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Noise Propagation in Iterative Reconstruction
Algorithms with Line Searches
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Abstract— In this paper we analyze the propagation of noise in
iterative image reconstruction algorithms. We derive theoretical
expressions for the general form of preconditioned gradient algo-
rithms with line searches. The results are applicable to a wide
range of iterative reconstruction problems, such as emission tomog-
raphy, transmission tomography, and image restoration. A unique
contribution of this paper comparing to our previous work [1] is
that the line search is explicitly modeled and we do not use the ap-
proximation that the gradient of the objective function is zero. As
a result, the error in the estimate of noise at early iterations is sig-
nificantly reduced.

I. I NTRODUCTION

Iterative image estimation methods have been developed to
improve image quality through accurately modeling the system
response and noise distribution. It is essential to estimate the
uncertainty of the reconstructed images for quantitative applica-
tions.

Barrettet al. [2] derived approximate formulae for the mean
and covariance of the maximum likelihood (ML) expectation
maximization (EM) reconstruction [3], [4] as a function of the
iteration number. The same approach was extended to two max-
imum a posteriori(MAP) EM algorithms [5], [6] by Wang and
Gindi [7] and to block iterative algorithms [8], [9] by Soareset al
[10]. This iteration-based approach is attractive for algorithms
that are terminated before convergence, as is common practice
for the EM algorithm and its ordered-subsets variants [11].

An alternative approach was proposed by Fessler and Rogers
[12], [13], who analyzed the mean, variance, and spatial resolu-
tion at the fixed point of the objective function. The resolution
and noise properties are computed at the fixed point using par-
tial derivatives and truncated Taylor series approximations. Qi
and Leahy [14], [15] extended this approach by deriving sim-
plified expressions for the local impulse response function and
covariance using Fourier transforms. Stayman and Fessler [16]
used a similar approximation in designing penalty functions for
uniform resolution. Other extensions of the fixed point analy-
sis include [17], [18], [19], [20], [21]. While these results are
independent of the particular optimizing algorithm used, they
require that the algorithm be iterated to effective convergence.
Hence, they are not applicable to the images obtained at early
iterations.

Building on the existing work, we [1] have derived unified
formulae for calculating the mean and variance of the image es-
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timate using preconditioned gradient algorithms, which includes
ML-EM and MAP-EM as special cases. We have also shown
that the iteration-based result is consistent with the fixed-point
based results. While the results in [1] can be applied to algo-
rithms with line search by using the approximation that the gra-
dient of the objective function is zero, this results in large error
at early iterations. In this paper, we extend the work in [1] by
explicitly modeling the line search in the noise propagation. We
only use the low noise approximation and hence improve the
accuracy of the theoretical results at early iterations.

II. T HEORY

In image estimation problems, the image is often estimated
through maximizing an objective functionΦ(y,x)

x̂ = arg max
x

Φ(y,x), (1)

wherex is the unknown image andy is the measurement.
A general form of iterative algorithms that solves (1) can be

written as
x̂k+1 = x̂k + αak (2)

whereak is a search direction andα is the step size that is ei-
ther preselected, or determined through a one dimensional line
search.

To analyze the noise propagation, we rewrite (2) as

¯̂xk+1 + εk+1 = ¯̂xk + εk + (ᾱ + α̃)(āk + ãk) (3)

= ¯̂xk + ᾱāk

+εk + ᾱãk + α̃āk + α̃ãk. (4)

where ¯̂xk
, ᾱ, āk are the expectations of the image estimatex̂k,

step sizeα, and search directionak, respectively, andεk, α̃, ãk

are zero mean noise vectors. In the rest of this paper, we will
assume that the noise in each term is small compared to the cor-
responding expectation.

Taking the expectation on both side of (4), we have

¯̂xk+1 = ¯̂xk + ᾱāk+ < α̃ãk >, (5)

where< · > denote the expectation.
Subtracting (5) from (4), we get the following noise propaga-

tion equation

εk+1 = εk + ᾱãk + α̃āk + α̃ãk− < α̃ãk > . (6)

Assumingα̃ << ᾱ andã << ā, we can drop the second-order
noise terms in (5) and (6).

