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ABSTRACT 

It has long been recognized that a common ground exists between governing equations 
used for describing various flow and transport phenomena in porous media. Put another way 
they are all generally based on the same form of mass and/or energy conservation laws. This 
implies that there may exist a unified formulation and numerical scheme applicable to 
modeling all of these physical processes. This paper explores such a possibility and proposes 
a generalized framework, as well as a mathematical formulation for modeling all known 
transport phenomena in porous media. Based on this framework, a unified numerical approach 
is developed and tested using multidimensional, multiphase flow, isothermal and 
nonisothermal reservoir simulators. In this approach, a spatial domain of interest is discretized 
with an unstructured grid, then a time discretization is carried out with a backward, first-order, 
finite-difference method. The final discrete nonlinear equations are handled fully implicitly, 
using Newton iteration. In addition, the fracture medium is handled using a general dual-
continuum concept with continuum or discrete modeling methods. A number of applications 
are discussed to demonstrate that with this unified approach, modeling a particular porous-
medium flow and transport process simply becomes a matter of defining a set of state 
variables, along with their interrelations or mutual influence. 

1. INTRODUCTION 

Since the late 1950s, significant progress has been made in developing and applying 
numerical simulation techniques in petroleum engineering [3,1,12,17] and in groundwater 
literature [9,10]. Because of its generality and effectiveness in handling subsurface multiphase 
flow and transport problems, the numerical simulation technique has become the major tool 
used by scientists and engineers in studies of flow and transport processes within a porous 
medium. Numerical modeling approaches currently used for simulating multiphase flow and 
transport processes are generally based on methodologies developed for petroleum and 
geothermal reservoir simulations, as well as groundwater modeling. They involve solving 
fully coupled formulations describing these processes, using finite-difference or finite-element 
schemes with a volume-averaging approach.  

Continual research effort, driven by the need to develop underground natural resources and 
resolve subsurface contamination problems, has developed and provided many numerical 
modeling approaches and models for field applications. Mathematical modeling techniques 
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have become very sophisticated and are capable of routinely solving problems ranging from 
simple groundwater flow to coupled multiple physical process simulations. It has long been 
recognized that a common ground exists between governing equations used for describing 
various flow and transport phenomena in porous media (i.e., they are all generally based on 
the same form of mass and/or energy conservation laws). This suggests that there may exist a 
unified formulation and numerical scheme applicable to modeling all of these physical 
processes. To explore such a possibility, this paper proposes a generalized framework as well 
as mathematical formulation for modeling all known transport phenomena in porous media. 
Based on this framework, a unified numerical approach is developed for simulating single-
phase and multiphase flow, multicomponent chemical transport, and heat transfer in porous 
and fractured reservoirs.  

The proposed unified numerical approach is tested with multidimensional, multiphase-
flow, nonisothermal reservoir simulators. In this approach, a subsurface domain is discretized 
using an unstructured grid, followed by time discretization carried out using a backward, first-
order, finite-difference method. The final discrete linear or nonlinear equations are handled 
fully implicitly, using Newton iteration. In addition, the fracture medium is handled using a 
general dual-continuum concept with continuum or discrete modeling approaches. We 
demonstrate that with this unified approach, modeling a particular process of porous-medium 
flow and transport becomes simply a matter of defining a set of state variables, along with 
their interrelations or mutual effects.  

2. GENERALIZED GOVERNING EQUATIONS 

The physical processes associated with flow and transport in porous media are governed by 
the same fundamental conservation laws as those used in other branches of the sciences and 
engineering: conservation of mass, momentum, and energy governs the behavior of fluid 
flow, chemical transport, and heat transfer in rock. These physical laws are often represented 
mathematically on the macroscopic level by a set of partial differential or integral equations, 
called governing equations. These governing equations are generally nonlinear as long as 
compressible or multiphase fluids or heat transfer is involved and needed to quantitatively 
model the flow and transport processes occurring in porous media. Based on the general 
conservation laws, we present a set of generalized governing equations for multiphase fluid 
flow, multicomponent transport, and heat transfer in porous and fractured media, providing a 
framework for numerical formulations to cover all possible scenarios for flow and transport in 
porous media. 

