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A charge patching method and an idealized surface passivation are used to calculate the single
electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This
approach scales linearly and has a 1000 fold speed-up compared to direct �rst principle methods
with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are
parametrized for future references.

PACS numbers: 71.15.-m, 73.21.La, 78.67.Hc

One major challenge in nanoscience is to calculate
the nanosystems using �rst principle methods. Most
nanosystems contain from a few thousands to a million
atoms. Recently near thousand atom Si quantum dots
have been calculated under the local density approxima-
tion (LDA) of the density functional theory using a real
space grid on a massively parallel computer [1]. How-
ever, for many other materials and systems such calcula-
tions are still too laborious to be practical, especially be-
cause the standard LDA �rst principle calculations scale
as O(N3) of the system size N. O(N) methods have been
studied for a decade, but it is still a research topic to this
day [2]. Because of these diÆculties, most current thou-
sand atom electronic structure calculations are carried
out using either the empirical tight-binding (TB) method
or empirical pseudopotential method (EPM) based on
some time unstable and often time consuming �tting pro-
cedures.

Another common problem for colloidal quantum dot
simulation is the surface passivation. The experimen-
tal surface passivation of such systems are complicated.
Large organic molecules are often used to passivate the
quantum dot surface with the atomic details poorly un-
derstood [3]. These uncertainties and complexities have
hindered the use of �rst principle methods to study the
colloidal nanosystems. As a result, most �rst principle
studies have been focused on Si quantum dots.

Here, we present a comprehensive approach which
solves the above two problems simultaneously. This ap-
proach calculates the near-the-band-gap single electron
states pertaining to the optical and transport properties
of thousand atom colloidal nanosystems. While it gives
essentially the same results as a traditional selfconsistent
�rst principle LDA calculation, it could be a thousand
times faster and it scales linearly to the size of the sys-
tem.

The surface of an unpassivated nanocrystal consists
of dangling bonds. An ideal passivation can be de�ned
as making these dangling bonds re-bonded, and keeping
the system locally charge neutral. If a surface atom has
m valence electron, this atom provides m/4 electrons to
each of its four bonds in a tetrahedral crystal. To pair
the m/4 electron in each dangling bond, a passivating
agent needs to provide (8-m)/4 additional electrons. To
keep the system locally neutral, there must be a posi-

tive (8-m)/4 nuclear charge nearby from the passivating
agent. Thus, the simplest ideal passivation agent will
be a hydrogen-like atom with (8-m)/4 electrons and a
nuclear charge Z=(8-m)/4. This is the case for hydro-
gen passivated Si surfaces where Z=1. For III-V and
II-VI systems, Z is not an integer, so the corresponding
hydrogen-like atom will be a pseudo-atom (to be denoted
as H'). But this pseudo-atom does capture the essential
characteristics of any real good passivation agents, thus
can serve as an simpli�ed approximation of those real
passivation agents.

We will use the hydrogen-like pseudo atoms H' as ap-
proximated ideal passivation agents for all the real passi-
vations. In the real world, when the experimental surface
passivation is getting better, their results will approach
this H' passivation results. Note that, this hydrogen-like
pseudo atom has been widely used in thin �lm calcula-
tions [4] to passivate the unwanted back surface atoms.
Here, we have elevated it to a physical model as the limit
of ideal passivations. We have used Z=1,0.75,0.5,1.25,1.5
for IV, V, VI, III, II row atoms respectively. A half bulk
bond length is used as the H' atom - surface atom bond
length for all the systems. We have studied Si, GaAs,
InP, InAs, CdSe, CdTe, CdS semiconductors. All the oc-
cupied H'-surface atom bonds are deep inside the valence
band and there is no remaining band gap states. For
these good passivations, the band edge states do not de-
pend on the passivation details. We have used planewave
norm conserving pseudopotentials for all the above sys-
tems with an planewave energy cuto� of 25 Ryd (except
for CdSe where 35 Ryd is used).

To solve the computational problem of the large sizes
of the quantum dots, we have used the charge patching
method [5, 6]. This method has been used for isoelec-
tronic impurity states, alloys and carbon fullerences, but
it has never been used for a system with a surface, nor it
has been used for surface passivations. Its applicability
to colloidal systems was not known. In a charge patch-
ing method, it is assumed that the charge density at a
given point depends only on the local atomic environment
around that point. As a result, charge density motifs for
all the atoms can be calculated from prototype systems,
and can then be used to reassemble the charge density of
a large system. A charge density motif is calculated as:



2

mI�(r�R�) = �LDA(r)
w�(jr�R�j)P
R
�

0

w�0(jr�R�0 j)
(1)

here R� is a atomic site of atom typed �, and
mI�(r�R�) is the charge density motif belonging to
this atomic site, and �LDA(r) is the selfconsistently cal-
culated charge density of a prototype system. We have
used the atomic charge density of the atom � multiplied
by an exponential decay function as w�(r) in Eq(1). The
calculated localized mI�(r�R�) is stored in a numeri-
cal array. We have used a subscript I� in mI� to denote
the atomic bonding environment of the atom � at R�.
This atomic bonding environment can be de�ned as the
nearest neighbore atomic types of atom �.
To reconstruct the charge density of a given system,

the charge motifs for all the atoms are placed together:

�patch(r) =
X

R�

mI�(r�R�) (2)

here the atomic bonding environment I� should be the
same as in Eq(1).
After �patch(r) is obtained, LDA formula can be used

to generate the total potential and the Hamiltonian of a
given system. Then, the linear scaling folded spectrum
method (FSM) [7] can be used to solve the LDA band
edge states for a thousand atom system. Note that, our
current method is based on the LDA calculation, it is
thus a�ected by the LDA band gap error. But as shown
recently by Delerue et. al. [8], the di�erence between the
GW quasiparticle energy and the LDA eigen energy in
a nanosystem comes mainly from a macroscopic surface
polarization term (besides the constant bulk di�erences).
As a result, the GW energies can be obtained from the
LDA Kohn-Sham eigen energies following a simple pro-
cedure [8]. In the following, however, we will constrain
ourselves to the LDA band edge states.
A bulk unit cell, a (111) thin �lm and a (001) thin

�lm are used as our prototype systems. From these three
prototype systems, using Eq(1), we can get the charge
motifs for cation and anion with 0, 1, and 2 -H' bonds
(we have removed any surface atom with 3 H' bonds).
At the same time, we can also get the charge motifs for
the H' atoms. All these systems contain about 10 atoms.
Thus the whole pre-calculations to generate the motifs
don't take much time and the whole procedure can be
automatized.
The accuracy of the patched charge density �patch(r)

of Eq(2) can be measured by its di�erence to the directly
calculated selfconsistent LDA charge density �LDA(r):
�� =

R
j�patch(r) � �LDA(r)jd

3
r=
R
�LDA(r)d

3
r and the

eigen energy di�erences between the charge patching re-
sults and the direct LDA results. These are shown in
Table.I for di�erent systems. Notice that, for the bulk
system, the error is only caused by numerical interpola-
tions. The Cd79Se68, Ga79As68 and Si147 are spherical

quantum dots. Overall, we get a charge density error less
than 1%, and an eigen energy error around 20 meV, sim-
ilar to what we get for semiconductor alloys and carbon
fullerences [6]. Mind that, these errors are similar to the
errors of the ab initio calculation introduced by di�er-
ent pseudopotentials and planewave basis sets. Thus, we
can claim that the charge patching method is within the
accuracy of the �rst principle calculations.

For all the AB (A: cation atom; B: anion atom) zinc
blende semiconductor materials considered here, we have
calculated: A79B68, A141B152, A321B312, A495B484, and
A675B652 quantum dots. We found the charge densities
of both the conduction band minimum (CBM) and va-
lence band maximum (VBM) states are well inside the
quantum dots for all the cases, indicating well surface
passivation. Under the current procedure, it takes about
one hour on 64 IBM SP processors to calculate one state
for the largest quantum dot (e.g., In675P652). If the
traditional O(N3) direct LDA method were used, such
calculation would take more than a month on the same
computer. The speed up is more than 1000 times.

In Figures 1 and 2, the CBM, VBM eigen energy shifts
and band gaps as functions of the quantum dot radius
are shown for CdSe and Si quantum dots respectively.
The eigen energies are aligned by the potentials inside
the quantum dots. From Fig.1, we see that for CdSe, the
quantum con�nements for the CBM are much larger than
the quantum con�nements for the VBM. This is typical
for all the direct band gap material because the e�ective
mass of the electron is typically smaller than the hole.
However, for Si, the situation is the opposite due to the
indirect nature of its band gap. The Si e�ective mass
for the electron near the X point is larger than the hole
e�ective masses. The small CBM con�nement compared
to VBM is in agreement with the experimental result[9].

In Fig.1(c), we have �tted the band gap con�nement
�Eg as a function �=d� where d is the diameter of the
quantum dot. The agreement is excellent. We �nd the
same for all other calculated systems. The resulting �
and � are listed in Table.II for future references. They
can also be used to extend the traditionally calculated
LDA results [10] to much larger systems. We can see in
Table.II that, � is around 1.2 for all the II-VI systems,
1.0 for all the III-V systems, and 1.6 for the IV-IV Si. All
these are far from the 1=d2 simplistic e�ective mass scal-
ing. E�ective mass theory is based on the parabolic ap-
proximation of the band structure at the � point. For the
quantum dot sizes considered here, the e�ective k-points
could be at 30% of the Brillouin zone boundary, thus far
beyond the parabolic approximation. Thus, althought
we have used e�ective masses as guides in our qualita-
tive arguements above, the e�ective mass theory cannot
be used as a quantitative theory to predict the results
in the quantum dot size range studied here. The 1=d2

e�ective mass scaling will only appear after d > 100�A
[11].

