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ABSTRACT

At early time, the time derivative of the re-
sponse of isolated conductive bodies to step func-
tion excitation decays as t−1/2 (under a quasi-static
approximation). One simple parametric form for
the response with correct early time behaviour is
k′(1 + t1/2/α1/2)−βe−t/γ. For a conducting mag-
netic sphere, parameter values are determined from
the high and low frequency limit responses, together
with two time scales taken from the form of the an-
alytic solution. Parameters α and γ correspond to
transition times, for transition from an early time
t−1/2 derivative response, and to late time exponen-
tial decay. For conducting spheres with high perme-
ability, increasing the permeability moves the transi-
tion from early time behaviour earlier in inverse pro-
portion to the relative permeability µr, and increases
the time constant of the late time decay in propor-
tion to µr. Magnitude parameter k′ corresponds to
the difference between high frequency and low fre-
quency limit responses.

INTRODUCTION

A simple parametric form for approximating the
inductive response of conducting objects

k(α+ t)−βe−t/γ (1)

has been suggested as a means of diagnosing con-
ductive objects as magnetic (e.g., ferrous with µr >>
1) or non-magnetic (µr ≈ 1), for use in discrimi-
nating buried unexploded military ordnance (UXO)
from other conductive objects (e.g., Pasion and Old-
enberg, 2001). Unfortunately, form (1) does not fit
the early time response of such a simple object as

a conductive sphere, much less a magnetic (perme-
able) and conducting sphere, leaving some uncer-
tainty as to its generality. At early time the time
derivative of the magnetic field of the response of
a isolated conducting non-magnetic body is propor-
tional to t−1/2 (Kaufman, 1994, p249), so is incon-
sistent with form (1) used to model either the mag-
netic field, or the time derivative of the magnetic
field. This can be remedied, by using form (1) to
model the magnetic field or magnetic moment m
with the first occurrence of t replaced by t1/2, or
equivalently using the form

f (t) = k′
(

1+
t1/2

α1/2

)−β

e−t/γ (2)

(for t > 0). In this form, α represents a time scale at
which the nature of the inductive response changes
from an early time response with dB/dt ∝ t−1/2 ,
towards an intermediate time with B ∝ t−β/2.

Values of parameters k′, α, β, and γ appropriate
for a permeable conducting sphere can be obtained
by considering the early time response, the low fre-
quency limit (D.C.) and high frequency limit re-
sponses of the sphere, together with two time scales
from the analytic solution for the sphere. Consid-
eration of the properties of the response of a per-
meable conducting sphere is particularly important,
as the axial and transverse responses of permeable
conducting spheroids have been shown to be rea-
sonably approximated by sphere responses of ap-
propriate diameters, for spheroids of the high per-
meabilities and moderate aspect ratios appropriate
for modelling the responses of most UXO (Smith
and Morrison, 2004).

EARLY TIME RESPONSE OF A MAGNETIC
CONDUCTING SPHERE

Early time responses are obtained from high fre-
quency behaviour of the inductive response (e.g,
Kaufman, 1994, p229, Morse and Feshbach,1953,
p462). Early time behaviour of a non-magnetic con-
ducting sphere has been treated by Kaufman (1994).
In the frequency domain, the magnetic dipole mo-
ment of a conducting permeable sphere of conduc-
tivity σ, permeability µrµo, and radius R, in a time
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varying uniform externally applied field H0 with
time dependence eiωt is

m(ω) = 2πχ1(ω)R3H0 , (3)

where

χ1(ω) =
(2µr +1)(sinh α−αcoshα)+α2 sinh α
(µr −1)(sinh α−αcoshα)−α2 sinhα

(4)
and

α = (iωµrµoσ)1/2R , (5)

with re(α) > 0 (Wait and Spies, 1969, Wait, 1951).
At high frequency (ω → ∞);

χ1(ω) →
3µr

α
−1 . (6)

Early time dB/dt behaviour for a step function turn-
off excitation is then given by -1 times the inverse
Laplace transform of limiting form (6) with Laplace
transform variable s = iω, so

dχ1(t)
dt

→ δ(t)−
3µr

(πµrµoσt)1/2R
(7)

for t > 0 (Spiegel, 1965, p169, f32.108), where δ(t)
is a Dirac function which vanishes for t > 0 so will
be neglected. When µr = 1, this agrees with previ-
ous results for non-magnetic spheres.

TWO TIME SCALES FROM ANALYTIC
SOLUTION FOR A SPHERE

In the time domain, the solution for the magnetic
fields arising from step function turn-on excitation
of a conducting magnetic sphere is given by equa-
tion (3) with t replacing ω, and

χ1(t) =
2(µr −1)

µr +2
−

∞

∑
n=1

e−δ2
nt/σµrµoR2

(µr +2)(µr −1)+δ2
n

(8)

for t > 0, where δn are the positive solutions of

tanδn =
(µr −1)δn

µr −1+δ2
n

(9)

(Wait and Spies, 1969). Coefficients δn are spaced
roughly π apart, with

nπ ≤ δn < (n+1/2)π (10)

(n > 0), and δn approaching nπ for n2 >> (µr −

1)/π2. For step function turn-off excitation, one has
the D.C. term,

χ1(t) =
2(µr −1)

µr +2
(11)

for t < 0, and

χ1(t) =
∞

∑
n=1

e−δ2
nt/σµrµoR2

(µr +2)(µr −1)+δ2
n
, (12)

for t > 0. The most persistent term, n = 1, corre-
sponds to the fundamental mode of the sphere. The
fundamental mode time constant

τ0 ≡ σµrµoR2/δ2
1 (13)

is found easily by iterating on

δ(new)
n = nπ+atan













(µr −1)δ(old)
n

µr −1+(δ(old)
n )2













(14)

with n = 1 and, for example, an initial guess of δ1 =
4.4934, its value for µr = ∞, to evaluate δ1. Iterates
(14) converge to six decimal places in about as many
iterations.