Let us consider a multiphase, nonisothermal system consisting of several fluid phases, such 
as gas, water, and oil (NAPL), with each fluid phase in turn consisting of a number of mass 
components. To derive a set of generalized governing equations for multiphase fluid flow, 
multicomponent transport, and heat transfer, we assume that these processes can be described 
using a continuum approach within a representative elementary volume (REV) in a porous or 
fractured medium [2]. In addition, a condition of local thermodynamic equilibrium is assumed 
so that at any time temperatures, phase pressures, densities, viscosities, enthalpies, internal 
energies, and component concentrations (or mass fractions) are the same locally at each REV 
of the porous medium. 
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According to mass and energy conservation principles, a generalized conservation equation 
of mass components and energy in the porous continuum can be written as follows: 
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where superscript k is the index for the components, k = 1, 2, 3,�, Nc, with Nc being the 
total number of mass components and with k = Nc+1 for energy �component� (note that heat 
energy is regarded as a component for convenience); M is the accumulation term of 
component k; kG  is the decay or internal generation (reaction) term of mass or energy 
components; kq is an external source/sink term or fracture-matrix exchange term for mass or 
energy component k and energy; and kF is the �flow� term of mass or energy movement or 
net exchange from single-phase and multiphase flow, or diffusive and dispersive mass 
transport, or heat transfer, as discussed below. 

In addition to the conservation or continuity equations of mass and thermal energy, shown 
in Equation (1), we also need specific relationships or mechanisms that describe why and how 
fluid flow, solute transport, and heat transfer occur in porous and fractured media. This is to 
define the �flow� term in Equation (1), and the following specific laws act as such 
mechanisms by governing local fluid flow, component transport, and heat transfer processes 
in porous media.  

2.1. Single-Phase and Multiphase Flow 
For single-phase liquid or gas flow, Richards� equation, two active or three phase flow, if 

these fluids are treated as immiscible or mass exchange between phases can be ignored, the 
accumulation terms in (1) for gas (air), water and/or oil (NAPL) components in are evaluated 
as 

( )∑
β

ββ
β φρ= SM  (2) 

where superscript and subscript β is an index for fluid phase (β = g for gas, = w for 
aqueous phase, = o for oil); φ is the porosity of porous media; βρ is the density of phase β;  
and βS is the saturation of phase β. Note that in this special case, component k (by 
superscript) and phase (by subscript) are interchangeable. 

In this case, the decay or generation term is negligible with 

0G =β  (3) 

The mass flow term is determined by  

( )ββ
β ρ∇= • vF  (4) 
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where βv  is a vector of the Darcy�s velocity or volumetric flow, defined by Darcy�s law to 
describe the flow of single or multiple immiscible fluids [15], as: 

( )zgP
kk r ∇ρ−∇
µ

−= ββ
β

β
βv  (5) 

where βP , βµ , and g are pressure, viscosity of fluid phase β, and gravitational constant, 
respectively; z is the vertical coordinate; k is absolute or intrinsic permeability (a tensor in 
general); and βrk is the relative permeability to phase β (equal to one for single-phase flow, 
i.e., single-phase is considered as a special case of multiphase flow).   

2.2 Mass Transport 
The movement of dissolved mass components or chemical species in a multiphase porous 

medium system can also be handled as a special case of Equation (1). The accumulation terms 
for component k is 

( ) ( ) k
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where κ
βX  is the mass fraction of component k in fluid β; sρ is the density of rock solids; 

and k
dK  is the distribution coefficient of component k  between the aqueous phase and rock 

solids to account for adsorption effects.  

In the case in which components are subject to a first-order radioactive decay, the 
decay/generation term is 
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where kλ is the radioactive decay constant of component  k. 

