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Beam Conditioning for FELs: Consequences and Methods

A. Wolski, G. Penn, A. Sessler, and J. Wurtele*
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA 94720
(Dated: July 8, 2004)

The consequences of beam conditioning in four example cases (VISA, a Soft X-Ray FEL, LCLS and
a “Greenfield” FEL) are examined. It is shown that in emittance limited cases, proper conditioning
reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the
undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of two or
more. The beam dynamics in a general conditioning system are studied, with “matching conditions”
derived for achieving conditioning without growth in the effective emittance. Various conditioning
lattices are considered, and expressions derived for the amount of conditioning provided in each
case when the matching conditions are satisfied. These results show that there is no fundamental
obstacle to producing beam conditioning, and that the problem can be reduced to one of proper
lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.

PACS numbers: 41.60.Cr, 29.27.-a

I. INTRODUCTION

Successful operation of proposed short-wavelength free
electron lasers (FELs) demands electron beams with very
small transverse emittance. Particles with large betatron
amplitude will tend to slip back with respect to a nomi-
nal particle with zero betatron amplitude, and thus can
fall out of phase with the radiation produced in an un-
dulator, limiting the gain of an FEL. It has been known
for some time that it is possible in principle to ease the
requirements on the transverse emittance by introduc-
ing a correlation between particle energy and betatron
amplitude [1]. Increasing the energy, and hence the lon-
gitudinal velocity, of particles with large betatron ampli-
tudes compensates for the phase slip resulting from the
betatron amplitude. Thus, an appropriate correlation
between betatron amplitude and particle energy in the
undulator can ensure that the necessary phase relation-
ship between particles in the beam and the radiation is
maintained, allowing FEL operation with larger electron
beam emittances than would otherwise be possible.

The analysis in Reference [1] was limited to a bunch
consisting of particles all having the same longitudinal
co-ordinate at the conditioner. Recent work [2] suggested
that any attempt to “condition” a non-zero length beam
for an FEL by introducing the correct correlation be-
tween betatron amplitude and energy inevitably results
in betatron mismatches at different longitudinal positions
along the bunching, causing an increase in the effective
transverse emittance. In parameter regimes of interest
for proposed facilities, this effective emittance increase
was found to be sufficiently large as to outweigh the ben-
eficial effect of conditioning, and even to prevent any op-
eration of the FEL. Here, we show that the increase in
the effective emittance is not, in fact, inevitable, and
we present designs of systems where the required condi-
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tioning is achieved without increase in the effective emit-
tance. Simulation results for the most promising method
are the same as that for an ideally conditioned beam.
In Section II we consider the potential benefits of beam
conditioning in the context of proposed and possible fa-
cilities, and suggest some interesting parameter regimes.
We then proceed in Section IIT to consider the source
of the effective emittance growth found by the authors
of Reference [2], and to show the strategy for avoiding
this problem. In Section IV we give examples of various
systems that may be used to achieve conditioning. In
Section V we simulate the output from one of the more
promising lattice designs and show that a real system
is as effective as the ideal beam conditioning assumed
in Section II. In this paper, we focus on using con-
ventional elements and lattice configurations to achieve
beam conditioning; 1t is also possible to use “exotic” laser
or laser/plasma methods as described in Reference [3].

II. CONSEQUENCES OF BEAM
CONDITIONING FOR FEL PERFORMANCE

Optimal FEL output radiation from an electron beam
is achieved when the electrons have a specific average
forward velocity; after each undulator period, electrons
should fall behind the laser field by one wavelength. This
implies a resonance condition which is often expressed
as a resonant energy, assuming zero transverse betatron
amplitude. However, for a beam that has non-zero emit-
tance, there is a spread in forward velocity associated
with the path-length differences from betatron motion.
This results in a spread in forward velocities which, when
too large, limits FEL performance. For FELs that are
emittance-limited, more electrons can be brought into
resonance, with the correct forward velocity, by introduc-
ing a correlation between transverse amplitude and en-
ergy. This correlation improves performance while leav-
ing the intrinsic energy spread and emittance of the elec-
tron beam unchanged.