For magnetic spheres, a second time scale is
manifest in expansion (12). Inverse squared co-
efficients δ−2

n correspond to non-dimensional time
constants, and do not vary a large amount with µr

(semi-inequalities 10). For δ2
n > (µr + 2)(µr − 1)

the denominator in expansion (12) is dominated by
δ2

n and the expansion terms approach their values
for the non-magnetic case, in non-dimensional time
t/σµrµoR2. The transition between magnetic dom-
inated and non-magnetic dominated terms occurs
about

δ2
n = (µr +2)(µr −1) , (15)

provided (µr + 2)(µr − 1) ≥ δ2
1. This yields a char-

acteristic time of

τ1 ≡
σµrµoR2

(µr +2)(µr −1)
(16)

when (µr +2)(µr−1)≥ δ2
1, that is, when µr ≥ 3.453.

When δ2
1 > (µr + 2)(µr − 1), all terms in expansion

(12) have their denominator dominated by δ2
n, so we

set τ1 ≡ τ0, for µr < 3.453. For large µr,

τ1

τ0
≈







4.5
µr







2

. (17)
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Figure 1: Effective induced magnetization factor χ1 as a function of time, for 20 mm diameter spheres of
varying relative permeability. Solid; full solution. Dashed; approximate form (2) with k ′, β, α and γ, given
by equations (18), (21), (22) and (25) with a = 1.38.

PARAMETER VALUES FOR A CONDUCTING
PERMEABLE SPHERE

Form (2) has been chosen so that, k′ = f (0+). For
step function turn-off excitation, this corresponds to
the difference between the low frequency limit value
and the high frequency limit value. Using form (2)
to approximate the effective induced magnetization
factor χ1(t);

k′χ = χ1(ω = 0)−χ1(ω = ∞) =
3µr

µr +2
. (18)

Form (2) has derivative

d f (t)
dt

= −

[

1
γ

+
β

2(t1/2α1/2 + t)

]

f (t) , (19)

which reduces to

d f (t)
dt

≈ −
k′β

2t1/2α1/2
(20)

at early time, consistent with the t−1/2 deriva-
tive response of general isolated conductive bodies.
Matching early time derivatives (7) and (20) and us-
ing (18), requires

β =
2(µr +2)α1/2

(πµrµoσ)1/2R
. (21)

Writing α and γ in terms of τ1 and τ0,

α = aτ1 , γ = bτ0 (22)

(for some a and b), this reduces to

β =
2a1/2

π1/2
min

[

µr +2
δ1

,







µr +2
µr −1







1/2
]

. (23)

We find a = 1.38 particularly suitable, giving β val-
ues about 1.33 for large µr. At late enough time,
sphere response (12) is eventually dominated by
the fundamental mode which decays as e−t/τ0 , with
dχ1/dt/χ1 ≈−1/τ0. Given the somewhat different
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Figure 2: Effective induced magnetization factor derivative dχ1/dt as a function of time, for 20 mm
diameter spheres of varying relative permeability. Solid; full solution. Dashed; approximate form (2) with
k′, β, α and γ, given by equations (18), (21), (22) and (25) with a = 1.38.

late time dependence of form (2), we restrict our-
selves to matching

1
f

d f
dt

∣

∣

∣

∣

t=2τ0

= −
1
τ0

. (24)

This leads to the choice

b =
1+(aτ1/2τ0)

1/2

1+(aτ1/2τ0)1/2 −β/4
. (25)

For large µr, τ1/τ0 << 1, so with our choice of a =
1.38, b ≈ 1.50.

RESULTS

The result of using choices (18), (21) and (22) for
k′, β, α and γ, in form (2), together with a = 1.38,
and b given by equation (25), are shown in Figure
(1), together with the exact solution, for 0.02 m di-
ameter spheres with relative permeability ranging

from 1 to 180, and σ = 107 Ω−1m−1. The results of
Figure (1) may be shifted to non-dimensional time
t/σµrµoR2 by dividing the time scale by σµrµoR2 =
0.01257 µr (seconds), or shifted directly to results
for other diameter and conductivity spheres by mul-
tiplying the time scale by the ratio of σR2 values.
The time derivatives of the results plotted in Figure
(1) are plotted in Figure (2). The particularly good
fit at relative permeability µr = 180 appropriate for
many steels, motivated our choice of a = 1.38.

CONCLUSION

Parametric form (2) matches the earlier time
dB/dt response of isolated conductive bodies cor-
rectly. Appropriate values of component parameters
k′, α, β, and γ for use in form (2) for the response of
a conducting magnetic sphere can be deduced from
the analytic solution for the sphere. Parameters α
and γ correspond to time scales, for transition from
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the early time t−1/2 response, and to late time expo-
nential decay, with the second transition on the order
of µ2

r times later than the first. Magnitude parameter
k′ corresponds to the difference between high fre-
quency and low frequency limit responses.
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