To compute these equations, we need knowledge of the search
direction ak and step sizeα. In the following, we focus on
preconditioned gradient algorithms.



A. Search Directionak

In preconditioned gradient algorithms, the search directionak

is formed by

ak = Ck(x̂k,y)∇xΦ(y, x̂k), (7)

whereCk(x̂k,y) is a positive definite matrix (called precon-
ditioner) and∇xΦ(y, x̂k) denotes the gradient vector of the
objective function atx̂k. Here we allow the preconditioner
Ck(x̂k,y) to vary from iteration to iteration.

When the noise iny andx̂k is small, we can approximate the
gradient vector and preconditioner using the first order Taylor
series expansion

∇xΦ(y, x̂k) ≈ ∇xΦ(ȳ, ¯̂xk)

+∇xyΦ(ȳ, ¯̂xk)n + ∇xxΦ(ȳ, ¯̂xk)εk, (8)

Ck(x̂k,y) ≈ Ck(¯̂xk
, ȳ)

+Ck
x(εk; ¯̂xk

, ȳ) + Ck
y(n; ¯̂xk

, ȳ), (9)

whereȳ is the expectation of the datay, n ≡ y− ȳ is the noise,
the (j, l)th element of the operator∇xx is ∂2

∂xj∂xl
, the (j, l)th

element of the operator∇xy is ∂2

∂xj∂yl
, the (j, l)th element of

Ck
x(εk;x,y) is

∑
m εk

m∂Ck
j,l(x,y)/∂xm, and the(j, l)th ele-

ment ofCk
y(n;x,y) is

∑
m nm∂Ck

j,l(x,y)/∂ym.
From the above results,a can be approximated by

a ≈ ā + Ck(¯̂xk
, ȳ)∇xxΦ(ȳ, ¯̂xk)εk

+ Mx

[
∇xΦ(ȳ, ¯̂xk); ¯̂xk

, ȳ
]
εk

+ Ck(¯̂xk
, ȳ)∇xyΦ(ȳ, ¯̂xk)n

+ My

[
∇xΦ(ȳ, ¯̂xk); ¯̂xk

, ȳ
]
n (10)

where
ā = Ck(¯̂xk

, ȳ)∇xΦ(ȳ, ¯̂xk), (11)

the(j, l)th element ofMx[g;x,y] is∑
m

gm∂Ck
j,m(x,y)/∂xl,

and the(j, l)th element ofMy[g;x,y] is∑
m

gm∂Ck
j,m(x,y)/∂yl.

B. Gradient algorithms with preselected step size

There are many iterative algorithms use predetermined step
size. For examples, ML-EM [3], [4] and MAP-EM [5], [6] (and
their ordered subsets variants [11]) use a constant step size of
one; RAMLA [22] and BSREM [23] use predetermined variable
step sizes. For such algorithms, there is no noise inα, i.e., α̃ ≡
0.

Substituting (10) into (6), we get the following noise propa-
gation equation

εk+1 ≈ [I − Ak]εk + Bkn ≡ V k+1n, (12)

where

Ak = −α
{

C(¯̂xk
, ȳ)∇xxΦ(ȳ, ¯̂xk)

+ Mx

[
∇xΦ(ȳ, ¯̂xk); ¯̂xk

, ȳ
]}

, (13)

Bk = α
{

C(¯̂xk
, ȳ)∇xyΦ(ȳ, ¯̂xk)

+ My

[
∇xΦ(ȳ, ¯̂xk); ¯̂xk

, ȳ
]}

, (14)

and
V k+1 = [I − Ak]V k + Bk. (15)

C. Gradient algorithms with line searches

For gradient algorithms with line searches, the step sizeα is
implicitly defined by

∂

∂α
Φ(y, x̂k + αak) = 0, (16)

or equivalently,

[∇xΦ(y, x̂k + αak)]′ak = 0, (17)

where′ denotes matrix (or vector) transpose.
We can analyzeα using the implicit function theorem [12].