For a particle having zero transverse amplitude, the av-
erage angle inside of an undulator is ay /7y, where m.c?y
is the electron energy, m, is the electron mass, ¢ is the
speed of light, and ayy = e BrmsAvu /27m.c is the normal-
ized strength of the undulator; here, Bryg 18 the RMS
value of the undulator field on axis, and Ay is the pe-
riod of the undulator. In the limit of large 7, the angle is
roughly the same as v, /e, where ¥ is the velocity. Hence,
taking the average over an undulator period,

v? 1

_221___@:1_1—1—6%

. 1
o2 v 2 ~2 (1)

The slippage after one undulator period, Ay, is given by
(1=9,/¢)Ay. To be in resonance, this should be equal to
the desired laser wavelength A. To lowest order in 1/92,
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An electron at non-zero amplitude will have an additional
angle due to its betatron motion. This angle will add
in quadrature to the angle in Equation (1). When the
variation of the undulator field with radius is taken into
account, this leads to the condition

1 /14+a% 2J 2.J,
A== Ui —24 —y) Au, 3
2 ( 72 Bx By ( )
where J;, Jy, are the transverse actions. In terms of the

Twiss parameters,
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where P, is the reference momentum, p; is the canonical
transverse momentum, and similarly for J,. The aver-
age value of J, in a beam is equivalent to the geometric
emittance €,; the normalized emittance ey = ve,. Below
we assume negligible o, and oy, and that g, = 8, = 3.
FEL performance 1s limited by the spread in resonant
wavelength when either the relative energy spread, o /7,
or emittance-related bandwidth, eyAy/487vA, are com-
parable to the “FEL parameter” [4], which reflects the
tolerance of an FEL to deviations from resonance. When
transverse emittance is the limiting factor, more particles
can be brought into resonance by introducing a correla-
tion between transverse amplitude and energy,

A
77 = Kpdo + Ky Jy. (5)

The spread in the RHS of Equation (2) across the particle
distribution is minimized if this correlation is chosen such
that £, = ky = &, with
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Values of & required for proper conditioning are typically
of the order of 10 — 100 yum~!. A valueof k = 1 pm~! im-
plies that for a beam with 1 gm normalized emittance in

both transverse planes, a typical electron must have just
over 1 MeV more energy than a zero amplitude particle
in order to be resonant at the same wavelength.

When the beam is more strongly focused, so that
B < vAu /may, the variation of magnetic field with posi-
tion in the bunch is not important. However, when the
gain length 1s shorter than a betatron period, instead of
averaging over angle the optimal conditioning is to ad-
just particles to be resonant at their peak angles, because
this occurs when they are close to the axis, which is also
where the laser field is strongest. This leads to the same
conditioning parameter as above.

Below we consider several examples of FEL parame-
ters to see how conditioned beams perform differently
from unconditioned beams. In all cases, the two trans-
verse directions have identical beta functions and we take
the conditioning parameter x, = &, = . The expression
for conditioning given above has been verified by simu-
lations to be the optimal value. Note that reducing the
beta function of the beam in an FEL requires stronger
conditioning for proper matching. Simulations for FEL
amplifier performance were performed using the GENE-
SIS code [5].

In the following figures, red is used for the nominal
emittance, green for twice the nominal emittance, and
black for higher emittances. Points represent uncondi-
tioned beams, and lines represent conditioned beams.
Because conditioned beams are optimized at smaller beta
functions, results using the best value for the beta func-
tion for a conditioned beam are represented as lines with
‘4’ symbols. Conditioned beams are taken to have the
optimal conditioning parameter in each case.

We consider four examples: VISA [6], a soft X-Ray
FEL [7], LCLS [8], and a “Greenfield” FEL [9]. Table I

gives the parameters used in the simulation in each case.

A. VISA

Results are shown in Figure 1 for various emittances at
or above the nominal value, for both conditioned and un-
conditioned beams. The optimum gain length is roughly
16 cm. It is seen that at nominal values the performance
is not limited by emittance, and conditioning has little
effect until the emittance is increased by a factor of four.

B. Soft X-ray FEL

Figure 2 shows results for nominal and twice nomi-
nal emittance, for both conditioned and unconditioned
beams, in a Soft X-Ray FEL. The optimum gain length
is roughly 7 m, while for an unconditioned beam the gain
length is twice as long. There i1s some degradation of the
FEL performance at higher emittance for the conditioned
beam, but the performance is still much improved over
the nominal, unconditioned case.



