Although our considerations are gen-
eral, we have in mind specifically the coexistence of a
hadronic gas phase (of energy density εH) and a quark-
gluon plasma (of energy density εQ).

From the first Maxwell relation dp = σdT (6) we find

dp

dε
dε = dp = σdT = [ε + p]

dT

T
. (8)

Thus, if the pressure is known as a function of energy
density, p(ε), then T (ε) can be determined,

T (ε2) = T (ε1) exp

[
∫ ε2

ε1

dp(ε)

dε

dε

ε + p(ε)

]

, (9)

where ε1 and ε2 are two arbitrary energy densities. This
relation holds generally and it can be utilized to constrain
the equation of state whether or not there is a phase
transition. When a first-order phase transition is present,
T (ε) should be equal to Tc at the coexistence boundaries,
εH and εQ, and we obtain an integral condition,

∫ εQ

εH

dp(ε)

dε

dε

ε + p(ε)
= 0 , (10)

which must be obeyed by any thermodynamically viable
pressure function p(ε).

From the second Maxwell relation (7), βdε = dσ, we
obtain directly a condition on β(ε) = 1/T (ε),

∫ ε2

ε1

β(ε)dε =

∫ σ2

σ1

dσ = σ2 − σ1 . (11)

The general relations (9-11) may be particularly useful if
the equation of state is known at the energy densities ε1

and ε2, (such as may be the case in the limits ε1 → 0 and
ε2 → ∞). For the first-order phase transition, we may
use the fact that σQ − σH = βc(εQ − εH) to recast (11)
as a Maxwell-type condition,

∫ εQ

εH

[β(ε) − βc]dε = 0 , (12)

which requires the vanishing of the net area between the
actual curve β(ε) and the (constant) value βc = 1/Tc

pertaining to the phase mixture.
There is of course no gurantee that the thermody-

namic consistency conditions (10) and (12) will be sat-
isfied by a given function p(ε), but they either succeed
or fail together: If one of those integral conditions is
met, then the other one is also met, since the basic rela-
tion d(Tσ) = d(ε + p) guarantees that Tdσ = dε implies
σdT = dp and vice versa. Once T (ε) is known, the en-
tropy then readily follows, σ(ε) = (ε + p(ε))/T (ε).
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FIG. 1: The equation of state obtained by interpolating be-
tween the hadronic gas and the quark-gluon plasma by means
of a cubic spline function (solid). Also shown are the equa-
tions of state obtained by augmenting the spline (13) with a
quartic adjustment (14) using p0 = ±50 MeV/fm3 (dashed).
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After the above general considerations, we now illus-
trate how a thermodynamically consistent equation of
state may be obtained by a spline procedure.

In order to obtain a quantitative result, we adopt
specific forms for the equation of state in the me-
chanically stable gas and plasma regions. As is com-
monly done [2–5], we describe the hadronic phase as
an ideal gas of hadrons, including 14 known species
{π, K, η, ρ, . . . , N, Λ, Σ, ∆}, while the plasma is an ideal
gas of of gluons and u, d, s quarks and antiquarks (with
vanishing chemical potentials). The specification of the
critical temperature (for which we take Tc = 170 MeV)
determines the associated bag constant. The correspond-
ing critical pressure is then pc ≈ 80 MeV/fm3 and
the energy densities of the two coexisting phases are
εH ≈ 400 MeV/fm3 and εQ ≈ 2200 MeV/fm3, imply-

ing a latent heat of ∆ε ≈ 1800 MeV/fm3. Furthermore,
v2

H = (dp/dε)Q ≈ 0.20 and v2

Q = (dp/dε)Q = 1

3
are the

squares of the sound speeds in the coexisting systems.
From this quite conventional starting point, we first

follow the procedure employed in Ref. [5] and consider
the cubic spline function p̃(ε) that matches the pressure
and its slopes at εH and εQ,

p̃(ε) = pc + ξ(ε)
[

(εQ − ε)2v2

H − (ε − εH)2v2

Q

]

ξ̄(ε), (13)

where the interpolation parameter is ξ ≡ (ε − εH)/∆ε
and ξ̄ ≡ 1 − ξ. The resulting pressure function is dis-
played in Fig. 1. While having a smooth dependence on
ε everywhere, it generally does not conform exactly with
the conditions of thermodynamic consistency.
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FIG. 2: The inverse temperature β(ε) as obtained by applying
the thermodynamic integral relation (9) to the functions p(ε)
shown in Fig. 1, starting from εH and ending at εQ.

