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ABSTRACT 

 The assessment of regional heart wall motion (local strain) can localize ischemic 

myocardial disease, evaluate myocardial viability and identify impaired cardiac function due to 

hypertrophic or dilated cardiomyopathies.  The objectives of this research were to develop and 

validate a technique known as Hyperelastic Warping for the measurement of local strains in the 5 

left ventricle from clinical cine-MRI image datasets.  The technique uses differences in image 

intensities between template (reference) and target (loaded) image datasets to generate a body 

force that deforms a finite element (FE) representation of the template so that it registers with the 

target image.  To validate the technique, MRI image datasets representing two deformation states 

of a left ventricle were created such that the deformation map between the states represented in 10 

the images was known.  A beginning diastolic cine-MRI image dataset from a normal human 

subject was defined as the template.  A second image dataset (target) was created by mapping the 

template image using the deformation results obtained from a forward FE model of diastolic 

filling.  Fiber stretch and strain predictions from Hyperelastic Warping showed good agreement 

with those of the forward solution (R
2
 = 0.67 stretch, R

2
 = 0.76 circumferential strain, R

2
 = 0.75 15 

radial strain and R
2
 = 0.70 in-plane shear).  The technique had low sensitivity to changes in 

material parameters (∆R2
 = -0.023 fiber stretch, ∆R2

 = -0.020 circumferential strain, ∆R2
 = -0.005 

radial strain, and ∆R2
 = 0.0125 shear strain with little or no change in RMS error), with the 

exception of changes in bulk modulus of the material.  The use of an isotropic hyperelastic 

constitutive model in the Warping analyses degraded the predictions of fiber stretch.  Results 20 

were unaffected by simulated noise down to an SNR of 4.0 (∆R2
 = -0.032 fiber stretch, ∆R2

 = -

0.023 circumferential strain, ∆R2
 = -0.04 radial strain, and ∆R2

 = 0.0211 shear strain with little or 
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no increase in RMS error).  This study demonstrates that Warping in conjunction with cine-MRI 

imaging can be used to determine local ventricular strains during diastole. 

 

INTRODUCTION  

 Left ventricular (LV) wall function is typically evaluated by the measurement of global 5 

measures of ventricular deformation such as ejection fraction, and by local estimates of wall 

deformation such as wall motion and wall thickening.  Techniques that have been employed 

include 2-D Doppler echocardiography [1,2], cine-MRI [3] and radionuclide ventriculography 

[4].  Global measures of ventricular function such as ejection fraction do not provide information 

on the location of functional deficits.  Wall motion and wall thickening analyses provide useful 10 

local measures of wall function but are at best an indirect measure of local tissue contraction and 

dilation. 

 The measurement of local wall deformation (strain) or fiber contraction/extension 

(stretch) can provide insight into local myocardial pathologies such as ischemia.  While tagged 

MRI can measure local deformation [5], fiber stretch cannot be determined without a model 15 

representing the mechanics of the myocardium [6].  Similarly, displacement measurements made 

by tracking the epi- and endocardial surfaces with cine-MRI have been combined with an 

anisotropic linear elasticity model to estimate fiber stretch and myocardial strain [7].  However, 

myocardial tissue is non-linear and undergoes finite deformation [8].  Alternatively, the strain 

tensor information may be reoriented to the fiber coordinate system.  Tseng coregistered 20 

diffusion tensor MR (fiber distribution) and strain rate MR to obtain fiber stretch estimates for 

the mid-ventricle [9].  However, the strain tensor information was based on 2-D strain rate 

measurements and was applied only to the mid-ventricle rather than the entire LV. 



Veress, et al. 

 4 

 Hyperelastic Warping, a technique for deformable image registration, allows the 

determination of local tissue deformation from pairs or sequences of medical image data [10-13].  

Deformable image registration techniques determine a deformation map that registers a template 

and target image.  In Hyperelastic Warping, a discretized template image is defined as a 

hyperelastic material governed by nonlinear continuum mechanics.  This ensures that mappings 5 

from template to target are diffeomorphic (one-to-one, onto, differentiable and invertible) [14].  

The technique has been used to determine strain from sequences of images of deforming tissue 

without the need for markers [10] or other fiducials such as MR tags, and in theory it can be used 

with any type of unimodal image data. 

 The objectives of this study were to develop and validate the use of Hyperelastic Warping 10 

for the extraction of high-resolution strain maps of the left ventricle from cine-MRI images.  The 

sensitivity of predictions to errors in material model selection, material parameters and simulated 

noise in the image data was determined.  The hypotheses were that 1) Hyperelastic Warping 

could accurately predict the fiber stretch (final length/initial length along the local fiber 

direction) and in-plane strain distributions during diastolic (passive) filling from cine-MRI image 15 

datasets, 2) variations in the assumed material properties and constitutive model would have a 

minimal effect on the predicted fiber stretch distribution and 3) the results of Warping cardiac 

cine-MRI images would be relatively insensitive to noise in the image data. 

 

MATERIALS AND METHODS 20 

 Finite Deformation Theory.  A Lagrangian reference frame is assumed.  The template and 

target images have spatially varying scalar intensity fields, denoted by T and S, respectively.  The 



Veress, et al. 

 5 

deformation map is ϕϕϕϕ(X) = x = X + u(X), where x are current (deformed) coordinates 

corresponding to X and u(X) is the displacement field.  F is the deformation gradient: 

( )
( )

∂
=

∂

X
F X

X

ϕϕϕϕ
.         (1) 

The change in density is related to F through the Jacobian, ( ) 0: detJ ρ ρ= =F , where 0ρ  and 

ρ  are densities in the reference and deformed configurations, respectively.  The positive 5 

definite, symmetric left Cauchy-Green deformation tensor is T=C F F .    

  Variational Framework for Deformable Image Registration.  Most deformable image 

registration methods can be posed as the minimization of an energy functional E with two terms: 

( ) ( ) ( ) ( )( ), , , ,
dv dv

E W U T S
J J

= +∫ ∫
β β

X X Xϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕ .    (2) 

W provides regularization and/or some constraint on the deformation map (e.g., one-to-one 10 

mapping or no negative volumes), while U depends on the registration of the template (T) and 

target (S) image data.  β  is the volume of integration in the deformed configuration. 