Explicitly writing α as a function ofy,x anda, we have

[∇xΦ(y,x + α(y,x,a)a)]′a = 0. (18)

Taking the partial derivative of (18) with respect toy, x, a,
and using the chain rule, we get

0 = a′∇xxΦ(y,x + α(y,x,a)a) a∇yα(y,x,a)
+a′∇xyΦ(y,x + α(y,x,a)a) (19)

0 = a′∇xxΦ(y,x + α(y,x,a)a) a∇xα(y,x,a)
+a′∇xxΦ(y,x + α(y,x,a)a) (20)

0 = α(y,x,a)a′∇xxΦ(y,x + α(y,x,a)a)
+a′∇xxΦ(y,x + α(y,x,a)a) a∇aα(y,x,a)
+[∇xΦ(y,x + α(y,x,a)a)]′ (21)

Solving the above equations, we obtain the gradient vectors of
α with respect toy,x, anda

∇yα(y,x,a) = − a′∇xyΦ(y,x + α(y,x,a)a)
a′∇xxΦ(y,x + α(y,x,a)a)a

(22)

∇xα(y,x,a) = − a′∇xxΦ(y,x + α(y,x,a)a)
a′∇xxΦ(y,x + α(y,x,a)a)a

(23)

∇aα(y,x,a) = −α(y,x,a)a′∇xxΦ(y,x + α(y,x,a)a)
a′∇xxΦ(y,x + α(y,x,a)a) a

− [∇xΦ(y,x + α(y,x,a)a)]′

a′∇xxΦ(y,x + α(y,x,a)a)a
(24)

Assuming the noise is small, we can approximateα as

α ≈ ᾱ + ∇yα(ȳ, ¯̂xk
, āk)n + ∇xα(ȳ, ¯̂xk

, āk)εk

+∇aα(ȳ, ¯̂xk
, āk)ãk, (25)
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Fig. 1. The phantom image.

whereᾱ satisfies

[∇xΦ(ȳ, ¯̂xk + ᾱāk)]′āk = 0. (26)

Combining (6), (10) and (25), we obtain

εk+1 ≈ [I − Ak]εk + Bkn ≡ V k+1n, (27)

where

Ak = −ᾱ
[
I + āk∇aα(ȳ, ¯̂xk

, āk)
]

×
{

C(¯̂xk
, ȳ)∇xxΦ(ȳ, ¯̂xk)

+Mx

[
∇xΦ(ȳ, ¯̂xk); ¯̂xk

, ȳ
]}

−āk∇xα(ȳ, ¯̂xk
, āk), (28)

Bk = ᾱ[I + āk∇aα(ȳ, ¯̂xk
, āk)]

×
{

C(¯̂xk
, ȳ)∇xyΦ(ȳ, ¯̂xk)

+My

[
∇xΦ(ȳ, ¯̂xk); ¯̂xk

, ȳ
]}

+āk∇yα(ȳ, ¯̂xk
, āk) (29)

The covariance of the reconstructed image is then

Σx̂k = V kΣy

[
V k

]′
, (30)

whereΣy is the covariance matrix of the data.
Substituting (11) and (26) into (5), we found that the expec-

tation of the reconstruction is just the reconstruction ofȳ. This
is the same as those obtained in [2], [7], [12].

To simplify (28) and (29), we can use the following approxi-
mation (Approximation 2)

∇xΦ(ȳ, ¯̂xk) ≈ 0.

Then, (28) and (29) can be reduced to

Ak = −ᾱC(¯̂xk
, ȳ)∇xxΦ(ȳ, ¯̂xk), (31)

Bk = ᾱC(¯̂xk
, ȳ)∇xyΦ(ȳ, ¯̂xk), (32)

which are the same as those derived in [1].

III. M ONTE CARLO SIMULATIONS

We conducted Monte Carlo simulations to validate the theo-
retical results. The phantom contains a uniform disk and two
hot spots (Fig. 1). It is represented using 32×32 square pix-
els. The sinogram has 32 projection angles covering 180◦ and
32 detector bins per angle with a sampling distance of one pixel.