The mass component transport is governed in general by processes of advection, diffusion, 
and dispersion, and is also subject to other processes such as radioactive decay, adsorption, 
dissolution and precipitation, mass exchange and partition between phases, or chemical 
reactions. Advective transport of a component or solute is carried by flow of a fluid, and 
diffusive and dispersive flux is contributed by molecular diffusion and mechanical dispersion, 
or hydrodynamic dispersion. These processes are described using a modified Fick�s law for 
transport through a single-phase porous medium [16, 2]. Then, the total mass flow term for a 
component k, by advection and dispersion, is written as  

( ) ( )( )∑∑
β

ββββββ
β

ρ∇∇+ρ∇−= ••• kkkk XDXF v     (k = 1, 2, 3,�, Nc) (8) 
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This indicates that the mass flow consists of two parts, the first part, i.e., the first term on 
the left-hand side of Equation (8), is contributed by advection in all phasesand the second part 
(the second term on the left-hand side of (8)) is diffusive flux by hydrodynamic dispersion. In 
(8), kDβ  is the hydrodynamic dispersion tensor accounting for both molecular diffusion and 
mechanical dispersion for component k in phase β, defined by an extended dispersion model 
[16] to include multiphase effects as,    

( ) ji
k

TLjiT
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β

ββββ
β

β
β v

vv
v     (k = 1, 2, 3,�, Nc) (9) 

where  βαT  and βαL  are transverse and longitudinal dispersivities, respectively, in fluid β of 
porous media; τ  is tortuosity of the porous medium; kdβ  is the molecular diffusion coefficient 
of component k within fluid β;  and δij is the Kronecker delta function (δij = 1 for i = j, and δij 

= 0 for i ≠ j), with i and j being coordinate indices. 

2.3 Heat Transfer 
The accumulation term for the heat equation is usually is defined as 

( ) ( ) ss
1N U1USM c ρφ−+ρφ=∑

β
βββ

+  (10) 

where sρ is the density of rock solids; and sUandUβ are the internal energies of fluid β and 
rock solids, respectively. 

Heat transfer in porous media is in general a result of both convective and conductive 
processes, although in certain cases, radiation may also be involved. These heat-transfer 
processes are complicated by interactions between multiphase fluids, multicomponents, and 
associated changes in phases, internal energy, and enthalpy. Heat convection is contributed by 
thermal energy carried mainly by bulk flow of all fluids as well as by dispersive mass fluxes. 
On the other hand, heat conduction or radiation is driven by temperature gradients and may 
follow Fourier�s law or Stefan-Boltzmann�s law, respectively. Then the combined, overall 
heat flux term, owe to convection, conduction and radiation in a multiphase, multicomponent, 
porous medium system, may be described as 

( ) ( )( ) ( ) 4
0T

k

kkk1N TTKXDhhF c εσ−∇∇+ρ∇∇+ρ•∇−= •••∑∑∑ ββββ
β

βββ
β
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where khandh ββ  are specific enthalpies of fluid phase β and of component k in fluid β, 
respectively; TK is the overall thermal conductivity; T is temperature; ε is a radiation 
emissivity factor, and oσ (=5.6687×10-8 J/m2 K4) is the Stefan-Boltzmann constant. 

As shown in Equation (11), the total heat flow in a multiphase, multicomponent system is 
determined by heat convection of flow and mass dispersion (the first two terms on the right-
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hand side of (11)), heat conduction (the third term on the right-hand side), and thermal 
radiation (the last term on the right-hand side).  

2.4 Constitutive Relationships 
To complete the mathematical description of multiphase flow, multicomponent transport, 

and heat transfer in porous media, Equation (1), a generalized mass- and energy-balance 
equation, needs to be supplemented with a number of constitutive equations. These 
constitutive correlations express interrelationships and constraints of physical processes, 
variables, and parameters, and allow the evaluation of secondary variables and parameters as 
functions of a set of primary unknowns or variables selected to make the governing equations 
solvable. Table 1 lists a commonly used set of constitutive relationships for describing 
multiphase flow, multicomponent mass transport, and heat transfer through porous media. 
Many of these correlations for estimating properties and interrelationships are determined by 
experimental studies. 
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Table 1 
Constitutive Relationships and Functional Dependence 

Definition  Function Description 
Fluid saturation 1S =∑

β
β  Constraint on summation of total fluid saturation. 

Mass fraction 1X
k

k =∑ β  Constraint on mass fractions within phase β. 