 The Euler-Lagrange equations are obtained by taking the first variation of E(ϕϕϕϕ) with 

respect to the deformation ϕϕϕϕ in the direction ηηηη , denoted εηηηη , where ε is an infinitesimal scalar, 

and then letting 0ε →  [15].  The first variation of the first term in (2) defines the forces per unit 15 

volume from the regularization, while the second term in (2) gives rise to an image-based force 

term: 

( ) : 0
W dv U dv

G
J J

β β

∂ ∂
= ⋅ + ⋅ =

∂ ∂∫ ∫ϕ,η η ηϕ,η η ηϕ,η η ηϕ,η η η
ϕ ϕϕ ϕϕ ϕϕ ϕ

.      (3) 

 Equation (3) is a highly nonlinear function of the deformation ϕϕϕϕ .  An incremental-

iterative solution method is necessary to obtain the deformation map ϕϕϕϕ  that satisfies the 20 



Veress, et al. 

 6 

equation.  The most common approach is based on Newton’s method.  Assuming that a solution 

*ϕϕϕϕ is known, a solution is sought at * + ∆uϕϕϕϕ  where ∆u  is a variation in the configuration (virtual 

displacement).  The linearization of (3) at *ϕϕϕϕ  in the direction ∆u  is defined as: 

( ) ( ) ( )* :
W U dv dv

L G G DG
J J

β β

∂ ∂ 
= + ⋅ ∆ = ⋅ + + ⋅ + ⋅ ∂ ∂ 

∫ ∫u u∆∆∆∆∗ ∗∗ ∗∗ ∗∗ ∗

ϕϕϕϕ
ϕ ,η ϕ ,η η ηϕ ,η ϕ ,η η ηϕ ,η ϕ ,η η ηϕ ,η ϕ ,η η η

ϕ ϕϕ ϕϕ ϕϕ ϕ
D k , (4) 

where 
2

:
U∂

=
∂ ∂ϕ ϕϕ ϕϕ ϕϕ ϕ

k  is the image stiffness and 
2

:
W∂

=
∂ ∂ϕ ϕϕ ϕϕ ϕϕ ϕ

D  is the regularization stiffness. 5 

 Particular Forms for W and U – Hyperelastic Warping.  In hyperelastic Warping, a 

spatial discretization of the template image is deformed into alignment with the target image.  

The target image remains fixed with respect to reference configuration and does not change over 

the course of the analysis.  Assuming that T is not changed by the deformation it is represented 

as T(X).  The values of S at the material points associated with the deforming template change as 10 

the template deforms with respect to the target; it is written as S(ϕϕϕϕ).  In other words, from the 

perspective of the material points associated with the template image, the target intensity changes 

with deformation while the template intensity does not.  The standard formulation uses a 

Gaussian sensor model for the image energy [14]: 

( ) ( ) ( )( )
2

,
2

U T S
λ

= −X Xϕ ϕϕ ϕϕ ϕϕ ϕ .       (5) 15 

λ is a penalty parameter that enforces alignment of the template model with the target image.  As 

λ → ∞ ,  ( ) ( )( )
2

0T S− →X ϕϕϕϕ , and the image energy converges to a finite, minimized value. 

 Hyperelastic Warping assumes that W is the hyperelastic strain energy from continuum 

mechanics.  Since W depends on C, which is independent of rotation, hyperelasticity provides an 
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objective (invariant under rotation) constitutive framework.  With these specific assumptions, 

equation (2) takes the form: 

( ) ( ) ( ) ( )( ), ,
dv dv

E W U T S
J J

= −∫ ∫
β β

X C Xϕ ϕϕ ϕϕ ϕϕ ϕ .     (6) 

The first variation of the first term in (6) yields the weak form of the momentum equations for 

nonlinear solid mechanics (see, e.g., [15]).  The first variation of the functional U in (5) gives 5 

rise to the image-based force term: 

( ) ( ) ( )( )
( )

,
S

DU T Sλ
∂ 

⋅ = − − ⋅ ∂ 
X X

ϕϕϕϕ
ϕ η ϕ ηϕ η ϕ ηϕ η ϕ ηϕ η ϕ η

ϕϕϕϕ
.     (7) 

This term drives the template deformation based on pointwise differences in image intensity and 

the gradient of the target intensity, evaluated at material points in the template model.  A similar 

computation for the term W leads to the weak form of the momentum equation (see, e.g., [16]): 10 

( ) ( ) ( ): : 0
S dv

G DE dv T S
Jβ β

λ
 ∂

= ⋅ = ∇ − − ⋅ = ∂ 
∫ ∫ϕ,η ϕ η σ η ηϕ,η ϕ η σ η ηϕ,η ϕ η σ η ηϕ,η ϕ η σ η η

ϕϕϕϕ
.   (8) 

Here, “:” denotes the tensor inner product and σσσσ    is the 2nd order symmetric Cauchy stress tensor, 

1 TW

J

∂
=

∂
F F

C
σσσσ .         (9) 

Thus, the image-based forces are opposed by internal forces, arising from the constitutive model. 

 The linearization of equation (8) at *ϕϕϕϕ  in the direction ∆u  yields: 15 

( ) ( )

( ) ( )

* :

: : ∆ : : ∆ ∆s s

S dv
L G dv T S

J

dv
dv dv

J

β β

β β β

λ
 ∂

= ∇ − − ⋅ ∂ 

+ + + ⋅ ⋅

∫ ∫

∫ ∫ ∫u u u

∗∗∗∗ϕϕϕϕ
ϕ,η σ η ηϕ,η σ η ηϕ,η σ η ηϕ,η σ η η

ϕϕϕϕ

η σ η ηη σ η ηη σ η ηη σ η η∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇c k

 .  (10) 

Here, c is the 4
th
 order spatial elasticity tensor [15] and [ ]s ⋅∇∇∇∇  is the symmetric gradient operator: 
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[ ]
[ ] [ ]1

2

T

s
 ∂ ⋅ ∂ ⋅ 

⋅ = +  
∂ ∂   
ϕ ϕϕ ϕϕ ϕϕ ϕ

∇∇∇∇ .        (11) 

The first two terms in the second line of equation (10) are geometric and material stiffnesses, 

respectively, from computational mechanics [17].  The image stiffness (2
nd
 order tensor) is: 

( )
2 2

:
U S S S

T S
∂ ∂ ∂ ∂

λ
∂ ∂ ∂ ∂

     
= = ⊗ − −     

∂ ∂       ϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕ ϕ
k ,     (12) 

where “⊗” represents the vector outer product operation. 5 

 FE Discretization:  A FE mesh is constructed to correspond to all or part of the template 

image.  T is interpolated to the nodes of the FE mesh.  As the mesh deforms, S is queried at the 

current location of nodes in the template FE mesh.  An isoparametric conforming FE 

approximation is introduced for ηηηη and u∆∆∆∆  in equation (10): 

