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e+e− Pair Production from 10 GeV to 10 ZeV
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Abstract

At very high energies, pair production (γ → e+e−) exhibits many interesting features. The

momentum transfer from the target is very small, so the reaction probes the macroscopic properties

of the target, rather than individual nuclei. Interference between interactions with different atoms

reduces the pair production cross section considerably below the Bethe-Heitler values. At very

high energies, photonuclear interactions may outnumber pair production.

In contrast, in crystals, the interactions may add in-phase, leading to large enhancements in the

cross sections. Pair production in matter-free magnetic fields is also possible. The highest energy

pair production occurs at high energy particle colliders. This article will compare pair production

in these very different regimes.
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INTRODUCTION

Pair production was first observed by Anderson in 1932, who used the process to discover

the positron [1]. Our modern theoretical understanding of pair production stems from work

by Bethe and Heitler [2]. At high photon energies, the pair production cross section reaches

a constant value [3],

σ =
7A

9X0NA
, (1)

where X0 is the target radiation length, in units of column density (mass/length2, usually

g/cm2), A is the atomic mass of the target (usually in g/mole), and NA = 6.022 × 1023 is

Avogadro’s number [4]. X0 is also commonly given in units of length; this length can be

multiplied by the density ρ to give X0 in column density.

Eq. 1 applies at high photon energies, k > 10 GeV, when the momentum transfer from

the target to the pair is sufficiently small. The atomic electrons screen the nucleus from the

incident photon/pair, limiting the effective impact parameter to the Thomas-Fermi radius.

In this complete screening limit, the cross section is independent of photon energy. The

differential cross section is usually given in terms of x = E/k, where E is the electron

energy [5]:
dσ

dx
=

A

XoNA

[

1 − 4

3
x(1 − x)

]

. (2)

This lowest order cross section is symmetric in x and 1−x, the electron and positron energy.

At high energies, two regimes are of interest. The bulk of the cross section produces pairs

near threshold, with pair mass Mp ≈ 2m, where m is the electron mass. The momentum

transfer from the target to the photon/pair required to produce a pair decreases linearly as

the photon energy rises. The longitudinal momentum transfer required to produce a lepton

pair with energies E and k − E is

q|| = k −
√

(k − E)2 −m2 −
√
E2 −m2 ≈ m2k

2E(E − k)
≈
M2

p

2k
(3)

We take c = 1 throughout this review. This approximation used for the last two terms

covers the vast majority of the cross section. It only fails in the limits x → 0 and x → 1,

very asymmetric pairs with high pair masses.

As k rises and q|| drops, the uncertainty principle requires that the location of the conver-

sion becomes more and more delocalized. The pair production is delocalized over a region
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known as the formation length:

lf0 =
h̄

q||
=

2h̄E(k − E)

m2k
=

2h̄k

M2
p

. (4)

The subscript ’0’ shows that this is for pair conversion in free space; future sections will

consider modifications to lf in dense media. The formation length grows linearly with the

photon energy. When the formation length is larger than the typical inter-nuclear separation,

interactions with different atoms are no longer independent.

This loss of independence leads to many interesting consequences. In amorphous materi-

als, the pair production cross section decreases as the photon energy rises, invalidating Eqs.

1 and 2. The conversion probability is no longer be proportional to the number of target

atoms. In moderately thick targets, the conversion probability may even be proportional

to the logarithm of the thickness! The reduced cross sections appear in a number of ’real

world’ situations. For example, they affect electromagnetic showers produced by very high

energy cosmic rays.

In crystals, the long formation length allows pair conversion amplitudes from regularly

spaced atoms to add coherently. The strong magnetic fields can greatly increase the pair

production cross section. This enhancement may be useful in accelerator design.

For very high mass pairs, the momentum transfer from the pair is high, and production

of these pairs can probe short distance scales. These pairs have been used to test quantum

electrodynamics (QED). Neglecting the transverse momentum of the pair (a relatively small

effect), the pair mass is

M2

p =
m2

x(1 − x)
. (5)

Figure 1 shows the pair mass spectrum, dσ/dMp. The cross section is strongly peaked near

threshold, x ≈ 0.5 and Mp ≈ 2m, In this regime, the electron and positron have a small

(non-relativistic) relative velocity, and the cross section is enhanced. At even slightly higher

masses, the differential velocity is large and the cross section scales as

dσ

dMp
∝ 1

M3
p

. (6)

This 1/M3
p dependence continues as long as the momentum transfer to the target is small.

When the momentum transfer rises, screening is no longer complete, and the structure of

the target becomes significant. In this regime, the cross section decreases faster than 1/M3
p .
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FIG. 1: dσ/dMp for pair production from a 100 GeV photon. The cross section is strongly peaked

near threshold. Away from the peak, the cross section scales as 1/M3
p . The spectrum is almost

independent of the photon energy. For high enough pair masses, the interaction is sensitive to the

targets internal structure, and the cross section drops falls off more rapidly.