TABLE I: Parameters used in modeling four FELs.

VISA Soft LCLS Greenfield Greenfield
X-Ray Low Energy High Energy
Radiation wavelength [nm] 840 1 0.15 0.04 0.04
Electron beam energy [GeV] 0.070 2.5 14.3 12.1 27.8
Fractional energy spread [107*] 8 4 1 1.2 1
Normalized emittance [pm] 2.1 2 1.2 0.1 0.1
Peak current [kA] 0.24 0.5 3.4 3.5 3.5
Undulator period [cm] 1.8 2.5 3 3 3
Undulator parameter ar 0.89 0.96 2.62 0.71 2.62
Beta function [m] 0.29 4.3 17.5 17.5 17.5
Conditioning parameter [pm™ ] 0.036 2.6 5.8 22 22
« £y =2 um, unconditioned —— gy =2 um, conditioned ogy=1.2 wm, f=17.5 m, uncondit ex=1.2 um, f=17.5 m, conditioned
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FIG. 1: Radiation power as a function of undulator length
in the VISA FEL. Conditioned and unconditioned beams at
different emittances are compared.
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FIG. 2: Radiation power as a function of undulator length in
the Soft X-Ray FEL. Conditioned and unconditioned beams
at different emittances are compared.
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FIG. 3: Radiation power as a function of undulator length
for LCLS, with different beta functions, and with conditioned
and unconditioned beams.

C. LCLS

Figure 3 shows the variation of FEL performance with
beta function; the unconditioned beam does not improve
as the focusing is made stronger, but the conditioned
beam has a shorter gain length and higher saturated
power for beta functions down to 4.4 m. The optimum
gain length is 2.5 m, while for the unconditioned beam
the gain length is b m.

Figure 4 shows the variation of LCLS performance with
emittance; the unconditioned beam performs far worse at
higher emittances, while even at 4 times nominal emit-
tance the conditioned beam performs as well as the un-
conditioned beam at nominal emittance. Note that at
smaller beta functions, the conditioning parameter is pro-
portionately larger, with a value of 23.2 yum™"' for a 4.4
m beta function.
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FIG. 4. Radiation power as a function of undulator length
for LCLS, with different values of beam emittance, beta func-
tion, and for conditioned and unconditioned beams. Note that
a conditioned beam with four times larger emittance (black
line) achieves the same performance as the nominal case (red
diamonds).

D. “Greenfield” FEL

Future FELs may be imagined that reach wavelengths
of 0.1 A. Using conventional design criteria this would
require ultra small emittances of order 0.1 pm. Condi-
tioning allows us to reach close to Greenfield FEL designs
performance using a beam with an order of magnitude
larger emittance and smaller beta functions.

We consider two parameter sets for Greenfield FELs
(see Table T). In both cases, FEL performance for con-
ditioned beams improves as the beta function is reduced
from the nominal design value of 17.5 m to 4.4 m. For
the smaller beta function the conditioning parameter is
88 um~!. The results are shown in Figure 5 and Figure
6. At 12 GeV, for a normalized emittance of 0.1 pm, the
gain length 1s 3.2 m. At emittances of 1.2 pm, a combi-
nation of beam conditioning and stronger focusing yields
a gain length of 6 m, with a lower saturation level. At
28 GeV, for a normalized emittance of 0.1 ym, the gain
length is 3 m. At emittances of 1.2 pm, a combination
of beam conditioning and stronger focusing yields a gain
length of 5 m, with a slightly lower saturation level.

As we shall show, beam conditioning requires large
nonlinear correlations to be introduced into the electron
distribution in order to minimize the number of particles
with large deviations from the resonance condition for
high emittance beams. Proper conditioning then reduces
sensitivity to beam emittance and allows stronger focus-
ing in the undulator. Simulations show gain lengths a
factor of two shorter, with higher saturated power, com-
pared to unconditioned beams. The benefits of beam
conditioning are seen to be applicable to a wide range of
FEL designs.
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FIG. 5: Radiation power as a function of undulator length for
a “Greenfield” FEL at 12 GeV. Different beta functions and
emittances are shown, with conditioned and unconditioned
beams.
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FIG. 6: Radiation power as a function of undulator length for
a “Greenfield” FEL at 28 GeV. Different beta functions and
emittances are shown, with conditioned and unconditioned
beams.