( ) ( )
nodes nodes

1 1

: | , : |
e e

N N

e j j e j j

j j

N NΩ Ω
= =

= = ∆ = ∆ = ∆∑ ∑ξ u u ξ uη η ηη η ηη η ηη η η ,   (13) 10 

where the subscript e specifies that variations are restricted to an element with domain Ωe, and 

Nnodes is the number of element nodes.  Eight-node hexahedral elements with three translational 

degrees of freedom per node were used, so ( ) ( ) ( ){ }1,1 1,1 1,1∈ − × − × −ξ  is the bi-unit cube, and 

Nj are the isoparametric shape functions.  The gradients of ηηηη are discretized as 

nodes nodes

1 1

,
N N

L NL

s j j j j

j j= =

= =∑ ∑η B η η B η∇ ∇∇ ∇∇ ∇∇ ∇ ,      (14) 15 

where B
L
 and B

NL
 are the linear and nonlinear strain-displacement matrices in Voigt notation 

[18].  For an assembled FE mesh, equation (10) becomes (in Voigt notation): 

( ) ( )( ) ( ) ( )( )
nodes nodes nodes

* * ext * int *

1 1 1

N N N
R I

j

i j i iij= = =

+ ⋅ ∆ = −∑ ∑ ∑K K u F Fϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕ .    (15) 
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Equation (15) is a system of linear equations.  The term in parentheses on the left-hand side is 

the (symmetric) tangent stiffness matrix.  ∆u  is the vector of unknown incremental nodal 

displacements with length [ ]8 3 elN× × , where elN  is the number of elements.  extF  is the 

external force vector arising from equation (7), and intF  is the internal force vector from the 

stress divergence.  The regularization stiffness arising from the hyperelastic energy is: 5 

( ) ( )
T T

R NL NL L Ldv dv= +∫ ∫
β β

K B σB B Bc .      (16) 

The image-based stiffness is: 

J

I T dv

β

= ∫K N Nk .         (17) 

An initial estimate of ∆u  is obtained by inverting equation (15), and this solution is improved 

iteratively using a quasi-Newton method [19]. 10 

 Solution Procedure and Augmented Lagrangian:  In equation (6), the image data may be 

treated as either a soft constraint, with the mechanics providing the “truth”, or as a hard 

constraint, with the mechanics providing regularization, or as a combination.  Indeed, equation 

(5) is essentially a penalty function stating that the template and target image intensity fields 

must be equal as → ∞λλλλ .  However, as λ is increased, KI becomes ill-conditioned, resulting in 15 

inaccurate estimates for 1
I
−K , which leads to slowed convergence or divergence of the nonlinear 

iterations.  To circumvent this problem, the augmented Lagrangian method was used [20] .  A 

solution at a particular timestep is first obtained with a relatively small penalty λ.  The image-

based body forces U∂ ∂ϕϕϕϕ  are incrementally increased in a second iterative loop, resulting in 

progressive satisfaction of the constraint.  This algorithm allows the constraint to be satisfied to a 20 
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user-defined tolerance and avoids ill conditioning.  Equation (8) is modified by addition of an 

image-based force γγγγ  due to the augmentation: 

( )* 0
dv

G G
Jβ

= + ⋅ =∫ ηϕ,η γϕ,η γϕ,η γϕ,η γ         (18) 

The augmented Lagrangian update procedure for timestep n+1 takes the form: 

( )

( )

0
1

1
1 1 1

*
1

1
1 1 1

0

DO for each augmentation  WHILE TOL

     Minimize  with  fixed using the BFGS method

     Update mutipliers using 

END DO

n n

k k k
n n n

k
n

k
k k
n n n

k

k

G

U

γ γγ γγ γγ γ

γ γ γγ γ γγ γ γγ γ γ

γγγγ

γ γ ϕγ γ ϕγ γ ϕγ γ ϕ

+

+
+ + +

+

+
+ + +

=

=

− >

= + ∂ ∂

   (19) 5 

Here, 0
1n+γγγγ  is the starting value for the multiplier vector at time n+1 before the beginning of 

augmentations, k is the augmentation number and TOL is the tolerance for defining convergence 

of the augmentations.  This nested iteration procedure (Uzawa algorithm, [20]) converges 

quickly because the multipliers γγγγ  are fixed during minimization of G
*
.  For the present study, 

augmentations were performed after λ was increased to the maximum value that could be used 10 

without numerical ill conditioning.  After this, the augmented Lagrangian method was used with 

TOL = 0.20. 

 Cardiac Image Acquisition:  To mimic typical clinical MR acquisition for patients with 

cardiac pathologies, gated cine-MRI images of a normal male volunteer’s heart (35 years old) were 

acquired on a 1.5T Siemens scanner using standard clinical settings (256×256 image matrix, 378 15 

mm FOV, 10 mm slice thickness, 10 slices) (Figure 1).  The MRI dataset corresponding to 

beginning of diastole was designated as the template image.  The template image was cropped to a 

64×64 image matrix by 8 slices to focus on the heart. 
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 FE Mesh Generation and Boundary Conditions.  The boundaries of the LV were obtained 

by manual segmentation of the epi- and endocardium from the template image.  The 3-D FE model 

was constructed to include the entire image domain, with the lumen and the tissue surrounding the 

myocardium represented as an isotropic hyperelastic material with relatively soft properties 

(modulus of elasticity E = 0.3 KPa and Poisson’s ratio ν = 0.3) so that the entire template image 5 

could be mapped.  The edges of the mesh were fixed, eliminating rigid motion. 

 Constitutive Model and Material Coefficients.  The myocardium was represented as 

transversely isotropic hyperelastic with fiber angle varying from –90
o
 at the epicardial surface to 

90
o
 at the endocardial surface [21].  The model represented fibers in a neo-Hookean matrix:  

2
1 2( 3) ( ) [ln( )]

2

K
W I F Jµ λ= − + +%% .      (20) 10 

1I
%  is the first deviatoric invariant of C [22],  0 0λ = ⋅ ⋅a C a% %  is the deviatoric fiber stretch along 

the local direction a0, µ is the shear modulus of the matrix and K is the bulk modulus.  The fiber 

stress-stretch behavior was represented as exponential, with no resistance to compressive load: 

 

( )( )

2

2
3 4

0, 1,

exp 1 1 , 1.

F

F
C C

λ λ
λ

λ λ λ
λ

∂
= <

∂

∂  = − − ≥
 ∂

% %
%

% % %
%

     (21) 

Here, C3 scales the stresses and C4 defines the fiber uncrimping rate.  A description of the 15 

constitutive model and its FE implementation can be found in Weiss et al. [23]. 