One interesting result we found is the conduction band
of the GaAs quantum dot. In the bulk, the L and X



3

points of the GaAs is only 0.3 eV above the � point. As
they have larger e�ective masses, under quantum con-
�nement, they might become the bottom of the conduc-
tion band. For a Ga centered spherical quantum dot as
we studied here, the di�erent bulk valley points will fold

into the quantum dot states as following: 3X1c ! t
(3)
2 ;

3X3c ! e(2) + a
(1)
1 ; 4L1c ! t

(3)
2 + a

(1)
1 ; �1c ! a

(1)
1 , here

the number in the bracket is the degree of degeneracy for
that state. The same symmetry states (e.g., a1 and t2)
from di�erent valleys will intermix. In Fig.3(a), we have
shown two a1 states, and one t2 state [12]. For the two a1
states, we have used the size of the spherical symbol to
represent the relative magnitude of the oscillator strength
j < a1jP jV BM > j

2, which is also a rough measurement
of the � point component in a1. We see that the �rst a1
state changes from a �-like state in large quantum dot
to a L-like state in smaller dot, and the second a1 state
behaves just the opposite. Thus around d = 2:7 nm there
is a � � L transition between these two a1 states. This
is the �rst time such transitions are shown explicitly fol-
lowing the size change at ambient pressure. This is also
di�erent from previous EPM results [13].
Under the same procedure, we also calculated the

GaAs quantum wire along the (111) direction as shown
in Fig.3(b). Here, the L point will not fold into the ��
of the wire. What relevant is the X point. The X point
folded state and the � point state anticross at d=2.5 nm.

The transitions shown here can be detected from the in-
tensity change of the photoluminescence, and the study
of such transitions will reveal the electronic structure of
the system.

To demonstrate the versatility of the current ap-
proach, we have shown in Fig.4 a thousand atom wurtzite
CdTe/CdSe quantum rod (half of the rod is CdTe and
the other half is CdSe) with H' surface passivations. The
atomic positions are relaxed by valence force �eld method
which describes the elastic aspects of the system accu-
rately [5, 6]. In order to deal with the relaxed atomic po-
sitions, motif derivatives in regard to the bond length and
angle changes have been used as described in Ref.[6]. Fig-
ure 4 shows that the CBM is localized mostly at the CdSe
side while the VBM is localized most at the CdTe side.
This gives us an approach to manipulate the electronic
structures and transport properties of such nanosystems.
Due to the existence of many competing factors (e.g.,
band alignment, strain e�ect, di�erent e�ective masses),
reliable �rst principle accuracy calculations like this is
critical to determine the electronic properties of such sys-
tems, hence to realize materials by design.
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system �� �Eg (meV)

bulk CdSe 0.01% 2� 10�4

(100) CdSe 0.40% 30
(111) CdSe 0.47% 32
(110) CdSe 0.46% 17
(110) GaAs 0.55% 0.5
(110) Si 0.54% 9
Cd79Se68 0.79% 11
Ga79As68 0.71% 9
Si147 0.67% 7

TABLE I: The accuracy of the charge patching method com-
pared to direct self-consistent LDA calculations. The eigen
energy errors for all other eigenstates are similar to the band
gap errors shown here. The eigen state energy splittings in
the quantum dot has a typically error of a few meV. E.g.,
for the Si146 quantum dot, the LDA calculated splitting ener-
gies for CBM3-CBM2, CBM2-CBM1, VBM1-VBM2,VBM2-
VBM3 are 18, 7, 113, and 7 meV respectively, while the charge
patching results are 16, 8, 118, and 9 meV. For the same dot,
after a spectrum alignment, the maximum error in all the va-
lence band energies is 14 meV, while the averaged error is 6
meV.

Si GaAs InAs InP CdSe CdS CdTe
� 3.81 3.88 4.41 3.90 3.84 3.35 4.40
� 1.60 1.01 1.01 1.10 1.18 1.22 1.28

TABLE II: The � and � for the �=d� �t of the �Eg for
di�erent materials. The unit of � is eV�Bohr�.

FIG. 1: The CBM and VBM band energy shifts from the bulk
values (a), and the change of band gap �Eg (b) as functions
of the diameter d of the spherical CdSe quantum dot. (c) is
a �t of �Eg as �=d�.

FIG. 2: The same as Fig.2, except for Si quantum dots.

FIG. 3: (a) The a1 and t2 states in GaAs quantum dot, and
(b) the �-like and X-like state anticrossing in (111) GaAs
quantum wire. The diameter of the dark sphere in (a) is

proportional to j < a1jP jV BM > j
2=3.

FIG. 4: The isosurface plots of the wavefunction squares of
CBM (a) and VBM (b) states for a CdTe/CdSe quantum rod.
The total length of the rod is 10.6 nm and the diameter is 2
nm. The small dots are atoms.
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