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This paper compares the use of geophysical data for subsurface characterization based on data 

collected at two different DOE field sites: the NABIR South Oyster site in Virginia and the Oak 
Ridge Field Research Center in Tennessee. The granular porous aquifer at the first site is 
relatively homogenous. At this site, petrophysical relationships between hydrogeological 
properties measured at wellbore locations and geophysical attributes could be developed using 
co-located wellbore and tomographic data. However, the aquifer at the second site is fractured 
and very heterogeneous, and reliable petrophysical relationships could not be developed using 
such co-located data sets. Different Bayesian models have been developed based on specific field 
conditions of the two sites to incorporate geophysical data into hydrogeological parameter 
estimation. Results show that despite the difference in aquifer heterogeneity, geophysical data 
provide useful information for hydrogeological characterization. 
 
Introduction 
 
Geophysical methods have found many applications in subsurface characterization (Hyndman et 
al., 1994; Hubbard and Rubin, 2000; Chen et al., 2001). The main reason for the success is that 
geophysical methods are less invasive and provide more information than traditional 
characterization methods. However, several obstacles still hinder the routine use of geophysics 
for hydrogeological characterization  (Hubbard and Rubin, 2002).  
 
One key obstacle is the lack of understanding of petrophysical relationships between geophysical 
attributes and hydrogeological parameters, especially in complex media such as fractured rock. 
In addition, the discrepancy in scale and resolution between geophysical and hydrogeological 
measurements, and uncertainty associated with geophysical data acquisition and interpretation 
make it difficult to develop petrophysical relations for linking geophysical attributes to 
hydrogeological properties. Consequently, applications of geophysical data for site 
characterization are often site-specific, and the petrophysical relationships are simple linear 
regression models obtained using co-located geophysical and hydrogeological data.  
  
This study demonstrates the use of geophysical data for hydrogeological characterization at two 
DOE field sites that have dramatically different aquifer heterogeneity. We estimate the spatial 
distributions of hydraulic conductivity at the first site and hydrogeological zonation at the second 
site, using geophysical data and different Bayesian models. We discuss a comparison between 
the two Bayesian models developed according to site-specific petrophysical models.  
 
Case Study at Granular Porous Media Site 
 
Site information: The South Oyster Site is located near the town of Oyster on Virginia's Eastern 
Shore Peninsula between the Chesapeake Bay and the Atlantic Ocean. The sediments at the 



South Oyster Site consist of unconsolidated to weakly indurated, well-sorted, medium- to fine- 
grained Late Pleistocene sands and pebbly sands. The water table at the site is located 
approximately 3 m below ground surface. Within the South Oyster Site, two study areas exist: 
the South Oyster Focus Area and the Narrow Channel Focus Area. This case study focuses on 
the Aerobic Flow Cell in the Narrow Channel Focus Area. Forced gradient chemical and 
bacterial tracer test experiments were performed within the flow cell in 1999 (Hubbard et al., 
2001).  
 
Extensive geophysical and hydrological data have been collected within the saturated portion of 
the Aerobic Flow Cell, approximately between depths of 0—6 m below the mean sea level 
(MSL), to characterize the subsurface before the tracer test experiments. These included ground-
penetrating radar (GPR) and seismic tomographic data along each transect, and flowmeter and 
slug test data at 10 wellbores. Our goal was to provide detailed hydraulic conductivity estimates, 
by integrating crosswell geophysical data and borehole flowmeter data, which could be used to 
constrain numerical modeling of flow and contaminant transport at the site. 
 
Data analysis: Hydraulic conductivity values obtained from wellbore flowmeter data displayed 
a small variation at this site; the natural logarithmic conductivity only had a variance of 0.30. 
The log-conductivity had a good spatial structure, which could be fit using an exponential model 
with a vertical range of 0.6 m and a horizontal range of 5 m. The geophysical tomographic data 
(including GPR and seismic velocity, and GPR attenuation), inverted from their corresponding 
travel time data, also varied over small ranges. The ranges of GPR velocity, GPR attenuation, 
and seismic velocity were 5.9—6.3 cm/ns, 0.18—0.38 1/m, and 1.61—1.73 km/s, respectively. 
 
We developed petrophysical models between hydraulic conductivity and geophysical attributes 
using co-located hydraulic conductivity and geophysical data at the wellbore locations. Although 
both log-conductivity and geophysical data displayed small variations, good correlations exist 
between those parameters. Correlation coefficients of log-conductivity versus GPR velocity and 
log-conductivity versus seismic velocity were 0.68 and 0.67, respectively.  
 