 Material coefficients were determined by a nonlinear least squares fit of the constitutive 

equation to published equibiaxial stress/strain curves [24] (µ = 2.10 KPa, C3 = 0.14 KPa, and C4 

=22.0).  A bulk modulus K of 160.00 KPa was chosen so that changes in relative volume were 

under 5%, in other words the material would be nearly incompressible.  The LV material 20 

properties do not need to be exact for this analysis because stretch and strains from the forward 
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FE model were used as the “gold standard” for comparison to Warping results.  A physiological 

internal pressure was applied to the endocardial surface and a nonlinear FE analysis was 

performed using NIKE3D [25].  Predictions of fiber stretch, circumferential, radial and in-plane 

(radial-circumferential) shear strains were compared to values in the literature. 

 Creation of Synthetic Target Image:  To validate Warping predictions of strain, a pair of 5 

3D MRI image datasets representing two deformation states of the LV were used such that the 

deformation map between the states represented in the images was known.  A synthetic target 

image was created by applying the displacement map of the forward FE model to the template 

MRI image (Figure 1).  These image datasets were used as the only input in the Warping 

analysis; pressure boundary conditions were not applied. 10 

 Comparison of Synthetic End-diastolic Image with In Vivo End-diastolic image data set:  

The simulated end-diastolic image data set (Target) and the in vivo end-diastolic image data set 

were compared to determine the similarity of the images using two standard image similarity 

measures that are independent of the image energy functional:  the Hausdorff Distance [26] and 

the Chamfer Distance [27].  These measures were also determined for the template image data 15 

set and the in vivo image data set for comparison purposes.  The Chamfer Distance is the average 

distance (in pixels) for every edge point in one image to the nearest edge in the other.  The 

Hausdorff Distance [26] gives the maximum distance over all of the edge points in one image to 

the nearest edge in the other image (it gives the distance for that edge which is farthest to the 

nearest edge in the other image).  The Hausdorff Distance gives the "worst case" of mismatch 20 

between two images.  It should be noted that the forward model, which the synthetic image data 

set was based upon, was not designed to reproduce the deformation documented in the in vivo 
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image data set.  Rather, it was designed to have deformation values during diastole that were 

consistent with those reported in the literature. 

 Warping Model:  The Warping FE model used the same geometry and material properties 

as the forward FE model.  The tether mesh was not included because it was only necessary to 

determine deformation measures within the LV wall.  Nodal values of fiber stretch, 5 

circumferential, radial and shear strain were averaged for each image slice and compared with 

values from the forward FE model.  To assess transmural deformation, the same measures were 

computed as a function of wall position.  Scatter plots were generated to determine coefficients 

of determination (R
2
) between Warping and forward FE model predictions.  A Bland-Altman 

analysis [28] was performed to assess agreement between the forward FE and Warping 10 

predictions for the four measures of deformation.  Absolute and percent RMS errors were 

calculated using: 

nodes

2

forward Warp

1nodes

1
RMS error ( )

N

iN
ε ε

=

= −∑ ,     (22) 

and 

nodes
2

forward Warp

2
1 forward

( )
percent RMS error

( )

N

i

ε ε

ε=

−
= ∑ .     (23) 15 

Here, forwardε  represents a forward analysis strain value for a given node, Warpε  is the predicted 

strain value for the corresponding node in the Warping analysis and nodesN  is the total number of 

nodes in the elements representing the myocardial wall.  For fiber stretch, percent RMS error 

was calculated by first subtracting a value of 1.0 from the data to convert stretch to units of 

strain. 20 
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 Edge versus Wall Warping Solution:  Since the Warping body force is based on image 

intensity and gradient (Equation (7)), it was expected that predictions would be more accurate for 

the endo- and epicardial boundaries in comparison to mid-wall.  R
2
 values were calculated 

between the strain/stretch Warping and FE predictions for nodes on the endo- and epicardial 

surfaces.  These R
2
 values were compared with values for the entire model on each image plane. 5 

 Sensitivity to Material Coefficients and Constitutive Model:  To determine the sensitivity 

of Warping to changes in material coefficients, µ and C3 were increased and decreased by 24% 

of the baseline values, corresponding to the 95% confidence interval of the data in Humphrey et 

al. [29].  To assess the importance of the fiber reinforcement, the constitutive model was changed 

to an isotropic neo-Hookean model for the Warping simulations.  Finally, the effect of the 10 

material bulk modulus was assessed by increasing and decreasing K by a factor of 10.0 in the 

Warping analysis.  To measure the effect of the changes in material properties and the change in 

material model, the R
2
 values, RMS errors and the percent RMS errors were determined for the 

four measures of local strain between the Warping and forward FE model predictions.   

 Sensitivity to Image Noise:  To assess the effects of noise on the Warping predictions, an 15 

additive noise model was used to modify the images [30].  Random noise ( ),N i j  was added to 

the images ( ),I i j , where i and j represent pixel coordinates, to create a noisy image ( ),S i j : 

( ) ( ) ( ), , ,S i j I i j N i j= + .       (24) 

( ),N i j  was defined as the standard deviation Nσ  of a zero mean normal probability distribution 

for noise image intensities [30].  The signal to noise ratio (SNR) was defined as: 20 

N

ISNR
σ

σ
= .         (25) 
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For the images used, Iσ = 42 gray levels.  SNRs of 16, 8, 4, 1, and 0.5 were examined (Figure 

3).  The measures of deformation obtained from Warping using the noisy images were compared 

with predictions from the forward FE model to determine the effect of SNR on the R
2
 values and 

the associated RMS errors. 

 Sensitivity to the Addition of Intermediate Diastolic Image Data:  To assess the effects of 5 

the use of intermediate image data on the end-diastolic Warping predictions, additional image 

data sets representing intermediate stages of diastolic filling were created in the manner detailed 

using the forward FE model.  Three intermediate target image data sets were used, representing 

the first quarter of filling, mid-diastole and late diastole.  Warping analyses were performed 

using all of the immediate images, using only two intermediate image sets (mid-diastole and late 10 

diastole), and using only a mid-point diastolic image added to determine the contribution of the 

additional data to the overall accuracy of the end-diastolic solution. 

 Accuracy of Strain Predictions of Intermediate Diastolic Image Data:  Warping analyses 

were performed with each of the intermediate target images discussed in the previous section to 

determine accuracy of the intermediate solutions.  The Warping strain predictions were 15 

compared with forward FE solution for the intermediate filling stages.  The RMS errors and the 

relative RMS errors were determined for each of these analyses and compared with the baseline 

validation study. 