III. BEAM DYNAMICS IN CONDITIONING
SYSTEMS

We can show in a straightforward fashion that con-
ditioning may be achieved in a symplectic system with-
out increase in the effective transverse emittance of the
beam. For simplicity, we consider particle motion only
in the longitudinal and one transverse plane; it will be
seen that the extension to two transverse planes is triv-
ial. We use canonical action-angle variables (J, ¢) in
the transverse plane, and canonical variables (z, é) in
the longitudinal plane, with distance s along a reference
trajectory as the independent variable. The reference



trajectory is the path of a particle with J = 6 = 0; 2
is the displacement along the reference trajectory of the
selected particle with respect to a particle following the
reference trajectory, and ¢ is the energy deviation of the
selected particle with respect to a particle following the
reference trajectory.

Let us consider a system of length L defined by the
integrable Hamiltonian:

= %J—i—?wz%l (7)

The transformation of phase space variables following
from this Hamiltonian is:

JL=To
oL = ¢o + 21z

ZI, = 2o

6L:60+27T€J0. (8)

The subscript 0 denotes values at the beginning of the
conditioning system, and the subscript L denotes values
at the end. Since the angle and energy deviation variables
do not appear explicitly in the Hamiltonian, the action
and time variables are conserved. We note that the en-
ergy deviation increases by an amount proportional to
the action, so a beam of particles where the energy de-
viation and action are initially uncorrelated acquires a
correlation between these variables:

(J1) = 27E(JF). (9)

Thus the above Hamiltonian gives the required condi-
tioning.

We now need to consider what has been the effect on
the matching conditions and the emittance of the bunch.
In general, the Twiss parameters are functions of the en-
ergy deviation of the particle, but it is possible to design
a beamline where the energy dependence vanishes (at
least to first order) at some point in the lattice. This is
discussed further in Section IV A. In this case, the beam
moments are correctly given by:

(2%) = pe (p2) = (1+a)ePi /1,
(10)

(zpy) = —aePy

where P; 1s the reference momentum and

is the transverse geometric emittance of the beam; the
brackets (-} denote an average over all particles in the
beam. If the action of the particles is conserved along
the beamline, then the transverse emittance defined by
11 will be conserved.

It is clear from the Hamiltonian in 7 that the betatron
phase advance of the particle over the conditioning sys-
tem depends on its position with respect to the reference
particle. This is a benign effect from point of view of
beam conditioning, but it implies that the beta function
varies with longitudinal co-ordinate, since

A(b:/%ds. (12)

In practice, the beta function has an energy dependence,
which is related to the chromaticity of the beamline. In a
conditioner, the “required” dependence of phase advance
on longitudinal co-ordinate may be associated with an
energy dependence, by introducing a correlated energy
spread along the bunch, as we shall see in Section IV A.
Thus, the energy dependence of the beta function may
be used to give us the conditioning we require. However,
there is an important point here: if the energy of the
particles is changed at a location where the beta func-
tion has strong energy dependence, then the beam will
become mismatched to the phase space, and an increase
in the effective emittance will result. These apparently
conflicting requirements (for the beta function to have
some variation to allow the conditioning, and to be fixed
to avoid emittance growth) may be resolved by zeroing
out the variation of beta function with energy at those
critical sections of the conditioner where the energy of
the particles is changing.

The authors of reference [2] reached an incorrect con-
clusion that an effective increase in emittance is an in-
evitable consequence of conditioning. Their conclusion
was based on an analysis of a conditioning Hamiltonian
of a specific form that did not preserve the action as a
constant of the motion. If an alternative Hamiltonian, for
example 7, is used, then conditioning is achieved without
an accompanying increase in emittance. In the case of
the solenoid channel used in reference [2], the emittance
was not conserved because a beam with large beta func-
tion was injected into a large solenoid field, creating large
swings in beta function that did not cancel out for off-
momentum particles. The lattice considered had too few
free parameters to remove all of the energy dependencies
at the critical locations.