More recently, QED has been studied at particle colliders, which can reach shorter dis-

tance scales. Pair production reactions such as e+e− → e+e−e+e− are an important channel

for these studies. Another important channel for testing QED has been pair production

at heavy ion colliders. Here, the very strong fields are of interest. For gold or lead, the

perturbative expansion coupling Zα ≈ 0.6, and it is not unreasonable to expect significant

non-perturbative effects in heavy ion collisions. Here, α = e2/h̄c ≈ 1/137 is the electromag-

netic coupling constant, with e the charge on the electron.

High energy electrodynamics in matter has been previously reviewed by Akhiezer and

Shulga [6], Baier and Katkov [7], and by Klein [5]. Although it does not address pair

production, Ter Mikaelians book [8] has a very interesting, largely classical discussion of

high energy bremsstrahlung. Interactions in crystals have been considered by Palazzi [9],

Sørensen [10], and by Baier, Katkov and Strakhovenko [11]. Pair production in heavy ion

collisions has been recently reviewed by Gerhard Baur and his collaborators [12].

Section 2 of this review considers pair production from isolated atoms. Section 3 will

discuss pair production in bulk media. Section 4 will cover production in discrete fields and
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FIG. 2: A schematic diagram of (a) direct pair production on a target with charge Z and (b) pair

production via the Compton process. Diagram (a) is usually dominant, and the Compton process

(b) is mainly visible via it’s interference with direct production.

crystals. Section 5 will consider pair production at colliding beam accelerators, and Sec. 6

will draw some conclusions.

PAIR PRODUCTION FROM ISOLATED ATOMS

Pair production from an isolated atom occurs schematically via a two-photon process,

as is shown in Fig. 2(a); In the target frame of reference, the incident photon fluctuates

to a virtual e+e− pair. The pair combines with a virtual photon from the target to form a

real e+e− pair. In the competing Compton process, Fig. 2(b), the photon is first absorbed

by a nucleus or electron, which then emits a virtual photon, which decays to a e+e− pair.

The Compton amplitude is relatively small, and the process is usually observed via it’s

interference with the direct reaction. Long ago, Bethe and Heitler studied the dynamics

for these processes. This review will focus on the kinematics of pair production, which

determines many characteristics of the reaction.

As long as lf > a, where the Thomas-Fermi atomic radius a = 0.8Z−1/3a0 (a0 = 5.3

nm is the Bohr radius) then the nascent pair couples to the target atom as a whole. This

is the complete screening limit; at distances larger than a, the electrons screen the nuclear

charge. In this limit, the cross section for pair production is independent of k. For heavy ions

(heavier than iron), the limit is reached within 1% for k > 10 GeV; for lighter ions, higher
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photon energies are required. For hydrogen, the finite-energy correction is still slightly larger

than 1% for k = 100 GeV [13].

For light ions, the radiation length X0 scales as 1/Z2 - the interaction amplitude depends

on Z, and the cross section on Z2. However, as Z rises, higher order diagrams with multiple

photons may be important. The most important (largest) higher order terms account for

the fact that the pair is produced in the potential well of the target nucleus; the other terms,

due to fluctuations in the incoming photon, are small. Bethe and Maximon calculated the

corrections due to the potential by solving exactly the Dirac equation for an electron in a

Coulomb field [14]. The solution used Furry wave functions in parabolic coordinates. These

radiative corrections reduced the cross section by a constant amount [14, 15],

∆σ(k) = −28Z2r2
eα

9
f(Z) (7)

where re = 2.8 fm is the classical electron radius and

f(Z) = (αZ)2Σ∞
ν=1

1

ν(ν2 + (αZ)2)
. (8)

For a heavy atom like lead, f(82) = 0.33, and the Coulomb correction reduces the cross

section about 10%, essentially independent of k.

For the differential cross section, the leading order correction depends only slightly on x.

However the next term is large for x→ 0 or x→ 1 [16]. The sign of the second term differs

for the two extremes in x, introducing an asymmetry between the electron and positron

momentum spectra. These asymmetries have also been studied with perturbation theory;

for heavy nuclei, significant asymmetries have been predicted theoretically [17] and observed

experimentally [18].

Tsai [13] made detailed calculations of the screening factors and radiative corrections for

different materials. He also considered pair conversion on the atomic electrons in the target.

The complexities of these calculations can be easily hidden by adjusting X0. With this, for

Z > 4 [4],

X0 =

(

4αr2
eNA

A

[

Z2[ln (184Z−1/3) − f(Z)] + Z ln (1194Z−2/3)
]

)−1

. (9)

The first logarithmic term is for nuclear scattering, while the second is for scattering from

atomic electrons; f(Z) is the Bethe-Maximon correction. For light nuclei with Z ≤ 4, the

logarithmic terms are inaccurate, and Z−dependent constants are usually used. With this,
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Eqs. 1 and 2 remain accurate and easily usable. At 10 GeV, these cross sections agree with

the data to within 2% [19].