 

RESULTS  20 

 Forward FE Model Predictions:  Forward FE predictions of myocardial strains during 

diastole were in good agreement with values in the literature (Table 1), demonstrating that the 

images derived using the deformation map from the forward FE model provided a reasonable 
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surrogate for validation of Warping predictions.  Circumferential strains were in excellent 

agreement [7,31,32].  Endocardial and epicardial radial strains were comparable to values 

reported by Omens [31] and somewhat less than those reported by others [7,32].  In-plane shear 

strains were also generally consistent with results from Guccione [32] and Omens [31], while 

Sinusas et al. [7] reported a very low in-plane shear strain.  The forward FE model did not 5 

predict a clear peak in the shear strain near the mid-wall.  Average fiber stretch (Figure 6A, 1.09 

± 0.01) was slightly lower than that reported by Tseng et al. [33] (1.12 ± 0.01) for the mid-

ventricle and by MacGowan et al. [34] (1.15) for the entire LV. Forward FE model prediction of 

end-diastolic diameter was 46 mm which is consistent with values in the literature [35].   

 The Chamfer Distance between the synthetic target image data set and the in vivo end-10 

diastolic image data was 1.49 mm, while the Hausdorff Distance was 5.75 mm.  For comparison, 

the Chamfer Distance and Hausdorff distance between the template image data set and the in 

vivo end-diastolic image data set were 1.77 and 8.90 mm, respectively.  Note that these 

similarity measures cannot be computed between the deformed template and the target or in vivo 

end-diastolic images since only the ventricular wall was discretized and tracked in the Warping 15 

analyses. 

 Comparison of Forward FE and Warping Predictions:  There was good qualitative and 

quantitative agreement between forward and Warping predictions of fiber stretch (Figures 4 and 

5A).  The highest fiber stretch was 40-50% through the wall, decreasing toward the endo- and 

epicardial surfaces.  Fiber stretch was slightly higher at the endocardial surface than the 20 

epicardial surface.  The magnitudes of circumferential, radial and shear strain were highest at the 

endocardial wall and decreased toward the epicardial surface (Figures 5B, 5C and 5D).  There 
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was very good agreement between the forward FE and Warping predictions in terms of the 

magnitudes of strains and their transmural variation for all four measures of local deformation. 

 Average fiber stretch and strains for the Warping and forward FE results had generally 

higher standard deviations than averages for individual planes (Figure 5).  Thus, variability 

depicted in the overall average is partially due to variability between image planes.  Differences 5 

between axial locations are expected because of differences in LV geometry from apex to base. 

 There was a significant correlation between forward FE and Warping predictions for all 

measures of strain (p<0.001 for all cases) (Figures 6A-D).  Circumferential strain predictions had 

the highest R
2
 value (R

2
 = 0.76), while fiber stretch predictions had the lowest (R

2
 = 0.67).  The 

Bland-Altman analyses indicated good agreement between the forward FE solution and the 10 

Warping predictions with the strain measures (Figure 7B-D) showing no apparent bias (all 

regression slopes ≤ 0.099).  The stretch results (Figure 7A) indicated a slight tendency for the 

Warping analysis to under-predict the stretch at low stretch values and over-predict the stretch at 

high stretch values (regression line slope = 0.22). 

 Edge versus Wall Warping Solution:  Predictions based on nodes on the epi- and 15 

endocardial surfaces had slightly better correlation with forward FE results than those based on 

all nodes in the model (Table 2).  R
2
 values for in-plane strains (circumferential, radial, shear) 

were consistently higher than for fiber stretch. 

 Sensitivity to Changes in Material Coefficients and Constitutive Model:  Warping 

predictions of fiber stretch and strain were insensitive to changes in the material parameters µ 20 

and C3 (Table 3).  When the constitutive model used in the Warping analysis was changed from 

transversely isotropic to neo-Hookean, predictions for all four measures of strain were affected.  

R
2
 values dropped from 1 to 10 points.  The increases in percent RMS error ranged from 1% 
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(shear strain) to 10% (fiber stretch) and the increases in absolute RMS error ranged from 0.000 

(shear strain) to 0.005 (fiber stretch) (Table 3).  Predictions were also sensitive to changes in the 

bulk modulus (K), depending on whether the material was made more or less compressible.  

Increasing K by an order of magnitude resulted in a decrease in R
2
 for in-plane strains and 

increases in both RMS error and percent RMS error.  Decreasing K by an order of magnitude 5 

resulted in severe degradation of the R
2
 values and resulted in substantial increases in RMS error 

and percent RMS error for all measures of deformation. 

 Sensitivity to Image Noise: There was little change in the R
2
 values or RMS error 

between forward FE and Warping predictions down to a SNR of 4.0.  Decreases in the R
2
 values 

and increases in RMS error was progressive for SNRs below 4.0 (Figure 8). 10 

 Addition of Intermediate Diastolic Image Data:  The addition of intermediate image data 

slightly improved the accuracy of the analyses.  The overall change in RMS error for all 

measures of strain were less than 0.03 with an associated improvement in relative RMS error of 

less than 4%.  The initial addition of a single mid-diastolic image produced the slight increase in 

accuracy.  The addition of the early diastolic image data and a late diastolic image data set did 15 

not produce any further improvement in the accuracy of the predictions regardless of whether 

Augmented Lagrangian analyses were performed at the intermediate image sets. 

 Accuracy of Strain Predictions of Intermediate Diastolic Image Data:  The Warping 

analyses on each of the intermediate image data sets showed that the accuracy of the 

intermediate solutions themselves were comparable to the full diastolic validation solution 20 

(Table 4) with similar values for RMS errors.  The relative RMS errors showed increasing values 

at the late diastolic and mid-diastole analyses with the highest relative RMS errors being found 

in the early diastolic analysis due to the decreasing average deformation. 
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DISCUSSION 

 In the present study, minimization of the image-based energy was enforced in a “hard” 

sense using an augmented Lagrangian technique, while a hyperelastic strain energy was used to 

regularize the image registration.  These approaches are considered to be major strengths of the 5 

method.  The use of a hyperelastic strain energy in combination with a FE discretization ensures 

that deformations will be diffeomorphic (one-to-one, onto, and differentiable with a 

differentiable inverse; see, e.g., [36]).  Second, hyperelasticity is objective for large strains and 

rotations, while previous use of solid mechanics-based regularizations were based on linear 

elasticity [37-40], which is not objective and penalizes large strains and rotations.  Finally, the 10 

use of a realistic constitutive model for the LV ensures that deformation maps reflect the 

behavior of an elastic material under finite deformation.  In regions of the template model that 

have large intensity gradients, large image-based forces will be generated and the solution will 

be primarily determined by the image data.  In regions that lack image texture or gradients, 

image-based forces will be smaller and the predicted deformation will be more dependent on the 15 

hyperelastic regularization (material model).  A realistic representation of the material behavior 

helps to improve predictions in these areas.  Other techniques for image-based strain 

measurement, such as optical flow [41] and texture correlation [42], use only an image-based 

energy term.  These techniques do not ensure physically reasonable deformations in regions that 

lack image contrast or texture and they are sensitive to noise [42].  Further, there is no guarantee 20 

that deformation maps will be diffeomorphic. 