Estimation method: Since petrophysical models between the geophysical attributes and 
hydrogeological parameters could be developed, and log-conductivity had a good spatial 
structure, we developed a Bayesian model to integrate the geophysical data and borehole 
measurements. To illustrate this approach, we only use GPR velocity (for more types of 
geophysical data and details of the method, see Chen et al., 2001). Let vi be the known GPR 
velocity at pixel-i (referred to as data). Let Ki be the unknown hydraulic conductivity at pixel-i 
(referred to as a random variable), which is spatially correlated to the hydraulic conductivity at 
its surrounding pixels. Thus, the Bayesian model is given as follows: 
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where C is a normalizing constant that insures integration of the left side is equal to one. 
The )|( ii vKf  term is referred to as the posterior probability density function (PDF), the )( iKf term 
is referred to as the prior PDF, and the )|( ii Kvf  term is referred to as the likelihood function.  

 
The posterior PDF in Equation 1 is obtained numerically. We first derive the prior PDF using 
geostatistical kriging of borehole hydraulic conductivity measurements. We then derive the 



likelihood function from the co-located log-conductivity and GPR velocity data at or near 
wellbores. For the given prior PDF and likelihood function, we divide the entire domain of prior 
distribution into many small intervals. For each data point on the domain, we evaluate the values 
of the prior PDF and likelihood function. Consequently, we obtain the posterior distribution of 
hydraulic conductivity at each point (0.25 m × 0.25 m pixel) in space along the 2D tomograms 
(Figure 1). Cross-validation suggests that this approach provides accurate estimates of hydraulic 
conductivity. The subsequent research also suggests that these data are very useful for 
constraining numerical models for flow and contaminant transport simulation (Scheibe and 
Chien, 2003) and for helping to understand bacterial transport in natural porous media (Malloux 
et al., 2003).    
 
Case Study at the Fractured Media Site 
 
Site information: The NABIR Research Field Center (FRC) is located on the Oak Ridge 
Reservation in Tennessee. The geology at this site is complicated. The Nolichucky shale bedrock 
under the site dips approximately 45 degrees to the southeast and has a strike of N55E. 
Overlying the bedrock is unconsolidated material that consists of weathered bedrock (referred to 
as residuum or saprolite), man-made fill, alluvium, and colluviums. The thickness of residuum is 
typically between 5 m and 10 m thick. Between the unconsolidated residuum and competent 
bedrock is a transition zone of weathered fractured bedrock. Remnant fracturing in the residuum 
and transition zone increases the permeability relative to the silt and clay matrix (Watson et al., 
2003). 
 
Several types of geophysical data have been collected at this site to characterize hydrogeological 
properties in the saturated, fractured media. Those data included surface seismic and electrical 
data, crosswell seismic and GPR data, various types of borehole geophysical logs, and flowmeter 
data. Our goal is to integrate crosswell geophysical tomographic data and borehole 
hydrogeological measurements to provide the spatial distribution of hydrogeological properties 
for understanding field-scale bioremediation experiments carried on this area. 
 
Data analysis:  Hydraulic conductivity at this site obtained from wellbore flowmeter data varied 
over a large range (3—4 orders of magnitude). Crosswell seismic tomographic data, gamma-ray 
logs, flowmeter data, and lithology logs collected at this site showed that two zones exist: the 
upper layer and the lower layer, with the interface at depths 8—10 m. The upper layer had lower 
hydraulic conductivity, high clay content, and low seismic velocity. The lower layer was 
fractured media with low clay content. Although crosswell GPR tomographic data were also 
collected along cross sections, the quality of GPR data was much lower than seismic data. We 
expect seismic data to be sensitive to the rock stiffness and thus the presence of fractures. 
Consequently, we choose to use crosswell seismic data only in the following analysis. 
 
We developed petrophysical models for linking seismic tomographic data to hydraulic 
conductivity following a procedure similar to what was described in the preceding case study. 
The cross correlation between log-conductivity and seismic velocity, based on co-located data 
available at or near boreholes, was poor and thus could not be directly used to improve 
hydrogeological characterization. The weak correlation may be caused by difference of sampling 
volumes between crosshole seismic surveys and borehole flowmeter tests. Seismic methods 



sense seismic properties along a two-dimensional cross section, whereas flowmeter test senses 
hydraulic properties within a localized 3D volume around boreholes.  
   