At very high energies, other channels may contribute to the cross section. For example,

the virtual photon in Fig. 2 can be replaced with a virtual Z0 boson. Although the amplitude

for the Z0 mediated reaction is not large, the interference with the purely electromagnetic

process can lead to ≈ 5% asymmetries between the electron and the positron, especially for

large Mp [20].

There is a paucity of data on pair production from photons with k > 10 GeV. The high-

energy frontier has moved to e+e− and hadron colliders, as will be discussed in Section 4.

There is been considerable data on pair production in crystals, but the effects of the crystal

overshadow any subtleties in the individual photon-atom interactions; crystals are discussed

in Section .

PAIR PRODUCTION IN MEDIA

As the photon energy rises, the formation length becomes large enough that it encom-

passes more than one atom. Then, the amplitudes for interacting with multiple atoms must

be added, and interference between interactions with different atoms needs to be considered.

Landau and Pomeranchuk considered this problem in 1953 [21, 22]. They used classical

electrodynamics to study bremsstrahlung. The emission of photons with momentum ~k and

energy k = |~k|, from an electron starting with velocity ~v1 and ending with velocity ~v2 into

solid angle Ω is [23]

d2I

dkdΩ
=
Z2e2

4π2

∣

∣

∣

∣

~k × ~v1

~k · ~v1 − k
−

~k × ~v2

~k · ~v2 − k

∣

∣

∣

∣

2

. (10)

This equation is usually applied to an interaction of an electron with a single atom. Lan-

dau and Pomeranchuk realized that, when atoms are close enough together, the interactions

cannot be separated. The emission depends only on the initial and final velocities, and is

independent of any intermediate state velocities. The scattering due to nearby atoms adds

together.

As long as the angle θe between ~v1 and ~v2 is less than 1/γ, where γ = E/m is the Lorentz

boost of the electron, then the bremsstrahlung radiation is proportional to |~v1 − ~v2|2 and

the radiation from the summed independent (with uncorrelated directions) scattering is the

same as if the radiation from each scatterer was added independently. In this case, we define
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∆~v = ~v1 − ~v2, the electron momentum change is q = γm|∆~v|, and

d2I

dkdΩ
=
Z2e2γ4v2θ2

e

π2

1 + γ4θ4
e

(1 + γ2θ2
e)

4
. (11)

Integrating over the solid angle gives the total emission:

dI

dk
=

2Z2e2q2

3πm2
. (12)

Equation 12 holds as long as the momentum transfer q < m. At larger momentum transfers,

the radiation is reduced. The cross section for classical bremsstrahlung can be found from

Eq. 11..

Landau and Pomeranchuk calculated the radiation from a long electron trajectory that

was determined by multiple scattering, with the scattering spread evenly along the path.

They determined the interference from radiation from different points on the path. Radiation

from nearby points added in-phase, while at larger separations, the phase was random. The

phase coherence holds for shorter and shorter distances as the multiple scattering increased.

For energetic electrons radiating low energy photons, the reduction in coherence reduces the

total emission.

The conditions for reduced emission can be estimated from the multiple scattering in a

formation length. When the multiple scattering angle within lf is larger than 1/γ, then the

multiple scattering reduces the coherence, and, with it, the radiation. In a distance lf , the

mean multiple scattering angle is [4]

θMS =
Es

E

√

lf
X0

(13)

where Es = m
√

4π/α = 21.2 MeV. An additional multiplicative term, 1 + 0.038 ln (lf/X0)

is sometimes included to account for the non-Gaussian nature of Coulomb scattering. This

non-Gaussian nature is particularly apparent for thin targets, where the number of scatters

is small. However, since Eq. 13 is only used for back-of-the-envelope calculations, this

multiplicative factor will not be used here.

Neglecting the tails, and requiring θMS < 1/γ, the emission of photons with energy k

from electrons with energy E is suppressed when

k <
E2E2

S

m4X0

. (14)

In this limit, the bremsstrahlung spectrum is altered from the Bethe-Heitler prediction

dσ/dk ≈ 1/k to a harder spectrum, dσ/dk ≈ 1/
√
k!
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Although pair production is not a classical process, Landau and Pomeranchuk noted that

similar reasoning should apply for it. By using crossing symmetry to relate bremsstrahlung

and pair production, they predicted that for photons with very high energies, the pair

production cross section scales as

σ ≈
√

1

k
(15)

This is very different from the Bethe-Heitler energy-independent cross section. At high

enough energies, photons become penetrating particles.

This cross section can be derived using the uncertainty principle [24] and relying on the

proportionality between the pair cross section and formation length. The number of atoms

in the formation zone is proportional to lf . For coherent interactions, the probability scales

as the number of atoms squared. The pair conversion amplitudes add in-phase over the

formation length, so the interaction probability scales as l2f , and the probability per unit

length scales as lf . Multiple scattering reduces lf , and with it the cross section.