Capillary pressure ( )βββ = SPP CC  In a multiphase system, the capillary pressure relates pressures 
between the phases and is defined as functions of fluid 
saturation. 

Relative permeability ( )βββ = Skk rr  The relative permeability of a fluid phase in a multiphase system 
are normally assumed to be functions of fluid saturation. 

Fluid density )X,T,P( k
βββ ρ=ρ  Density of a fluid phase is treated as a function of pressure and 

temperature, as well as mass compositions (k = 1, 2, 3, �, Nc). 
Fluid viscosity ( )kX,T,P βββ µ=µ  The functional dependence or empirical expressions of 

viscosity of a fluid is treated as a function of pressure, 
temperature, and composition.  

Henry�s law k
w

k
H

k
g KP ω=   k

gP is partial pressure of component k in gas phase; k
HK  is 

Henry�s constant for component k; and k
wω  is the mole 

fraction of component k in water phase 
Equilibrium partitioning kk

:
k K ββαα ω=ω  k

αω  and k
βω  are the mole fraction of component k in phase α 

and β, respectively; and k
:K βα  is the equilibrium partitioning 

coefficient of component k between phases α and β. 
Partitioning coefficient ( )kk

:
k

: X,T,PKK βββαβα =  depends on chemical properties of the component and is a 
function of temperature, pressure and composition 

specific enthalpy of liquid 

β

β
ββ ρ
+=

P
Uh  

Internal energy, Uβ, of liquid phase β is a function of pressure 
and temperature 

specific enthalpies of gas 

k
g

k
gk

g
k
g C

P
Uh +=  

k
gU  the specific internal energy of component k in the gas 

phase; k
gC  concentration of component k in gas phase 

(kg/m3). 
thermal conductivity  ( )β= SKK TT  The thermal conductivity of the porous medium is treated as a 

function of fluid saturation. 
Porosity ( ) ( )( )φ φ= + − − −o

r
o

T
oC P P C T T1  φo is the effective porosity at a reference pressure, Po, and a 

reference temperature, To;  and Cr and CT are the 
compressibility and thermal expansion coefficient of the 
medium, respectively 

Equilibrium adsorption kk
d

k
s XKX ββρ=  k

sX  is the mass of component k sorbed per mass of solids; and 

the distribution coefficient, k
dK , is treated as a constant or as a 

function of the concentration or mass fraction in a fluid phase 
under the local chemical equilibrium condition 

Radioactive decay tk
0

k keCC λ−
ββ =  kCβ  is the concentration of component k in phase β and is 

equal to k
0Cβ at t = 0;  kλ  is the radioactive decay constant 

First-order decay constant 

T
n(2)l

2/1
k =λ  

T1/2 is the half-life of the radioactive component. 
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3. NUMERICAL FORMULATION  

The methodology for using numerical approaches to simulate multiphase subsurface flow 
and transport consists in general of the following three steps: (1) spatial discretization of mass 
and energy conservation equations, (2) time discretization; and (3) iterative approaches to 
solve the resulting nonlinear, discrete algebraic equations. Among various numerical 
techniques for simulation studies, a mass- and energy-conserving discretization scheme, based 
on finite or integral finite-difference or finite-element methods, is the most commonly used 
approach, and is discussed here. 

3.1 Discrete Equations 
The component mass- and energy-balance Equation (1) are discretized in space using a 

control-volume concept. The control-volume approach provides a general spatial 
discretization scheme that can represent a one-, two- or three-dimensional domain using a set 
of discrete meshes. Each mesh has a certain control volume for a proper averaging or 
interpolation of flow and transport properties or thermodynamic variables. The control 
volume concept includes the conventional finite-difference scheme [12], an integral finite-
difference method (Figure 1) [11, 13], a control-volume finite element [7], and Galerkin 
finite-element methods [8]. These are the most widely used discretization schemes for 
multiphase flow simulation. Time discretization is carried out using a backward, first-order, 
fully implicit finite-difference scheme. The discrete nonlinear equations for components of 
water, gas and oil, and heat at gridblock or node i can be written in a general form:   