The total number of expected events in the sinogram is 80,000.
Scattered and random events are not simulated. We use a MAP
algorithm with a gamma prior. The prior probability ofx is

p(x) =
∏
j

1
Γ(β)

(β/α)βxβ−1
j exp(−βxj/α). (33)

The mean and variance ofxj areα andα2/β, respectively. In
the simulation, we setα equal to

∑
i yi/

∑
j sj , wheresj is the

detection sensitivity at voxelj, and useβ to control the noise in
the reconstruction.

Combining with Poisson likelihood function, the objective
functionΦ(y,x) is

Φ(y,x) =
∑

i

[yi log(ȳi) − ȳi]

+
∑

j

[(β − 1) log(xj) − βxj/α]. (34)

At each iteration, the update direction is formed by

ak = diag

[
x̂k

j

sj

]
∇xΦ(y, x̂k), (35)

and the step sizeα is found by one dimensional Newton-
Raphson line search. The initial image is a constant image equal
to the mean of the prior.

Fig. 2 shows the comparison of the variance of the recon-
struction computed using the Monte Carlo method and theoret-
ical expressions as a function of iteration. Monte Carlo results
were calculated using 8000 independent reconstructions. Fig. 3
shows the average relative root mean squared errors (RMSE) of
the theoretical predictions, which is defined as

RMSE =

√√√√ 1
P

∑
i∈Disk

[
varth

i − varMC
i

varMC
i

]2

, (36)

whereP is the number of pixels in the disk region,varth
i and

varMC
i are the theoretical and Monte Carlo variances at pixeli,

respectively.
The results show that in general the theoretical predictions

match the Monte Carlo results. However, at early iterations,
the theoretical predictions with Approximation 2 (‘+’s) exhibit
relatively large error because the condition of the approximation
is not satisfied. In comparison, the error is significantly reduced
by explicitly modeling the line search (‘◦’s).

A. Effect of nonnegativity constraint

We conducted simulations to study whether the iteration-
based results can model the nonnegativity constraint. We use
a similar disk phantom, but with a cold spot (5% activity of the
surround hot region). An OSL-MAP algorithm with a Gaussian
prior [7] was used. The step size was constant. Fig. 4 shows
the variance images of the Monte Carlo reconstructions and the-
oretical predictions with and without Approximation 2 at itera-
tion 10, 100, and 2000. It shows that the theoretical results with
Approximation 2 cannot predict the variance in the cold region.
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Fig. 2. Plots of variances of MAP reconstruction with gamma prior as function
of iteration. The legends are Monte Carlo results (‘×’), theoretical results
with modeling of line search (‘◦’), and theoretical results with Approxima-
tion 2 (‘+’).

The theoretical results with (13)-(14) match the Monte Carlo
results up to about 100 iterations, but eventually breaks down.
These trends are more clearly shown in Fig. 5. Therefore, al-
though the iteration-based results do not assume the gradient of
the objective function is zero, the effect of nonnegativity con-
straint still cannot be modeled. This is mostly because the first
order Taylor series expansion linearizes the solution around the
noise-free reconstruction and hence cannot preserve the nonneg-
ative property.
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Fig. 3. Plots the relative mean squared errors of the theoretical predictions as
function of iteration. The legends are the theoretical results with modeling
of line search (‘◦’), and theoretical results with Approximation 2 (‘+’).

IV. CONCLUSIONS

We have theoretically analyzed the noise propagation in iter-
ative reconstruction algorithms with line searches. The Monte
Carlo simulation results show that by explicitly modeling the
line search, we significantly reduce the error of the theoretical
predictions at early iterations comparing to our previous results
in [1].
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Fig. 5. Plots of variances as function of iteration: (a) mean variances in the hot
region; (b) mean variances in the cold region; (c) the minimum variances in
the cold region. The legends are Monte Carlo results (‘×’), theoretical re-
sults using (13)-(14) (squares), and theoretical results using (31)-(32) (‘+’).
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