Multiple scattering changes the electron and positron direction, but not their momenta,

reducing their longitudinal velocity. The longitudinal velocity reduction ∆v is

∆v

c
=

[

1 − cos(θMS)
]

≈ θ2
MS

2
. (16)

The slowing reduces the longitunal momentum of the electron and positron. The excess

momentum is transferred to the medium during the scattering. Including the multiple

scattering from the positron and electron, θMS+ and θMS−,

q|| =
m2k

2E(k − E)
+
Eθ2

MS+

2
+

(k − E)θ2
MS−

2
=

m2k

2E(k −E)
+

E2
s lfk

2E(k − E)X0

(17)

When θMS > 1/γ for the electron or positron, the multiple scattering terms dominates. This

happens when

lf0 >
m2

E2
s

X0, (18)

i.e. at photon energies

k >
m2M2

pX0

2h̄E2
s

. (19)

In this regime, the multiple scattering angles depend on lf , which itself depends on θMS.

This leads to a quadratic equation for lf . When the multiple scattering dominates,

σ

σBH
=

lf
lf0

=

√

kELPM

E(k −E)
≈ Mp

m

√

ELPM

k
. (20)
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Here, ELPM is a material dependent constant,

ELPM =
m4X0

h̄E2
s

≈ 7.7 TeV/cm ·X0. (21)

For lead, ELPM = 4.3 TeV. It is worth noting that some works defined ELPM differently.

The difference is usually a numerical factor (often 2). Since ELPM depends only on X0, the

pair production cross section may be easily calculated for mixtures.

Pair production is suppressed for photons with k > ELPM , i.e. in the TeV region and

above. In the strong suppression limit (k ≫ ELPM), the formation length scales as lf ≈
√
k,

and the cross section is suppressed as lf/lf0 ∼ 1/
√
k. Suppression is largest for low-mass

pairs. This is not surprising; the larger Mp, the shorter lf0 (Eq. 4), and the less of an

opportunity for multiple scattering to contribute to q||.

While the pair production cross section falls at high energies, the photonuclear cross

section rises. Photonuclear interactions occur when the photon fluctuates into a quark-

antiquark (qq) pair, which then interacts hadronically with a target nucleus. Very high

energy photons may also interact directly with quarks in the nucleus [25].

When the photon energy is high enough, photonuclear interactions may dominate over

pair production [26]. Fig. 3 compares the pair production cross section in lead and water

(using Migdals suppression, see Sec. ) with the photonuclear cross sections. The photonu-

clear cross sections have not been measured at these energies, but should increase slowly

with energy.

For lead, the photonuclear cross section, σhad is about 15 mb when the photon-nucleon

center of mass energy,
√
sγN , is less than 100 GeV, and 15(

√

sγN/100GeV)0.2 mb at higher

energies. For water, σhad = 1.9 mb for
√
sγN < 100 GeV, and 1.9(

√

sγN/100GeV)0.2 mb at

higher energies. These parameterizations roughly follow Fig. 5 of Ref. [25]; the oxygen cross

section is scaled from carbon as the nuclear cross section, A2/3, and the water cross section is

the sum of its constituent cross sections. Any estimate in this energy range requires a large

extrapolation, so there is considerable uncertainty. The energy-dependence in Ref. [25] is

reasonably conservative.

There are also significant uncertainties in the pair production cross section. The suppres-

sion calculations may fail when the suppression becomes very large (order of α ≈ 1/137?).

Also, when LPM suppression is very large, higher-order reactions such as γA→ e+e−γA are

more important. These reactions, having a larger inherent q||, as less suppressed by multiple
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FIG. 3: Cross sections for γ → e+e− (solid line) compared with the cross section for photonuclear

interactions (dotted line) in (a) lead and (b) water. Caveats for the curves are discussed in the

text.

scattering

With these caveats, for both materials the photonuclear cross sections are larger than

the pair production cross sections for k > 4 × 1019 eV. The crossover energy is similar for

both materials. For lighter materials, σhad/σBH is larger, while for heavier materials, LPM

suppression is larger. Here, the two effects largely cancel out.

Even with the uncertainties, the trend is clear: at very high energies, photonuclear in-

teractions become more important, and may even dominate over pair production. Even

at a few 1017 eV, electromagnetic showers may develop significant hadronic components,

complicating their identification.

Production of µ+µ− and τ+τ− pairs, γ → l+l− is reduced by a factor (m/ml)
2, where ml

is the lepton mass. So, neither process is very important here. Of course, in some parts of

phase space (such as for high mass pairs), the suppression is smaller.