{ } 1n,k
i

j

1n,k
ij

in,k
i

1n,k
i

1n,k
i Qflow

t
VAtGA

i

+

η∈

+++ +=
∆

−∆+ ∑  (12) 

(k = 1, 2, 3, �, Nc, Nc+1) and (i=1, 2, 3, �, N) 

where superscript k serves also as an equation index for all mass components with k = 1, 2, 3, 
�, Nc and  k = Nc+1 denoting the heat equation; superscript n denotes the previous time level, 
with n+1 the current time level to be solved; subscript i refers to the index of gridblock or 
node I, with N being the total number of nodes in the grid;  ∆t is time step size; Vi is the 
volume of node i;  ηi contains the set of direct neighboring nodes (j) of node i; k

iA , k
iG , 

k
ijflow , and k

iQ  are the accumulation and decay/generation terms, respectively, at node i;  the 
�flow� term between nodes i and j, and sink/source term  at node i for component k or thermal 
energy, respectively, are defined below. 
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Figure 1. Space discretization and flow-term evaluation in the integral finite difference 
method (Pruess, 1991) 

Equation (12) has the same form regardless of the dimensionality of the system, i.e., it 
applies to one-, two-, or three-dimensional flow, transport, and heat-transfer analyses.  The 
accumulation and decay/generation terms for mass components or thermal energy are 
evaluated using Equations (6), (7), and (11), respectively, at each node i. 

The �flow� terms in Equation (12) are generic and include mass fluxes by advective and 
dispersive processes, as described by Equation (4) or (8), as well as heat transfer, described by 
Equation (11). The mass flow term of Equation (12) for single-phase, Richards� or multiphase 
flow is described by a discrete version of Darcy�s law, i.e., the mass flux of fluid phase β 
along the connection is given by  

[ ]ijji

2/1ij

r
ij

k
flow ββ

+β

βββ ψ−ψγ
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
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µ

ρ
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where ijγ is transmissivity and is defined differently for finite-difference or finite-element 
discretization. If the integral finite-difference scheme [13] is used, the transmissivity is 
calculated as 

ji

2/1jiji
ji DD

kA
+

=γ +  (14) 

where ijA  is the common interface area between connected blocks or nodes i and j (Figure 1);  
and Di is the distance from the center of block i to the interface between blocks i and j (Figure 
1). The flow potential term in Equation (13) is defined as 

i2/1ji,ii ZgP +βββ ρ−=ψ  (15) 
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where Zi is the depth to the center of block i from a reference datum. 

For mass component transport, the flow term, or the net mass flux by advection and 
hydrodynamic dispersion of a component along the connection of nodes i and j, is determined 
by 

k
ijD,

k
ijA,

k
ij FFlowf +=     (k = 1, 2 , 3, �, Nc) (16) 

where k
ij,AF  and k

ij,DF  are the net mass fluxes by advection and hydrodynamic dispersion along 
the connection, respectively, with  

( ) ij,2/1ij
k
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k

ij,A FXAF β
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and 

( )kk
ijij

k
ij,D XDAF ββ

β
β ρ∇−= •• ∑n  (18) 

where nij is the unit vector along the connection of the two blocks i and j.  

The total heat flux along the connection of nodes i and j, including advective, diffusive, 
conductive and radiation terms, may be evaluated, when using a finite-difference scheme, by 

( )[ ] ( ){ } ( ) ( )4
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In evaluating the �flow� terms in the above equations, (13), (16) and (19), subscript ij+1/2 
is used to denote a proper averaging or weighting of fluid flow, component transport, or heat 
transfer properties at the interface or along the connection between two blocks or nodes i and 
j. The convention for the signs of flow terms is that flow from node j into node i is defined as 
�+� (positive) in calculating the flow terms. Wu and Pruess [18] present a general approach to 
calculating these flow terms associated with advective and dipersive mass transport and heat 
transfer in a multiphase system, using an irregular and unstructured, multidimensional grid. 

The mass or energy sink/source in Equation (12) at node i, k
iQ , is defined as the mass or 

energy exchange rate per unit volume of rocks or soils. It is normally used to treat boundary 
conditions, such as surface infiltration, pumping, and injection through wells.  