 The points above can be examined in the context of comparisons between the forward FE 

and Warping predictions.  Generally, R
2
 values for fiber stretch and strains were slightly better 
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on the epicardial and endocardial surfaces than for the overall model (Table 2).  This is 

consistent with the notion that regions with high gradients in image intensity yield better results.  

However, it is notable that predictions for the entire model (including locations within the 

myocardial wall) were not much worse.  The loss of accuracy for the mid-wall predictions do not 

drop to unacceptable levels, particularly for the in-plane strain measurements.  In fact, overall 5 

predictions from Hyperelastic Warping correlated very well with forward FE predictions (Figure 

6), and Warping predicted transmural gradients in strains and fiber stretch with good fidelity 

(Figure 5).  The worst correlation between forward FE and Warping was obtained for fiber 

stretch (R
2
 = 0.67, Figure 6A).  The image data used in this study had a 1 cm slice thickness, 

which was likely the main factor that resulted in the lower correlations for fiber stretch. 10 

 Despite reasonable agreement with strain measurements in the literature, several 

shortcomings of the forward FE model are worth noting.  First, orthotropic material symmetry 

may provide a more accurate representation of the passive material properties of myocardium 

than transverse isotropy, since it can represent the laminar (sheet) organization of ventricular 

myofibers and thus accommodate differences in transverse stiffness [43].  Second, the forward 15 

FE model predicted mid-wall fiber stretches that were higher than those at the endo- and 

epicardial surfaces (Figure 5A), while reported transmural fiber strains during diastole and 

systole are generally uniform [7,33,44,45].  Most of these studies reported systolic strain 

measurements with diastole as the reference configuration.  Interestingly, in a canine study of 

diastolic strains [6], a difference of 23% in fiber strain was reported between the inner wall of the 20 

myocardium (~0.17) and the outer/mid-wall (~0.22).  Similarly, MacGowan et al. [34] measured 

a statistically significant difference in systolic fiber shortening between epicardium and 

endocardium in normal human subjects.  These studies suggest that forward FE predictions of 
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transmural fiber strain may be reasonable.  Finally, although the FE model geometry was patient-

specific, the fiber angle distribution was idealized.  Despite these shortcomings, it must be 

emphasized that the most important aspects of the forward FE model were that it provided a 

reasonable approximation of passive ventricular mechanics, the exact solution for the strains was 

known, and a synthetic image dataset corresponding to that exact solution could be generated.  A 5 

similar approach to validation, based on forward FE predictions, has been used previously to 

validate measurements of ventricular strain based on spline interpolation of MRI tissue tags [46]. 

 Warping predictions of fiber stretch and strain were relatively insensitive to changes in 

material properties with the exception of the bulk modulus.  An order of magnitude increase in 

the bulk modulus (K) of the material had little effect on the in plane strain predictions, however, 10 

the fiber stretch predictions showed degradation.  Decreasing K by an order of magnitude led to 

unacceptable degradation of the predicted values and a substantial increase in RMS error.  This 

indicates that a reasonable estimation of the myocardium bulk modulus is necessary for accurate 

predictions.  The forward FE model, baseline Warping model and the model with increased bulk 

modulus showed less than 5% change in relative volume, while the Warping model with 15 

decreased bulk modulus resulted in volume changes up to 21% indicating that the material bulk 

response had become quite compressible. 

 The use of an isotropic material model instead of a transversely isotropic material model 

in the Warping simulations resulted in decreased R
2
 values with increased RMS errors.  This was 

likely due to the importance of the material model in regions of the template that have little 20 

image texture or gradients.  As mentioned earlier, these regions generate little image force to 

deform the template model.  Even with the appropriate material model and exact material 

property definitions, areas with a high intensity gradient (epi- and endocardial surfaces) provide 
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slightly better predictions (average increase in R
2
 = 0.035) than those based on the entire wall 

(Table 2).  Whereas cine-MRI images provide some inhomogeneities within the myocardial wall 

(Figure 1), Warping predictions based on imaging modalities such as CT, where the myocardial 

wall intensity is homogenous, would depend on the geometry the accuracy of the material model 

and parameters assigned to the Warping model.  Future investigations should examine the ability 5 

of Warping to predict strains in the myocardium with the presence of simulated 

ischemic/infarcted regions. 

 Warping was relatively insensitive to image noise.  The Warping analyses did not show a 

decrease in the predicted R
2
.values nor an increase in RMS error down to SNR values of 4.0.  

This suggests that the technique may be applicable to relatively noisy image modalities such as 10 

positron emission tomography (PET) or single photon emission computed tomography (SPECT) 

[47].  Previous work has suggested that the deformation distributions determined by Warping on 

a PET image data set produces comparable results as those determined from cine-MRI image 

data sets of the same patient [48].  However, further study and validation is necessary before 

Warping can be used with PET image datasets. 15 

 Techniques that have been used to evaluate LV mechanical function can broadly be 

categorized into those that determine global measures of LV deformation and those that 

determine local measures of LV deformation.  LV wall function is typically evaluated using 2-D 

Doppler echocardiography by interrogating the LV from various views to obtain an estimate of 

3-D segmental wall motion or wall thickening [2].  Additionally, 1-D M-mode Doppler has been 20 

used to give estimates of myocardial thickening and strain.  These echocardiographic 

measurements can be subjective and experience dependent [49] and are not three dimensional.  

Three dimensional echocardiography can provide full 3-D views of the LV, but can be limited to 
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certain acquisition windows that may lead to obstructed views of the LV.  In a similar fashion to 

echocardiography, cine-MRI has been used for wall motion and wall thickening analyses [3].  

While not as convenient as echocardiography in the clinical setting, cine-MRI is fully three 

dimensional and does not depend on specific interrogation windows to visualize the LV.  

Radionuclide ventriculography is the most widely used technique for assessment of left 5 

ventricular ejection fraction (LVEF) in heart failure [50].  In conjunction with global LVEF and 

assessment of diastolic function, regional wall motion analysis has been used to study the effect 

of drugs on the underlying pathophysiological process [4]. 