One other suppression mechanism should be mentioned: bremsstrahlung can also suppress

pair production [5, 27]. A produced leptons can emit a bremsstrahlung photon and lose

momentum. When the bremsstrahlung occurs in the pair production formation zone, the
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combined reaction is a single, higher-order process. the bremsstrahlung will increase q||,

decreasing lf , and with it, the pair production cross section.

In a crude model, the kinematics changes when lf > X0. This only happens at very

high energies, when the LPM effect is already important. Including LPM suppression,

lf > X0 when k > E2
sX0/h̄, or, for lead, k > 4 × 1019 eV. This is only approximate;

while bremsstrahlung suppresses pair production, the reverse is also true: pair production

suppresses bremsstrahlung. The suppression of one reaction reduces the quantitative impact

of it on the other reaction [26] and a combined calculation is needed to properly understand

pair production and bremsstrahlung in this energy regime.

The energies required to study LPM suppression of pair production are well beyond

the reach of existing accelerators. However, LPM suppression is important to studies of

very high energy cosmic rays (including neutrinos). When high energy cosmic rays hit the

atmosphere, they interact, forming air showers which develop into millions to billions of lower

energy particles. Cosmic rays with energies up to 3 × 1020 eV have been observed [28]. If

the incident particles are photons (unlikely, as discussed in Section ), then LPM suppression

reduces the cross sections and thereby lengthens the shower, increasing the amount of energy

that reaches the ground. Proton induced showers are much less affected, but still have an

electromagnetic component that is subject to the LPM effect. However, the suppression is

only relevant for the highest energy showers [29]. As will be discussed in Section , cosmic

ray showers have been used to study the LPM effect.

Very high energy cosmic ray νe, νµ and ντ may be visible at next generation neutrino

detectors, like IceCube [30]. Neutrino interactions produce high energy leptons along with

hadronic showers from the struck nucleus. νe showers are most affected by the LPM effect,

because of the very high energy electron. However, electrons from τ decay and the electro-

magnetic component of the hadronic shower may also be affected by LPM suppression.

Thin Targets and Surface Production

In very thin targets, the formation length may be larger than the target thickness T .

When this occurs, the target interacts as a single unit. Including LPM suppression, lf > T

when

k >
2mT

h̄
≈ 2.5 TeV · T (µm). (22)
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When lf > T , LPM suppression may be less than in a very thick target.

For very thin targets, the multiple scattering in the target is negligible, and the Bethe-

Maximon cross section is retained, independent of k. The Bethe-Maximon cross section

applies when the q|| from the multiple scattering (the second term in Eq. 17, with T replacing

lf) is less than that due to the pair production (the first term in Eq. 17). This occurs for

target thicknesses T < (m/ES)2X0.

For slightly thicker targets, (m2/E2
S)X0 < T < lf , the conversion probability depends

on the total scattering in the target. This regime has been studied only for bremsstrahlung

[31]. Assuming that the behavior is the same, for k ≫ ELPM , the conversion probability

scales as ln (E2
ST/m

2X0) - as the logarithm of the target thickness!

When T > lf , the target no longer acts as a single unit. However, there is an increased

probability of interactions within lf of the target surface. The additional interactions, known

as transition pair creation are analogous to transition radiation. The plasma frequency of

the medium, ωp plays a key role. For solids, h̄ωp is 30-80 eV, so about h̄ωp ≈ 10−4m. Taking

a = h̄ωp/m, [32]

P =
e2

2πh̄

(8a2

35
+

256a3

256

)

, (23)

independent of the incident photon energy. In a typical solid a ≈ 10−4 and P (a) ≈ 10−10,

so this effect is generally negligible.

At higher energies, there are additional surface effects due to multiple scattering. A

new type of transition radiation occurs as the electrons electromagnetic fields rearrange

themselves to account for the multiple scattering in the medium. Ternovskii calculated

the differential probabilities for bremsstrahlung and. pair production in plates of moderate

thicknesses [33]. For plates that are at least T0 = αX0/2πξ, (1 ≤ ξ ≤ 2 rises slowly with k

to account for the increasing shower length), the differential probability for pair production

is
dN

dk
=

e2

πk

(

1 +
[

x2 + (1 − x)2
]

ln (
T

T0

)

)

. (24)

The scaling with target thickness T is far from linear! This equation only holds for relatively

thin targets. For thick targets, surface transitions are treated as an add-on to production

in the bulk of the target. Ternovskii gave formulae for surface transitions which add-on to

Migdals calculation of bulk transitions discussed in the next section.
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Migdal Formulation for Pair Production

In 1956, Migdal published the first accurate calculation of suppression of pair production

[34]. He focused on bremsstrahlung, but also provided formulae for pair production using

crossing symmetry. He represented the transition probabilities with a density matrix, and

then averaged the density matrix over the possible positions of the scattering centers. This

led to a Boltzman transport equation for the radiation. He solved this with the Fokker-

Planck technique.