IV. VARIOUS CONDITIONERS

In this section, we consider four possible realizations
of conditioners that both preserve beam emittance and
provide matching into the FEL along the length of the
bunch.

A. A “Chromatic Conditioner”

Particle motion in a simple focusing channel may be
approximately described by a Hamiltonian:

H 3
H=L"J4+276>J. 1
LJ-I-TFLJ (13)

Here, p is the phase advance over the length of the beam-
line for a particle with the nominal energy, and & is the
chromaticity, defined by:

190
§ = 5-5: 00, (1)



where A¢ is the change in angle variable of a particle over
the length of the beamline. We note that the Hamilto-
nian 13 is essentially the same as 7 which we used in
our discussion of conditioning, but with the longitudi-
nal co-ordinate z replaced by the energy error 6. This
suggests we can construct a conditioner by first using an
RF cavity to “chirp” the beam (i.e. introduce a corre-
lation between longitudinal position and energy), then
passing the beam through a focusing channel with some
chromaticity, and finally using a second RF cavity to re-
move the chirp. The first of our conditions for a practical
conditioner is satisfied by the extent to which the Hamil-
tonian 13 is a good approximation for the dynamics in
the beamline. The second condition is satisfied if we are
able to design the beamline in such a way as to make the
Twiss parameters at the RF cavities independent of the
particle energy. Note that it 1s not possible to satisfy the
second condition everywhere along the beamline (since
the chromaticity is related to the energy dependence of
the beta function), but nor is this necessary, as we shall
demonstrate.

Physically, our conditioner will work as follows. The
first RF cavity effectively makes the energy deviation of
particles in the bunch a linear function of the longitudinal
co-ordinate. In the beamline, particles “slip back” with
respect to the reference particle by a distance depend-
ing on the betatron amplitude. This 1s a necessary effect
of the chromaticity, as is easily seen from the Hamil-
tonian 13. The second RF cavity “corrects” the energy
deviation introduced by the first cavity. However, the en-
ergy correction will not be that required to exactly cancel
the energy deviation introduced by the first cavity, and
there will be a residual energy deviation depending on
the particle’s betatron amplitude and the chromaticity
of the beamline. This is exactly the conditioning that
is required. Considering the effective emittance, if the
beta functions at the RF cavities are dependent on en-
ergy, then different “slices” of the bunch will become mis-
matched in terms of the transverse phase space distribu-
tion. Tuning the lattice so that the beta functions are in-
dependent of energy at the cavity ensures that the bunch
remains matched along its entire length going into the
FEL. The strength of the correlation is proportional to
the slope of the RF gradient, which remains very nearly
constant along the bunch for typical bunch lengths of the
order of 100 pm.

As an illustration of this simple conditioner, we con-
sider the beamline shown in Figure 7. This uses thin
quadrupoles alternately focusing and defocusing as in a
FODO lattice, but the quadrupoles are tuned to mini-
mize the variation of the Twiss parameters with energy
deviation at either end of the beamline, where the (thin)
RF cavities are placed. In calculating the beta functions,
the beamline 1s assumed to be periodic. In principle, the
amount of beam conditioning can be increased by repeat-
ing the beamline a number of times between the two RF
cavities. Figure 7 shows the beta functions in both a
“matched” case, in which the quadrupole strengths are

adjusted to set the energy dependence of the Twiss pa-
rameters to zero at each end of the beamline, and in
a “mismatched” case, where the Twiss parameters have
significant energy dependence at each end of the beam-
line. Figure 7 also shows the energy dependence of the
beta functions; this dependence is best given in terms of

the W function, which is defined by:

W = +a? + b2, (15)
where
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To understand the significance of the W function, note
that at a symmetry point in a beamline (as at either end
of the focusing channel shown in Figure 7) the symmetry
condition enforces &« = 0 at all energies, and we have then
simply:

Ap
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In other words, the fractional change in the beta function
is Just W times the energy deviation.

