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Abstract. The construction of the initial part of the J-PARC linac has been started at KEK for beam tests before moving
to the JAERI Tokai campus, where J-PARC facility is finally to be constructed. The RFQ and MEBT (Medium Energy
Beam Transport) has already been installed at KEK, and the beam test has been performed successfully. In this paper, the
experimental results of the beam test are compared with simulation results with a 3D PIC (Particle-In-Cell) code, IMPACT.

INTRODUCTION

The J-PARC (Japan Proton Accelerator Research Com-
plex) accelerator consists of a 400-MeV linac, a 3-GeV
RCS (Rapid Cycling Synchrotron), and a 50-GeV syn-
chrotron [1, 2]. The linac is comprised of a 50-keV neg-
ative hydrogen ion source, a 3-MeV RFQ, a 50-MeV
DTL, a 190-MeV SDTL (Separate-type DTL), and a
400-MeV ACS (Annular Coupled Structure linac). The
construction of the initial part of the J-PARC linac has
been started at KEK to develop and establish the linac
system before moving to the JAERI Tokai campus, where
the J-PARC facility is finally to be constructed. The 324-
MHz RFQ and the MEBT (Medium Energy Beam Trans-
port) has already been installed at KEK, and the beam
test has been performed. For the details of the beam test,
refer to the reference [3, 4]. In this paper, we focus on
the comparison of 3D PIC (Particle-In-Cell) simulations
with the experimental results obtained with a transverse
emittance monitor and wire scanners. As a simulation
code, we use IMPACT [5] which is developed at LBNL.

Before moving to the description of experimental set
up, we briefly review the layout of the MEBT. The
MEBT has two main roles, namely, to perform trans-
verse and longitudinal matching to the succeeding 324-
MHz DTL, and to chop beams to minimize the beam loss
at the injection into the RCS. The schematic layout of
the MEBT is shown in Fig.1. The MEBT includes eight
quadrupole magnets (Q1 to Q8) for transverse matching,
two 324-MHz buncher cavities for longitudinal match-
ing, two rf deflection cavities (RFD’s) and a scraper for
beam chopping, and various instrumentation for beam
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FIGURE 1. Schematic layout of the MEBT.

diagnosis. We also have five two-plane steering mag-
nets for beam steering which are built-in to quadrupole
magnets. In the measurements described in this paper,
we do not perform beam chopping. The peak current of
28.7 mA has been achieved at the exit of the RFQ, and
the transmission ratio through the MEBT reaches 99.3%
without using steering magnets.

EXPERIMENTAL SETUP

In the beam test, a TBD (Temporal Beam Diagnostic
system) is placed at the exit of the MEBT, which will
be removed when installing the DTL. The TBD includes
a transverse emittance monitor and a Faraday cup. The
emittance monitor is double-slit type, and its first slit
is located about 0.5 m downstream from the exit of the
MEBT. The slit width and slit interval of the emittance
monitor are 0.1 mm and 205 mm, respectively.

In the actual operation, the beam should be strongly
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FIGURE 2. Beam envelope along the MEBT for a matched
case.
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FIGURE 3. A typical beam envelope along the MEBT in the
experiment.

focused at the exit of the MEBT to satisfy the match-
ing condition to the DTL. However, the strengths of the
last two quadrupoles are weakened in the experiment
to enable the emittance measurement at the downstream
beam diagnostic system. Figure 2 shows a beam enve-
lope for a typical quadrupole setting which satisfies the
matching condition to the DTL, and Fig.3 shows a typi-
cal beam envelope for the experiment, in which only the
last two quadrupoles are weakened. In Fig.3, the down-
stream end of the plot corresponds to the first slit position
of the emittance monitor in the TBD. The quadrupole and
buncher setting in Fig.3 corresponds to those in the emit-
tance measurement discussed in the next section.

In the MEBT, we have four WS’s (Wire Scanners) for
beam profile measurement. Each WS has horizontal, ver-
tical and oblique (45 deg) carbon wires with the diame-
ter of 7µm. In the profile measurement, beam width is
shortened to about 50µsec to reduce the heat load of the
carbon wire. In the emittance measurement, we usually
use the repetition ratio of 12.5 Hz or 25 Hz to shorten the

measurement time, which is typically about 15 min for
one plane.

EXPERIMENTAL RESULTS

The measured normalized rms emittances are 0.252
πmm·mrad and 0.214πmm·mrad in the horizontal and
vertical planes, respectively. The emittance is measured
with the emittance monitor at the TBD. The peak current
in the measurement is 28.7 mA at the exit of the RFQ.
The emittances at the exit of the RFQ was measured to be
0.173πmm·mrad and 0.194πmm·mrad in the horizon-
tal and vertical planes, respectively, before installing the
MEBT. The available beam current was, however, lim-
ited to about 10 mA at the time of the measurement, be-
cause the ion source has been developed in parallel with
the construction. These emittances are measured with the
same TBD which was placed just after the RFQ. Accord-
ingly, we don’t have measurement data for the emittance
at the exit of the RFQ with the present maximum avail-
able beam current of around 29 mA.

Figure 4 shows the phase space distribution obtained
in the measurement with the TBD after the MEBT. In
Fig.4, x and y denote the horizontal and the vertical
positions, ands is the path length of the design particle.
Measured phase space density is represented by 100k
dots (particles) in Fig.4 for comparison with particle
simulations.