This approach used the quantum mechanical matrix elements, with proper account of

electron spin, photon polarization and nuclear recoil. The scattering was realistically (ran-

domly) distributed in space (albeit with a Gaussian distribution for angles).

Migdal expressed his results in terms of two functions G(s) and φ(s), where s depends

on the photon and electron energies, and on the total radiation (Migdal used s to discuss

bremsstrahlung, and s for pair production; the two variables are closely related):

s =

√

(
ELPMk

8E(k − E)ξ(s)
) (25)

The factor ξ(s) increases from 1 to 2 as the pair production moves from no suppression

(s > 1, the Bethe-Heitler limit) to strong suppression (s≪ 1):

ξ(s) = 1 (s ≥ 1)

ξ(s) = 1 + ln(s)/ ln(s1) (s1 < s < 1)

ξ(s) = 2 (s < s1) (26)

with s1 = Z2/3/1842. Migdal did not discuss mixtures of materials. However, the radiation

is dominated by high−Z materials, it is not too far wrong to take the Z of the heaviest

atom in a mixture. Alternately, one could, following the approach used for X0 [4], take a

weighted average, weighting the different materials by their abundance times Z2.

The equations for s and ξ can be solved recursively. However, ξ(s) varies very slowly, and

Stanev and collaborators found an approach that avoids the recursion [35]. They defined s′

following Eq. 25, with ξ = 1. Then,

ξ(s′) = 1 (s′ ≥ 1)

ξ(s′) = 1 + h− 0.08(1 − h)[1 − (1 − h)2]√
2s1

(
√

2s1 < s′ < 1)

ξ(s′) = 2 (s′ <
√

2s1) (27)
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FIG. 4: Migdals G(s) (dashed line) and φ(s) (solid line).

where h = ln (s′)/ ln (
√

2s1).

The differential cross section is

dσ

dE
=

4αreξ(s)

3k

(

G(s) + 2
[E2 + (k − E)2

k2

]

φ(s)

)

. (28)

Migdal gave infinite series for φ(s) and G(s). However, they may also be represented as

polynomials [35]:

φ(s) = 1 − exp[−6s[1 + (3 − π)s] + s3/(0.623 + 0.79s+ 0.658s2)] (29)

and

ψ(s) = 1 − exp[−4s− 8s2/(1 + 3.96s+ 4.97s2 − 0.05s3 + 7.5s4)] (30)

with G(s) = 3ψ(s) − 2φ(s). Figure 4 shows these functions.

The limit s → ∞, ξ(s) = 1 corresponds to low photon energies, where there is no

suppression. Then, φ(s) = G(s) = 1 and the Bethe-Heitler cross section is retained. The

limit s → 0, ξ(s) = 2 corresponds to k → ∞. Then, φ(s) = 6s, G(s) = 12πs2 and the cross

section is
dσ

dE
=

8αreξ(s)

3k2

(

E2 + (k − E)2

k2

)

φ(s). (31)

This recovers the semi-classical strong suppression limit:

σ = 3σBH

√

kELPM

E(E − k)
. (32)
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The slightly different coefficient is the same as using a slightly different ELPM . This difference

is not surprising in light of the simplicity of the semi-classical approach.

Figure 5 shows the pair production cross sections vs. E/k in lead for different photon

energies. As k rises, the cross section drops, with symmetric pairs (E ≈ k − E ≈ k/2)

suppressed the most. At very high energies, most conversions produce asymmetric pairs.

Figure 6 gives the suppression (compared to Bethe-Heitler) as a function of pair mass

in lead for photons with energies from 44 TeV to 440 PeV. The suppression is largest for

small Mp. The Bethe-Heitler dσ/dMp shape is independent of k, so the cross section is

the product of this suppression factor with the cross section from Fig. 1. The bulk of the

cross section is near threshold, so the overall suppression is dominated by the measurement

around 2m ≈ 1.12 MeV. This calculation neglects the lepton transverse momenta, but most

of the consequent inaccuracy should cancel for the suppression. Very roughly, in the strong

suppression limit, for Mp ≫ 2m the cross section scales as dσ/dMp ≈ 1/M2
p .

When the cross section suppression is large, the penetration depth of electromagnetic

showers increases significantly. Not only is the total cross section reduced, but either the

electron or positron takes most of the energy.

Newer Calculations

Several recent papers have presented more sophisticated calculations of LPM suppression.

These calculations consider targets as an integral whole, and therefore naturally handle finite

target thicknesses. However, many authors considered only bremsstrahlung. Often, too

little information is given for an outsider to easily apply the calculations to pair production.

They also do not address materials that may contain mixtures of atoms with different Z.

Blankenbecler and Drell used an eikonal approach to study bremsstrahlung in finite targets

[36].

Zakharov used a light cone path integral approach to study bremsstrahlung. He used a

transverse Green’s function to represent e+e− pair scattering from the atom and used it to

solve the Schroedingers equation. He used an imaginary potential for the Greens function,

proportional to the cross section for an e+e− pair to scatter from the atom.