 Although wall motion and wall thickening are useful measures of wall function, the 

measurement of local strain or fiber contraction/extension (stretch) provides three dimensional 10 

information on mechanical function of the myocardium.  The most widely used technique for 

quantifying local myocardial strain is MR tagging [51-53].  MR tagging relies on local 

perturbation of the magnetization of the myocardium with selective radio-frequency (RF) 

saturation to produce multiple, thin tag planes.  The resulting magnetization lines, which persist 

for up to 400 ms, can be used to track the deformation of the myocardium.  The tags provide 15 

fiducials for the calculation of strain.  The primary strength of tagging is that in vivo, 

noninvasive strain measurements are possible [54,55].  It can effectively track fast, repeated 

motions in three dimensions.  Further, to determine 3-D deformation, two to three orthogonal tag 

sets must be acquired at all time instances [56].  The resolution of the deformation map 

determined from tagging is dependent on the tag spacing rather than the resolution of the MRI 20 

acquisition matrix, with an optimal tag spacing of 6 pixels [57].  Hyperelastic Warping offers the 

flexibility of being able to be used on more than a single imaging modality.  The spatial 

resolution of hyperelastic Warping depends on the sampling of the template and target images 



Veress, et al. 

 24 

via the FE mesh discretization, which can be refined to equal or surpass the resolution of the MR 

acquisition matrix.  Depending on the textural quality of the image data, analyses using higher-

resolution spatial discretizations may or may not result in improved accuracy for strain 

predictions. 

 Although an idealized fiber angle distribution was used in the validation analyses, more 5 

accurate average or subject-specific fiber angles could be incorporated.  Combining tagged 

deformation data with a separate finite element model incorporating fiber structure has been 

demonstrated by Tseng et al. [33].  While diffusion tensor MRI (DTMRI) has the potential to 

provide patient-specific fiber distribution information, difficulties with long acquisition times 

and motion artifacts make in vivo acquisition extremely difficult [58,59].  In cases where the 10 

fiber distribution cannot be estimated, for example, where extensive remodeling due to 

pathologies such as cardiomyopathy and myocardial infarction have taken place, fiber stretch 

estimates based on population averages would likely not be reliable.  Nevertheless, the 

sensitivity studies (Table 3) suggest that reasonable predictions of diastolic strains may still be 

possible in the absence of accurate data on the spatial distribution of fiber angles. 15 

 Several additional improvements in Hyperelastic Warping and other applications of the 

technique are envisioned.  Warping has the potential to be able to estimate the left ventricular 

wall stress during diastolic filling.  To estimate stress, accurate boundary conditions and 

constitutive relations are critical.  Estimates of intraventricular and intrathoracic pressure would 

need to be added to the Warping analysis.  The effects of residual stress would need to be 20 

included, since even in the absence of contraction or intraventricular pressure, the myocardium is 

not stress free [60,61].  Additionally, Hyperelastic Warping could be used to estimate material 

coefficients for a constitutive model.  Using both the image forces determined by the Warping 
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analysis and measurements or estimates of the physiological loading (e.g. intraventricular 

pressure, intrathoracic pressure), the material property coefficients used to characterize the 

passive myocardium could be estimated via a nonlinear optimization technique [62].  This 

method would determine the configuration where the physiological loading and the material 

behavior of the model would best reproduce the deformation documented in the images.  The 5 

accuracy of strain predictions from Hyperelastic Warping could be improved by using a priori 

information regarding the location of distinct anatomical landmarks, such as the junctions 

between the left and right ventricles.  Since the technique is based on a FE discretization, 

imposition of such displacement boundary conditions is straightforward. 

 The use of a time series of target images allowed for temporal tracking of diastolic 10 

deformation with consistent accuracy throughout the filling phase.  It appears that two images 

provide reasonable accuracy to determine diastolic deformation since the use of multiple target 

images did not result in improvement in the accuracy of diastolic deformation.  However, 

multiple target images would likely be necessary estimate strain during systole.  Multiple targets 

would allow the Warping model would follow a more realistic deformation path than that taken 15 

during the analysis using two image data sets.  However, preliminary tests for the use of Warping 

to determine systolic deformation indicates that the Warping analysis of systolic deformation 

may be prone to element inversion during the nonlinear iteration process, leading to a failure of 

the analysis.  This is not surprising given that systolic deformations involve generally larger 

deformations.  Further research is necessary to determine whether the Warping technique can be 20 

applied to strain measurement during systole, and it is expected that it may be difficult to 

determine some components of systolic strain such as transverse shear.  Comparisons with other 

techniques such as MR tagging would be useful to validate Warping predictions during systole. 
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 It should be possible to use tagged MR images and standard cine MR images with 

Hyperelastic Warping simultaneously.  By including additional energy terms that forced 

registration of the tag lines in a separate tagged dataset [63], Warping would provide additional 

information to drive the registration based on the image data that could potentially improve 

spatial resolution and accuracy that could be obtained by either technique if used alone.  In 5 

theory this approach could be applied to image data obtained via other modalities as well, 

combining for instance one image functional based on MR images and another based on CT 

images. 

 In summary, the results of this study indicate that Hyperelastic Warping can predict 

simulated strain and fiber stretch distributions of the left ventricle during diastole from the 10 

analysis of cine-MRI images acquired with scanner settings and image resolution that are typical 

of those used clinically.  Warping predictions of in-plane strains showed better agreement with 

predictions from the forward FE model than the fiber stretch predictions.  Warping predictions 

were most accurate in regions of high intensity gradients such as the endo- or epicardial surfaces.  

The material parameter/model sensitivity studies demonstrated that strain predictions are not 15 

highly dependent on the material coefficients used to regularize the registration problem, with 

the exception that a reasonable estimate of the bulk modulus of the material is needed.  Warping 

can accurately determine fiber stretch distribution in relatively noisy images, down to a SNR of 

4. 

 20 
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TABLES 

 

Strain 

Component 

Forward 

FE Model 

Sinusas [7] Guccione [64] Omens [44] 

 Epi Endo Epi Endo Epi Endo Epi Endo 

Circumferential 0.22 0.07 0.15 0.07 0.15 0.09 0.22 0.05 

Radial 0.14 0.09 0.25 0.15 0.34 0.19 0.18 0.12 

In-plane Shear 0.08 0.03 > 0.02 0.06 0.01 0.03 0.02* 

                    

               

Table 1.    Comparison of forward FE strain predictions for changes in strain between beginning- 

and end-diastole to values reported in the literature.  The forward FE results are in reasonable 

agreement with published experimental results.  * Reported a mid-wall peak of 0.08. 