In the matched case, the values of the W functions at
the start and end of the beamline are essentially zero.
In between, the non-zero values indicate variation in the
beta functions (and hence the phase advance) with en-
ergy, which is a necessary feature for the conditioning. In
fact, the larger the values of the W functions, the more
conditioning is provided. Note that the required tuning
of the quadrupoles may be achieved easily in a lattice
design code such as MAD [10].

A conditioning beamline can be achieved by combining
repeated cells of such a lattice, either in a chain or by in-
sertion into a ring, with RF cavities at either end to apply
and cancel an energy chirp. In Figure 7, we show Twiss
parameters for a properly matched case as well as a “mis-
matched” case with 93/06 = 3083 for the periodic beta
function at the endpoints. The results of tracking simula-
tions for the mismatched case after 10 cells are shown in
Figure 8 for particles at longitudinal positions z = 0, £2
mm. The mismatched case shows a strong dependence
on z, caused by sensitivity to the energy chirp imparted
by the first RF cavity. We note that the shapes of the
ellipses in the horizontal phase space have been changed
as a result of passing through the conditioner; this is con-
sistent with the change in the Twiss parameters with the
different energies of the different groups of particles.

Unfortunately, the amount of conditioning that may
be provided by this simple chromatic conditioner with
realistic parameters is not great. The parameters of the
matched example are given in Table II. Note that from
the Hamiltonian 13, we find that the amount of condi-
tioning in a chromatic conditioner is given by:

A
= on
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FIG. 7: Lattice parameters for a simple chromatic, conditioning beamline. The left-hand plots show the “matched” case, and
the right-hand plots the “mismatched” case. Black lines correspond to the horizontal plane, red lines to the vertical plane.
(Top) Beta functions. (Bottom) Variation of the above beta functions with energy, expressed in terms of the W function.

Using the parameters in Table II, we find that the change
in energy deviation for a particle with action 5.34 pm
is about 0.01, in good agreement with tracking results.
The amount of conditioning provided by this beamline is
1.9 x 1073 um~1, or about 3000 times smaller than that
required, for example, by LCLS.

TABLE II: Parameters in the example matched chromatic
conditioning beamline.

Beam Energy E 1 GeV
Normalized emittance (v J) 5.34 pm
RF Voltage VRE 52.4 MV
RF Frequency WRF 27 X 4.85 GHz
Max Quad Strength k1l 15.2 m~ '
Beamline Length L 37T m
Chromaticity £ -57.4
Conditioning K 0.0019 gm™1!

Conditioning in both planes can be achieved either
with two lattices or by coupling the planes. We note that

the Hamiltonian in 13 averaged the phase advance over
the length of the beamline, whereas in a finite beamline,
there will be some dependence on initial betatron phase.
However, while the conditioning parameter grows linearly
with distance, the variation with betatron phase will re-
main bounded, and so it is not a serious problem. If the
lattice is not properly matched for the variations in beam
energy driven by the RF cavities, on the other hand, the
variation with longitudinal position will get much worse
as the conditioning increases.

B. A Solenoid-based Conditioner

Instead of using quadrupoles to focus the beam as in
the simple chromatic conditioner, we can use a solenoid
as proposed in Reference [2]. The importance of match-
ing the beam to the solenoid was observed by Kwang-Je
Kim at the University of Chicago and Argonne National
Laboratory, in productive discussions with the authors.
The basic arrangement and principles of operation are
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FIG. 8: Phase space ellipses in the horizontal plane after 10
cells of the “mismatched” conditioning lattice, at three dis-
tinct longitudinal beam coordinates: z = 0 (stars), z = 2 mm
(squares) and z = —2 mm (diamonds). For the “matched”
case, all curves coincide.

the same as for the chromatic conditioner: a solenoid is
“sandwiched” between two RF cavities, with the cavities
tuned to apply an energy chirp at the entrance to the
solenoid, and cancel the chirp at the exit. In general, a
particle follows a helical path through the solenoid, with
the radius of the path determined by the horizontal and
vertical co-ordinates of the particle at the entrance of
the solenoid. For simplicity, let us consider a solenoid
of length L that is tuned such that the linear transfer
matrix in the two transverse planes is the identity, i.e.

|k|L = 2nm, (19)
where n is an integer and

B.

k=22
Bp’