In the strong suppression limit, the scatterer is a dipole with length ρ; the scattering cross

section σ(ρ) = C(ρ)ρ2 where C(ρ) varied slowly with ρ [37]. Without the varying C(ρ), this
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FIG. 5: Differential cross section for pair production, Eq. 28, in a lead target, for different photon

energies. Cross sections are shown for photons with k = 1 TeV (top), 10 TeV, 100 TeV, 1 PeV,

10 PeV, 100 PeV and 1 EeV (bottom). Here, n is the number of atoms per unit volume. When

E(k − E) ≈ 1.2kELPM , the product φ(s)ξ(s) rises slightly above 1 and the conversion probability

for high energy photons is slightly larger than at smaller k. These curves can be used for other

materials by scaling k by ELPM (lead)/ELPM ; the bottom curve also applies for 3.2 EeV iron

(ELPM = 13.6 TeV).

reduces to Gaussian scattering, and, for an infinitely thick target, the results are almost

identical to Migdals. With C(ρ), the slowly varying part of the Zakharov cross section has

a larger energy dependence than Migdals ξ(s). At higher energies, Zakharovs should find

slightly lower cross sections than Migdal.

For regimes with moderate suppression, Zakharov adopted a more accurate Coulomb

potential than a dipole, with separate potentials for the nucleus and it’s electrons. This

separation is important for low-Z atoms where the electrons play a significant role [38].

With these details, Zakharov found a good fit to the SLAC E-146 data.

V. N. Baier and V. M. Katkov made one of the few explicit calculations of pair pro-

duction [39, 40]. The framework was similar to Migdal, but with a quasiclassical eikonal

approximation for the scattering. This quasiclassical approach has been criticized as being

inapplicable in the regime where it was used because the electron impact parameter cannot
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44 TeV (top curve), 440 TeV, 4.4 PeV, 44 PeV and 440 PeV (bottom curve). The small dips below

S = 1 around M2
p ≈ 8m2k/ELPM are side-ripples to the dips in Fig 5. These curves can be applied

to other materials by scaling k by ELPM(lead)/ELPM ; the bottom curve also applies for 1.36 EeV

iron (ELPM = 13.6 TeV).

be treated classically [41]. However, Baier and Katkov argue that, when the angular mo-

mentum is large, their approach is acceptable [42]. The eikonal approach allowed them to

include Coulomb corrections in the potential, an important factor in improving the accuracy

of the calculations. They included a separate term in the potential to account for scattering

from the atomic electrons. In the no-suppression limit, the authors obtain the fully-screened

Bethe-Maximon Coulomb-corrected cross sections.

Baier and Katkov note that, for heavy elements, the Coulomb correction is larger than the

errors on the SLAC E-146 data [7]. The E-146 experimental analysis normalized the Migdal

calculations (without radiative corrections) to a radiation length that included Coulomb

corrections, effectively multiplying the two effects together. This was the limit of the then-

current technology. Although the results matched the data, this may not have been an

optimal approach.

When the suppression is strong, Baier and Katkov give a polynomial expression for the
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total pair production cross section

σ

σBM
≈ 4.28

√

ELPM

k

[

1 − 1.672

√

ELPM

k
− 2.192

ELPM

k
+

1

4L1

(

ln
k

4ELPM
+ 0.274

)

]

(33)

where L1 = 183Z−1/3e−f , with f from Eq. 8. Here, σBM is the Bethe-Maximon cross section

[7] (apparently mis-labelled as Bethe-Heitler in Eq. 2.35 of Ref. [40]). The
√

ELPM/k

dependence of Landau and Pomeranchuk and Migdal is modified. The polynomial in Eq. 33

reduces the cross section at moderate photon energies. However, at large enough energies,

the polynomial terms drop out, and the last correction term in Eq. 33 can increase the cross

section for by 2-10%.

Experimental Measurements of Suppression

Suppression of pair production can only be observed with high energy photons, with

k > ELPM . Since ELPM >1 TeV, even for the densest materials, it has not been possible to

study this suppression at accelerators. Some studies have used cosmic rays, but the statistics

are limited by the high energy cosmic ray flux. The earliest studies considered low-energy

electrons in photon induced showers. Fowler, Perkins and Pinau studied 47 electromagnetic

showers with an energy above 1 TeV in an emulsion stack, measuring the distance between

the initial conversion point and the first daughter pair downstream of the primary [43].

As the photon energy rose, the average distance also rose, as expected if the cross section

decreases. The statistics were limited because few sufficiently energetic photons penetrate

the atmosphere. To improve the statistics, some later experiments flew emulsion detectors in

high-altitude balloons [44], where the flux of high-energy photons is higher. They achieved

somewhat better statistics, but with qualitatively similar results.