However, several other studies, including laboratory and field experiments, have shown that low 
seismic velocity in a fractured rock or media primarily is caused by the presence of fracture 
networks and thus can be used for hydraulic conductivity estimation (Pyrak-Nolte et al., 1987; 
Majer et al., 1997; Ellefsen et al., 2002; Daley et al., 2003). Accordingly, although we could not 
develop a good petrophysical relationship between hydraulic conductivity and seismic velocity 
based on co-located data at the wellbore, we believe that seismic velocity data could be useful 
for characterizing the fractured subsurface.  
 
Estimation method: To incorporate seismic information into hydrogeological characterization, 
we improve the Bayesian model used in the first case study. It is necessary that the new model 
permit consideration of crosswell seismic velocity as unknown variables, which could be 
estimated by conditioning to both crosswell travel-time and borehole flowmeter data. This model 
should also allow for consideration of petrophysical models to be known up to unknown 
parameters, which are estimated during the joint inversion process.  
 
Several assumptions are made and justified based on information available at this site. We 
estimate hydrogeological zonation (high or low conductivity zone) instead of continuous values 
of hydraulic conductivity. We assume that in the fractured media, the low seismic velocity is 
primarily caused by fracture networks. Therefore, high seismic velocity in this zone likely 
corresponds to low hydraulic conductivity, whereas low seismic velocity likely corresponds to 
high conductivity zone. However, since some fracture networks may not be connected and some 
clayey sandstone may also exist in the deeper part of the aquifer, the qualitative relationship 
described above is subject to uncertainty. To handle this uncertainty, we consider that the inverse 
of seismic velocity (slowness) at a specific location has the Gaussian distribution with mean and 
variance related to fracture density and thus hydraulic conductivity at each pixel.  
 
The Bayesian model is developed based on seismic travel time and flowmeter data collected at 
two adjacent wells with the goal of estimating hydrogeological zonation along the 2D cross 
section passing through the two wells. The model can be directly applied to other wells for 
estimating hydrogeological zonation along other cross sections. Let tj be the seismic travel time 
of the j-th raypath. Let Ki be the indicator of high conductivity zones (1—yes and 0—no) at 
pixel-i. Let Si be the inverse of seismic velocity at pixel-i.  Let vector θ  be unknown parameters 
associated with petrophysical models. Variables σ1 and σ2 represent the standard deviations of 
travel time measurement errors and petrophysical model errors, respectively. The Bayesian 
model is given by: 
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where “∝” represents “proportional to”. Therefore, Equation 2 is correct up to a normalizing 
constant, which is not needed for the method that we use for solving this problem.  
 
Equation 2 is a coupled, complex statistical model, which considers both geophysical and 
hydrogeological parameters as random variables. Our goal is to estimate each individual 
unknown variable using the joint distribution function defined in Equation 2. The Bayesian 



model used in the first case study is a special case of this model. In that case, geophysical data at 
each pixel are considered as hard data, petrophysical relationships are known, and measurement 
errors of travel time are not been considered. Consequently, we decouple the estimation problem 
and solve it pixel by pixel. However, in this case, because many unknown variables are 
correlated and the number of variables involved is very large, conventional methods (such as 
analytical and optimization based methods) are limited. We use Markov chain Monte Carlo 
(Gilks et al., 1996) methods to solve all unknown variables. We generate many samples for each 
individual variable by running a constructed Markov chain from given starting values. From 
those samples, we obtain estimates of each unknown variable, including its mean, variance, and 
even probability density function. Estimation results (Figure 2) suggest that over the study area, a 
localized high permeability zone has laterally varying thickness and geological dip, which is 
consistent with observations of field tracer experiments. 
 
Conclusions 
 
The two case studies demonstrated that geophysical data are useful for providing information for 
hydrogeological characterization under varying degree of heterogeneity. However, for complex 
hydrogeological systems (such as fractured media), where regression based petrophysical models 
cannot be developed with confidence, sophisticated Bayesian models can be used. This model is 
more general because it allows physical based petrophysical relationships and forward models to 
be incorporated into the estimation process. 
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Figure 1. Estimated mean log-conductivity along 
geological dip and strike directions at the granular 
porous media site 
 

 
 
Figure 2. Estimated probability of high 
permeability zonation along two transects at the 
fractured media site 
 

 