Note that we present explicit, discrete expressions for estimating all the flow terms above, 
except for dispersive fluxes in Equation (18). This is because of the numerical difficulties 
introduced in handling the hydrodynamic tensor of dispersion, which is treated very 
differently with different numerical approaches, such as finite difference or finite element. In 
most formulations for solute transport, the off-diagonal terms and contributions of the 
dispersion tensor are ignored, and dispersive transport is considered only along the principal 
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directions. However, a general procedure for using the integral finite difference to incorporate 
a full dispersion tensor is presented by Wu and Pruess [18].  

Note that Equation (12) presents a precise form of the balance equation for each mass 
component and heat in a discrete form.  It states that the rate of change in mass or energy 
accumulation (plus decay/generation, if existing) at a node over a time step is exactly 
balanced by inflow/outflow of mass and energy and also by sink/source terms, when existing 
for the node.  As long as all flow terms have flow from node i to node j equal to and opposite 
to that of node j to node i for fluids, components, and heat, no mass or energy will be lost or 
created in the formulation during the solution. Therefore, the discretization in (12) is 
conservative. 

3.2 Numerical Solution Scheme 
There are a number of numerical solution techniques that have been developed in the 

literature over the past few decades to solve the nonlinear, discrete equations of reservoir 
simulations. When handling multiphase flow, multicomponent transport, and heat transfer in a 
multiphase flow system, the predominant approach is to use a fully implicit scheme. This is 
due to the extremely high nonlinearity inherent in those discrete equations and the many 
numerical schemes with different level of explicitness that fail to converge in practice. In this 
section, we discuss a general procedure to solve the discrete nonlinear Equation (12) fully 
implicitly, using a Newton iteration method.  

Let us write the discrete non-linear Equation (12) in a residual form as  

{ } 0Qflow
t

VAGAR 1n,k
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1n,k
ij
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1n,k
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1n,k
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1n,k
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i

=−−
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−+= +

η∈

++++ ∑  (20) 

k = 1, 2, 3, �, Nc +1;  i = 1, 2, 3, �, N). 

Equation (20) defines a set of  (Nc+1) × N coupled nonlinear equations that need to be 
solved for every balance equation of mass components and heat, respectively.  In general, 
(Nc+1) primary variables per node are needed to use the Newton iteration for the associated 
(Nc+1) equations per node. The primary variables are usually selected among fluid pressures, 
fluid saturations, mass (mole) fractions of components in fluids, and temperatures. In many 
applications, however, primary variables cannot be fixed and must be allowed to vary 
dynamically in order to deal with phase appearance and disappearance [6,5]. The rest of the 
dependent variables, such as relative permeability, capillary pressures, viscosity and densities, 
partitioning coefficients, specific enthalpies, thermal conductivities, dispersion tensor, etc., as 
well as nonselected pressures, saturations, and mass (mole) fractions, are treated as secondary 
variables.  

In terms of the primary variables, the residual equation (20) at a node i is regarded as a 
function of the primary variables at not only node I, but also at all its direct neighboring nodes 
j. The Newton iteration scheme gives rise to  

( )( ) ( )p,m
1n,k

i1p,m
m m

p,m
1n,k

i xRx
x

xR +
+

+

−=δ
∂

∂
∑  (21) 
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where xm is the primary variable m with m = 1, 2, 3, �, Nc+1, respectively, at node i and all 
its direct neighbors; p is the iteration level; and i =1, 2, 3, �, N.  The primary variables in 
(21) need to be updated after each iteration: 

1p,mp,m1p,m xxx ++ δ+=  (22) 

The Newton iteration process continues until the residuals 1n,k
nR +  or changes in the primary 

variables 1p,mx +δ over an iteration are reduced below preset convergence tolerances.   

Numerical methods are generally used to construct the Jacobian matrix for Equation (21), 
as outlined in Forsyth et al. [4]. At each Newton iteration, Equation (21) represents a system 
of (Nc+1) × N linearized algebraic equations with sparse matrices, which are solved by a 
linear equation solver.  