In order to determine to what degree the spline ap-
proximation (13) violates the Maxwell condition (12),
we calculate β(ε) by using Eq. (9). The resulting func-
tion is shown in Fig. 2. The Maxwell condition (12) de-
mands the vanishing of the net area between the curve
β(ε) (solid) and the constant value βc associated with the
mixed phase (dashed), which is ensured if β(ε) returns to
the critical value βc at the boundary εQ. As is apparent

from the figure, the condition happens to be well satisfied
for the particular case considered.

A wider range of candidate equations of state can be
explored by augmenting the above cubic spline (13) and
thus consider p(ε) = p̃(ε) + δp(ε). In order to maintain
the match of pressure and speed of sound at the coexis-
tence points the value and slope of δp(ε) must vanish at
εH and εQ. We therefore employ a quartic term,

δp(ε) = 16p0 ξ(ε)2ξ̄(ε)2 . (14)

This term is peaked at the midpoint 1

2
(εH + εQ) where

ξ = 1

2
and where it has the value p0. Its main effect is

to shift the inflection point of p(ε) in the direction of the
sign of the strength parameter p0. Figures 1-2 include
the results of using the values p0 = ±50 MeV/fm3. It
is evident from Fig. 2 that these values of p0 lead to a
significant degree of thermodynamic mismatch at εQ.

By adjusting p0 it is possible to obtain exact thermody-
namic consistency. We have determined the correspond-
ing optimal value to be p0 ≈ −0.8 MeV/fm3 which is
hardly significant as the corresponding changes in p(ε)
and T (ε) are invisible on the plots.

To further broaden the range of scenarios considered,
we now vary the specified critical temperature Tc and
consider also the values 160 MeV and 180 MeV. The
corresponding spline approximations to the equation of
state are shown in Fig. 3, while Fig. 4 displays the as-
sociated temperature functions resulting from the ther-
modynamic relation Eq. (9). A quick glance at Fig. 4
suggests that the spline approximation leads to a good
degree of thermodynamic consistency also for these cases.
However, a closer inspection reveals that the the two
curves have somewhat larger discontinuities of T (ε) at
εQ (these are still quite small and difficult to spot on the
plot). If the parameter p0 is adjusted to ensure a perfect
match, the required values are p0 ≈ −3.6, 2.9 MeV/fm3

for Tc = 160, 180 MeV, respectively.
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FIG. 3: The equation of state p(ε) obtained with the cubic
spline approximation (13) for three values of the critical tem-
perature, Tc = 160, 170, 180 MeV. The coexistence points
are indicated and, for Tc = 170 MeV, the constant-pressure
Maxwell contruction is indicated.
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FIG. 4: The dependence of the temperature T on energy den-
sity ε as obtained by using Eq. (9) with the the three equations
of state p(ε) shown in Fig. 3, The phase-coexistence points
are indicated (All three curves have slight discontinuities at
εQ that are barely visible to the eye).

It follows that there exists a particular value of Tc

for which the unadjusted cubic spline function satisfies
the thermodynamic consistency condition exactly. In
the present treatment, this special value comes out as
Tc ≈ 172 MeV. (It should be recognized that the precise
numbers obtained for the parametrized forms depend on
the specific physics input, particularly the specification
of the hadron species and their masses. Consequently,
any application of the method proposed here should of
course refit these values appropriately. Still, we find it
worthwhile to quote the precise numbers so that readers
with special interest in the topic may verify the results.)

In summary, we have shown how a thermodynamically

consistent equation of state for uniform matter must gen-
erally satisfy a Maxwell-type integral condition, which
thus provides a constraint on the equation of state for
uniform matter prepared in the phase-coexistence region.
This may constitue a useful aid for the development of
approximate equations of state for the phase-coexistence
region. Since the analysis is quite general, the proposed
method of approximation may be useful also outside the
area of strong-interaction physics on which we have fo-
cussed here. Of course, as already pointed out, the pro-
cedure needs to be carried out for the applicable values
of the chemical potentials.

In order to provide quantitative results, we have em-
ployed schematic representations of the two single-phase
regimes as ideal gases of either elementary hadrons or
quarks and gluons, as is common practise. Examining a
family of candidate pressure functions p(ε) constructed
by making a quartic adjustment of the cubic spline func-
tion that smoothly connects the two single-phase regions,
we have found that the simple (unadjusted) spline form
in fact satisfies the thermodynamic consistency require-
ment quite well for a broad range of critical tempera-
tures. Thus this simple approximation may be useful
for dynamical studies involving the phase-coexistence re-
gion, such as fluid-dynamical calculations of the rapidly
expanding system formed in a high-energy nuclear colli-
sion.
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Figure 1
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Figure 2
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