(20)

here B, is the longitudinal solenoid field, and Bp is the
beam rigidity. To match the beam to the solenoid, we
need to impose the condition:

1

==, 21
g1 (21)
In this case, it turns out that the chromatic variation in
the beta function is zero, as well as the beta functions
being constant along the length of the solenoid. The
change in longitudinal co-ordinate from a particle passing

through a single solenoid is given by:
1
Az = —§k2Lﬁ [Jx cos? (¢) + Jy cos? ((by)] . (22)
If we consider two solenoids separated by a 7/2 betatron

phase advance in both planes, then the combined change
in longitudinal co-ordinate is:

Az = —%kZLB (Jo+ Jy). (23)

Now adding an RF cavity to chirp the beam at the en-
trance to the first solenoid, and a second RF cavity to
cancel the chirp (in the case of zero betatron amplitude)
at the exit of the second cavity, we find the following
expression for the amount of conditioning provided:

A’y _ GVRF WRF BZL _ GVRF WRF N

~J E ¢ 4Bp E ¢ 2’
where J = J, 4+ J,. Although it is possible, in princi-
ple, to increase the amount of conditioning by using a
large beta function, if the beta function is not properly
matched to the solenoid then there can be a strong depen-
dence of the Twiss parameters on the energy deviation,
and a growth in the projected transverse emittance.

As an example, we consider the parameters given in
Table TII. Note that B,L/Bp = 2x in this example.
These parameters give a conditioning of roughly 1.6 x
1075 pm~!, which is about 6 orders of magnitude smaller
than the amount of conditioning needed for the examples
given in Section II.

(24)

TABLE III: Parameters for estimate of conditioning provided
by a solenoid conditioner.

Beam energy E 1 GeV

RF Voltage VRE 10 MV
Cavity frequency WRF 27 x 4.85 GHz
Integrated solenoid field B.L 20.96 Tm

C. A TM;,0 Cavity Conditioner

Sessler, Whittum and Yu [1] have suggested using an
RF cavity operating in the TMs19 mode. Having realized
that transverse phase space mismatch can occur along
the length of a bunch with non-zero length, they only
considered a very short bunch. However, this mismatch
may be avoided using the techniques described above, to
eliminate the (first-order) dependence of the beta func-
tion on energy and thus on the longitudinal coordinate.
The amount of conditioning provided by a conditioner
based on a TMy1g cavity may be written:

ﬂ_l@ﬂ(ﬁ — Bumin) (25)

vJ  yme? ¢
where Ej specifies the peak longitudinal electric field in
the cavity:

.o\ 2
£, = 1 (jﬂ) (l‘z — yz)Eo cos(wrrt), (26)
4\ R
for cavity radius R and frequency wgrp. The constant
joa1 1s the first zero of the Bessel function J,. As an
example, we consider the parameters given in Table IV.
These parameters give a conditioning of roughly 270 x
1075 pm~!, which is again small compared to the amount
of conditioning needed for the examples given in Section
II.



TABLE IV: Parameters for estimate of conditioning provided
by TMaz10 cavity conditioner.

Beam energy E 1 GeV

Cavity field amplitude eFo/mc? 200 m~?

Peak RF Voltage 3.2 MV

RF power (Q=1000) 20 MW

Cavity frequency WRF 27 x 4.85 GHz

Beta functions Proax 30 m
6min 5m

V. FEL SIMULATION RESULTS

Although the lattice with a TMsyg cavity produces
weak conditioning, unwanted nonlinear effects are suf-
ficiently small to consider implementing it in a ring with
many turns to provide the necessary conditioning. With
each pass, the change in energy deviation resulting from
the cavity is:

o N
Af = ——9 (jﬂ) cos(wrrt)
2mcewrry \ R

X [2Bmax T €087 (¢2) — 2BminJy cos”(¢y)] (27)

Now suppose we make N passes through the whole sys-

tem, starting from a different betatron phase each time,

so we can average over all values of ¢. The total change
in energy deviation is:

eE jor\°

Asy = N——2 (2L} cos(wrpt

N 2MCWRFY ( R (Wrrt)

X [ﬁmaxjx - ﬁminjy] 5 (28)

and after exchanging the x and y planes, and a second
round of N turns, the net energy shift is proportional to

J = Jgz + Jy, yielding:

Ay N eFEy wrr
N{—)= ———+— 1) [Bmax — Bmin] - (2
< P}/J > 27 mcz c COS(WRF ) [6 6 ] ( 9)

This is written in terms of an “average conditioning per
pass”, noting that conditioning is only properly obtained
in this system by making many several passes through the
system, including coupling between the x and y planes.
The conditioning is limited by the strength of the fields
in the RF cavity and the number of passes which can be
taken.