 

 

 
Slice Fiber Stretch Cir. Strain Radial Strain Shear Strain 

 Wall Boundary Wall Boundary Wall Boundary Wall Boundary 

7 0.66 0.81 0.75 0.87 0.72 0.76 0.72 0.85 

6 0.58 0.45 0.85 0.90 0.76 0.79 0.76 0.79 

5 0.71 0.74 0.79 0.81 0.71 0.77 0.76 0.83 

4 0.62 0.71 0.85 0.85 0.77 0.85 0.77 0.77 

3 0.76 0.83 0.77 0.74 0.66 0.74 0.84 0.85 

2 0.71 0.71 0.79 0.79 0.67 0.66 0.67 0.72 

1 0.72 0.76 0.88 0.88 0.71 0.88 0.71 0.76 

Avg 0.68 ± 0.06 0.72 ± 0.13 0.81 ± 0.06 0.83 ± 0.06 0.71 ± 0.04 0.78 ± 0.07 0.75 ± 0.05 0.80 ± 0.05 

 

Table 2: Coefficients of determination (R
2
) between forward FE and Warping predictions of 

stretch and strain for each image slice.  Correlations are presented using data for the entire 

models (“Wall”) and using only the boundary nodes (“Boundary”).  The R
2
 for the boundary 

nodes were slightly better for the entire model in most cases.  The coefficients of determination 

for in-plane measures of strain (Circumferential, Radial, Shear) had consistently higher R
2
 values 

than for fiber stretch. 
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 Fiber Strain Circ. Strain Radial Strain Shear Strain 

 R2 
RMS 

error 

% RMS 

error 
R2 

RMS 

error 

% RMS 

error 
R2 

RMS 

error 

% RMS 

error 
R2 

RMS 

error 

% RMS 

error 

Baseline 

Warping 
0.67 0.021 29 0.72 0.041 30 0.66 0.025 22 0.70 0.026 36 

µ  + 24% 0.65 0.021 30 0.69 0.044 32 0.65 0.025 23 0.71 0.026 36 

µ  - 24% 0.64 0.021 29 0.70 0.042 30 0.65 0.025 23 0.70 0.026 36 

C3 + 24% 0.65 0.021 30 0.71 0.040 29 0.66 0.026 23 0.72 0.024 34 

C3 - 24% 0.65 0.021 30 0.70 0.041 30 0.66 0.026 23 0.72 0.024 34 

Neo-

Hookean 
0.57 0.026 39 0.65 0.049 35 0.58 0.032 28 0.69 0.026 37 

K*10 0.55 0.021 32 0.63 0.047 42 0.65 0.035 31 0.63 0.028 39 

K/10 0.50 0.042 58 0.40 0.079 57 0.30 0.060 53 0.27 0.050 70 

 

Table 3.  Effect of changes in material coefficients and constitutive model on coefficients of 

determination (R
2
), RMS error (units of strain) and the percent RMS error between the Warping 

and forward FE predictions for the four measures of strain.  “µ + 24%” indicates that results are 

for the 24% increase in µ  the shear modulus. 

 

 

 Fiber Strain Circ. Strain Radial Strain Shear Strain 

Target Image Data 

Set 

RMS 

error 
% RMS 

error 
RMS 

error 
% RMS 

error 
RMS 

error 
% RMS 

error 
RMS 

error 
% RMS 

error 

early diastolic image  0.017 60 0.034 62 0.025 87 0.023 120 

mid-diastolic image 0.016 45 0.028 45 0.024 39 0.020 34 

late diastolic image  0.018 34 0.036 54 0.025 35 0.021 31 

end-diastolic image  0.021 29 0.041 30 0.025 22 0.026 36 

                    

               

Table 4.    The accuracy of the analyses of the intermediate image data sets show similar error 

magnitudes for RMS error as found in the original validation study.  The percent RMS error was 

found lowest for the end-diastolic study, with the percent RMS error increasing with decreasing 

average deformation.  The percent RMS was the highest in the early diastolic analysis where the 

RMS error was found to be nearly the magnitude of the measured strain and in the case of the 

shear measurement the RMS error was larger than the measured shear strain. 
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FIGURE CAPTIONS 

 

Figure 1:  Target (top) and template (bottom) image datasets used in the Warping analysis.  The 

Target image dataset was created by mapping the template image dataset with displacements 

determined from a forward FE simulation of passive diastolic filling.   

 

Figure 2:  Left - Forward FE model used to create target image.  Right – Detail of the LV.  Blue 

arrows represent the pressure load on the endocardial surface. 

 

Figure 3:  Effect of increasing levels of additive noise on the appearance of one slice from the 

template image dataset. (A) SNR=0.5, (B) SNR=1, (C) SNR=4, (D) SNR=8, and (E) SNR=16. 

 

Figure 4:  Fiber stretch distribution for the forward FE (left) and Warping (right) analyses.  The 

fiber stretch distributions show good agreement between the FE and the Warping analyses. 

 

Figure 5:  Forward and FE predictions of several measures of local wall deformation at end-

diastole as a function of distance through the myocardial wall (mean ± standard deviation).  A – 

local fiber stretch.  B – circumferential Green-Lagrange strain.  C – radial Green-Lagrange 

strain.  D – in-plane Green-Lagrange shear strain (circumferential/radial).  0% denotes 

endocardial surface and 100% denotes epicardial surface.  Results are presented for image cross-

sectional slices at 1 cm (light gray), 7 cm (dark gray) and as an average over all slices (black).  7 

cm corresponds to the base of the LV and 1 cm is near the apex of the heart.  Solid lines indicate 

results for the forward FE model and dashed lines indicate results for Hyperelastic Warping.  
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Error bars show standard deviations.  All values are referenced to the undeformed geometry 

(beginning-diastole). 

 

Figure 6:  Scatter plots of forward FE versus Warping stretch/strains.  A - fiber stretch. B - 

circumferential strain.  C - radial strain.  D - in-plane shear strain.  Symbols represent different 

axial image slices.  7 cm corresponds to the base of the LV and 1 cm is near the apex of the 

heart. 

 

Figure 7:  Bland-Altman plots of the validation stretch and strain comparison.  A - fiber stretch. 

B - circumferential strain.  C - radial strain.  D - in-plane shear strain.  The plots show good 

agreement between the forward and warping solutions.  The central solid line indicates the mean 

difference in the data while the heavy dashed lines indicate the boundary of ± 2 standard 

deviations. 

 

Figure 8:  Effect of signal-to-noise ratio on  A - coefficient of determination, and  B - the RMS 

error (units of strain) for the four measures of deformation. 
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Figure 8  
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