Figure 5 shows a typical beam profile measured with
WS3, which is located 81 mm upstream from Q4. In the
measurement, quadrupole setting is the same with the
emittance measurement, while the buncher cavities are
turned off.

COMPARISON WITH SIMULATION

As a preliminary test on the agreement between ex-
periments and simulations, we have performed 3D PIC
(Particle-In-Cell) simulations with IMPACT assuming
a 6D Gaussian distribution at the exit of the RFQ. In
the simulations, we assume transverse Twiss parame-
ters at the exit of the RFQ which was obtained with
the emittance measurement just after the RFQ, and
the initial transverse emittances are adjusted to repro-
duce measured ones at the TBD after the MEBT. We
also assume initial longitudinal parameters obtained with
PARMTEQ[6] simulations for the RFQ. Figure 6 shows
obtained phase-space distribution at the emittance mon-
itor after the MEBT, in which we consider the same lat-
tice setting and beam conditions with the MEBT emit-
tance measurement. In the simulation, 1M simulation
particles and64× 64× 64 meshes are employed, and
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FIGURE 4. Phase-space distribution measured with the emittance monitor after the MEBT. (a) Horizontal phase plane. (b)
Vertical phase plane.

the integration step width is set toβλ/10 with β and
λ being the particle velocity scaled by the speed of light
and the rf wave length, respectively. The assumed initial
normalized rms emittances are 0.234πmm·mrad, 0.193
πmm·mrad, and 0.0822πMeV·deg in the horizontal, ver-
tical, and longitudinal directions, respectively. In Fig.6,
100k particles out of 1M particles are displayed. Com-
paring Fig.6 with Fig.4, it is seen that the qualitative
agreement between the simulation and the experiment is
reasonable, while the shape of the tail portion is slightly
different. In Fig.5, we show the beam profile obtained in
a similar IMPACT simulation. While the simulated rms
beam width is slightly wider in the horizontal direction,
the agreement in the vertical direction is excellent. These
agreements indicate that the tail portion is already devel-
oped to some extent at the exit of the RFQ. For com-
parison, we show in Fig.7 a result for waterbag case, in
which we assume a 6D waterbag distribution as the ini-
tial distribution. The tail portion in the waterbag case is
obviously less pronounced than in the measurement. Ef-
forts to obtain more realistic initial distribution at the exit
of the RFQ is now underway, with which the agreement
between experiments and simulations is expected to be
improved.

SUMMARY

The beam tests of the RFQ and the MEBT for the J-
PARC have been performed at KEK. The measured nor-
malized rms emittances are 0.252πmm·mrad and 0.214
πmm·mrad in the horizontal and the vertical directions.
The peak current is 28.7 mA at the exit of the RFQ, and
the transmission ratio through the MEBT is 99.3 %. Pre-
liminary simulation studies are performed with a 3D PIC
code, IMPACT, and the agreement between experiment

and simulation results is found reasonable in the case
where a 6D Gaussian distribution is assumed at the exit
of the RFQ. The agreement indicates that the tail portion
is developed to some extent in the RFQ. Further study is
needed to obtain more realistic distribution at the exit of
the RFQ to enable quantitative prediction of tail or halo
development in the downstream linac structures.

ACKNOWLEDGMENTS

The beam test has been performed by the members of
J-PARC linac group. Especially, the authors would like
to thank K. Nigorikawa of KEK for developing data ac-
quisition software for the wire scanners and other beam
monitors in the MEBT.

REFERENCES

1. Yamazaki, Y., “The JAERI/KEK Joint Project (the J-PARC
Project) for the High Intensity Proton Accelerator,” in
Procs. of PAC 2003, 2003.

2. Yamazaki, Y. (ed.), Accelerator Technical Design Report
for J-PARC, Tech. rep. KEK Report 2002-13; JAERI-Tech
2003-044, KEK/JAERI, (2003).

3. Ikegami, M., et. al., “Beam Commissioning of the J-PARC
Linac Medium Energy Beam Transport at KEK,” inProcs.
of PAC 2003, 2003.

4. Kato, T., et. al., “Beam Studies with RF Choppers in the
MEBT of the J-PARC Proton Linac,” inProcs. of PAC
2003, 2003.

5. Qiang, J., et. al.,J. Compt. Phys., 163, 434 (2000).
6. Crandall, K. R., et. al., RFQ Design Codes, Tech. Rep.

LA-UR-96-1836, LANL (1998).

admin
98



0.30

0.25

0.20

0.15

0.10

0.05

0.00

B
ea

m
 d

en
si

ty
 (a

rb
.)

-10 0 10
Vertical position (mm)

(b) Measured
 Simulated

0.30

0.25

0.20

0.15

0.10

0.05

0.00

B
ea

m
 d

en
si

ty
 (a

rb
.)

-10 0 10
Horizontal position (mm)

(a) Measured
 Simulated

FIGURE 5. Beam profile measured with WS3 located before Q4. The quadrupole setting is the same with the emittance
measurement, while the bunchers are turned off. (a) Horizontal beam profile. (b) Vertical beam profile. The beam profile obtained
in an IMPACT simulation (Gaussian case) is also shown.
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FIGURE 6. Phase-space distribution at the emittance monitor obtained with an IMPACT simulation for the emittance measure-
ment (Gaussian case). (a) Horizontal phase plane. (b) Vertical phase plane.
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FIGURE 7. Phase-space distribution at the emittance monitor obtained with an IMPACT simulation for the emittance measure-
ment (waterbag case). (a) Horizontal phase plane. (b) Vertical phase plane.
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