3.3 Treatment of Initial and Boundary Conditions 
A set of initial conditions is required to start a transient simulation, i.e., a complete set of 

primary variables need to be specified for every gridblock or node. A commonly used 
procedure for specifying initial conditions is the restart option, in which a complete set of 
initial conditions or primary unknowns is generated in a previous simulation with proper 
boundary conditions described.   

Because of more physical and chemical constraints, boundary conditions for a multiphase 
flow and transport problem are generally much more difficult to handle than for a single-
phase situation. When using a block-centered grid, first-type or Dirichlet boundary conditions, 
can be effectively treated with the �inactive cell� or �big-volume� method, as normally used 
in the TOUGH2 code [13]. In this method, a constant 
pressure/saturation/concentration/temperature node is specified as an inactive cell or with a 
huge volume, while keeping all the other geometric properties of the mesh unchanged.  

With finite-element or edge-centered finite-difference grids, first-type boundary conditions 
and Neuman boundary conditions can be treated using a generalized, sink/source term 
approach [17,20]. Certain flux-type boundary conditions are easy to handle for a situation 
where flux distribution along the boundary is known, such as in dealing with surface 
infiltration. However, a description of more general types of flux- or mixed-boundaries, such 
as seepage faces and multilayered wells, is part of the solution, and general procedures of 
handling such boundary conditions are discussed in [19].  

3.4. Fractured Media 
The mathematical and numerical formulations discussed above are applicable to both 

single-continuum and multi-continuum media, as long as the physical processes concerned 
can be described in a continuum sense within either continuum. When handling flow and 
transport through a fractured rock using the numerical formation of this section, fractured 
media (including explicit fracture, dual, or multiple continuum models) can be considered as 
special cases of unstructured grids [13]. Then, a large portion of the work consists of 
generating a mesh that represents both the fracture system and the matrix system under 
consideration. Several fracture and matrix subgridding schemes exist for designing different 
meshes for different fracture-matrix conceptual models [14].  
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Once a proper grid of a fracture-matrix system is generated, fracture and matrix blocks are 
identified to represent fracture and matrix domains, separately. Formally they are treated 
identically for the solution in the model. However, physically consistent fracture and matrix 
properties, parameter weighting schemes, and modeling conditions must be appropriately 
specified for both fracture and matrix systems. 

4. APPLICATION EXAMPLES 

The unified mathematical and numerical formulations discussed in Sections 3 and 4, cover 
most commonly encountered applications of reservoir simulation and groundwater modeling. 
These model formulations have been tested using a multiphase flow code [19] and a 
nonisothermal flow and transport code [18] to demonstrate their capability. Tested results 
included the following simulation scenarios:  

(1) Single-phase liquid  
(2) Single-phase gas flow  
(3) Unsaturated liquid flow using Richards� equation  
(4) Two-phase gas and liquid flow  
(5) Three-phase flow  
(6) Density-dependent solute transport in single liquid phase systems  
(7) Tracer transport in isothermal and nonisothermal multiphase systems  
(8) Heat transfer in multiphase systems   

In addition, it can be shown that the model formations can also be used to simulate heat 
conduction in solids and diffusion in solids or in a stagnated fluid, which are treated as special 
cases of these proposed formations.  

5. SUMMARY AND CONCLUDING REMARKS 

A unified numerical formulation has been discussed for modeling fluid flow, mass 
transport, and heat-transfer processes through porous and fractured media. This work takes 
advantage of the fact that governing equations used for describing various flow and transport 
phenomena in porous media are all generally based on the same form of mass and/or energy 
conservation laws. This indicates that there may exist a unified formulation and numerical 
scheme applicable to all of these physical processes. This paper explores such a possibility by 
proposing a generalized framework as well as mathematical formulation for modeling all 
known transport phenomena in porous media. The numerical implementation of the unified 
formulation is based on a control-volume spatial discretization with an unstructured grid and 
time discretization with a fully implicit finite-difference method. The final discrete linear or 
nonlinear equations are handled fully implicitly, using Newton iteration.  

As demonstrated in this paper, this unified approach makes it possible to model a particular 
process of porous-medium flow and transport becomes simply a matter of defining a set of 
state variables, along with evaluation of their interrelations or mutual effects.  
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