As an example, we consider the parameters given in
Table IV. These parameters give a conditioning per pass
of roughly 270x107° pm~!, which is larger than that pro-
vided by the other methods described here, but is again
small compared to the amount of conditioning needed
for the examples given in Section II. Many thousands of
passes would be required to provide the beam condition-
ing required for LCLS, for example. It may be possible to
use a conditioning section as an insert in a small storage
ring; however, there are then a wide variety of effects that
could disrupt the beam quality, including transverse and
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FIG. 9: Results of simulation of TM210 cavity conditioner.

Correlation between energy and horizontal action after con-
ditioning. The emittance growth is negligible.

longitudinal nonlinear effects, and collective effects such
as wakefields and coherent synchrotron radiation. The
possibility of developing a practical conditioning ring re-
quires further study.

To examine the question as to whether or not this lat-
tice can produce a high-quality, conditioned beam, we
simulate a ring incorporating the TMa1g cavity condi-
tioner. The particle tracking includes nonlinear terms
in the magnetic fields and in the RF cavities, although
the arcs are assumed not to induce any distortions in the
beam (linear chromaticity is included). In addition to
the parameters listed in Table IV, the beam size is taken
to have o, = 250 pm, peak current 150 A, and relative
energy spread 1 x 10~% at 1 GeV; subsequent bunch com-
pression by a factor of 10 yields higher peak current and
conditioning parameter, but with a higher energy spread
as well, although the relative energy spread is reduced
by acceleration to 14 GeV. The results are shown in Fig-
ure 9, where the energy deviation is shown as a function
of transverse amplitude. The required conditioning is
achieved after 8500 turns in each plane; in this case, cou-
pling has been introduced within the ring so that 17000
turns in one ring yield conditioning in both planes. Simu-
lations results in GENESIS using this beam are presented
in Figure 10; the performance is almost identical to the
idealized case presented in Section 1T C.

VI. CONCLUSIONS

We have shown that beam conditioning in free-electron
lasers allows for operation at significantly larger emit-
tances than are envisioned for soft X-ray FELs, the LCLS
and the so-called Greenfield X-ray FEL sources. Previ-
ously perceived limitations to conditioning, based on an
assumption that conditioning introduces a mismatch in
the transverse phase space dependent on longitudinal po-
sition in the bunch, are readily avoided by a proper de-
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FIG. 10: Results of GENESIS simulations using LCLS pa-
rameters. FEL performance of 4.8 pm emittance (4x nom-
inal) conditioned beam from TMa1o cavity lattice (blue cir-
cles) is compared with similar, ideally conditioned (black line)
and performance of the nominal, unconditioned case (red di-
amonds); see Figure 4.

sign of the conditioner. We demonstrate that the proper
design of a conditioner requires that (a) the condition-
ing correlate energy with transverse action, and that (b)
the beamline Twiss parameters be independent of energy
at points of the conditioner where the particle energy
is changed. Under these conditions there is no increase

10

in the effective emittance. We have three realizations
of conditioning lattices using conventional technology,
based on solenoids, quadrupoles, and sextupoles. Con-
ditioning at low energy is easier, but requires that the
conditioning be preserved throughout the subsequent ac-
celeration and transport. Conditioning at high-energy
requires a long conditioner section, leading us to propose
a conditioning ring.

Finally, there is much work to be done. Conditioning
rings need to be further explored, including radiation and
collective effects; Greenfield FELs may benefit from an
acceleration scheme that has conditioning sections built
into it so that the beam emerges already conditioned.
However, we have shown that by focusing on conservation
of action and on variation of Twiss parameters with en-
ergy, the problem of developing a conditioning beamline
can be reduced to more standard lattice design methods.
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