One of the most precise studies was by Kasahara in 1985 [45]. He studied the development

of electromagnetic showers with energies of order 100 TeV, in lead-emulsion chambers. At

these energies, LPM suppression significantly decreases the cross sections, increasing the

penetration depth of the showers. After removing the contamination from hadronic showers,

Kasahara found that the shower profiles were consistent with Migdals cross sections, but

not the Bethe-Heitler formulae.

Because of the limited statistics possible in cosmic ray studies, the best studies of the LPM

effect have used accelerators to study the suppression of bremsstrahlung. Bremsstrahlung
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can be studied with electron beams with energies E ≪ ELPM , as long as photons with

energies k < E2/ELPM are studied.

The first accelerator experiment used 40 GeV electrons generated from 70 GeV protons at

the Serpukhov U-70 accelerator [46]. Bremsstrahlung photons from carbon, aluminum, lead

and tungsten targets were detected in a sodium-iodide calorimeter. The electrons were bent

away from the calorimeter with a magnet. The group studied photons with energies between

20 and 80 MeV. At higher photon energies, the LPM effect was unimportant, while at lower

energies, the backgrounds were very high. Even in the signal region, there were significant

backgrounds from bremsstrahlung in air and scintillation counters, and muon contamination

in the beam. By taking ratios of their data (lead/aluminum and tungsten/carbon), they

were able to estimate the degree of suppression. They found suppression larger than Migdal

predicted, albeit with large errors.

A later experiment at the Stanford Linear Accelerator Center, SLAC Experiment E-146,

made precise measurements of bremsstrahlung from 7 targets, from carbon to uranium,

in beams of 8 and 25 GeV electrons [47, 48, 49]. They studied photons with energies

between 200 keV and 500 MeV. The photons were detected in a position-sensitive segmented

BGO calorimeter 50 meters away from the target. The small solid angle and position

sensitivity helped reduce backgrounds, especially from synchrotron radiation. Data was

taken at 2 different settings of calorimeter gain (i.e. photomultiplier tube high voltage)

to maximize the dynamic range. The electron beam-line was kept entirely in vacuum to

eliminate bremsstrahlung from air or target windows.

The group used a tertiary electron beam, but, because the primary beam was also elec-

trons, beam contamination was small. The beam was usually run at an average of 1 electron

per pulse, 120 pulses/second; events containing zero or multiple electrons were rejected

during analysis.

The calorimeter was calibrated using cosmic rays and a 500 MeV electron beam. The

group also used the downstream magnet for an electron spectrometer, measuring the electron

energy loss. Because of the limited resolution for electron energy loss, this was useful only

as a check.

Figure 7 shows the E-146 data for the aluminum targets. Targets with thicknesses of

3% and 6% of X0 (3.12 mm and 5.3 mm) were used. Events containing a single electron

were selected, and the photon energy spectrum measured. The photon energy is plotted in
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logarithmic width bins, with 25 bins per decade of energy. Then, the approximate Bethe-

Heitler photon spectrum dN/dk ≈ 1/k transforms to dN/d ln (k)/X0 ≈ 0.13 - a straight line.

In actuality, the probability for a single electron to undergo two independent interactions in

the target tilts the spectra slightly. This was dealt with by using a Monte Carlo simulation.

The data shows significant suppression. For k < 2 × 10−4E, an additional suppression

mechanism is required to explain the data. This second mechanism involves the produced

photon, which also interacts with the medium, through forward Compton scattering. Clas-

sically, this is described via a dielectric constant ǫ 6= 1.

The group has also studied thin targets, where T < lf for relevant photon energies.

For thin targets, the radiation was above the Migdal calculation, and consistent with the

calculations that treated the entire target as a single radiator.

More recently, an Aarhus-CERN-Florence-Free University, Amsterdam-Cape Town col-

laboration studied bremsstrahlung from 149-287 GeV electrons from iridium, tungsten and

tantalum targets [50]. They used a CERN test beam. Figure 8 shows their tantalum data

plotted in a manner similar to the E-146 data. With the higher electron energies, they ob-

served suppression up to k/E ≈ 0.16, a significant fraction of the spectrum. The goal of this

experiment was to directly observe the overall increase in radiation length as the radiation

decreases. They observed roughly a 30% decrease in radiation at the highest electron energy,

consistent with expectations from Migdals calculation.

The collaboration fitted their spectra to measure ELPM for their targets [51]. For the

densest target, iridium, their measured ELPMs averaged 1.97 ± 0.16 TeV, in quite good

agreement with the theoretical prediction of 2.25 TeV. However, for the lighter targets,

tantalum and copper, the measured ELPMs were considerably below the expected values

- by 40% for copper. The reasons for the difference are not clear, but the collaboration

suggests that possibly bremsstrahlung from atomic electrons could be unsuppressed. The

experiment also uses data from a carbon target for a normalization spectrum; if the carbon

spectra were somehow compromised, this data could affect their measured ELPM . It may

be worth noting that the E-146 carbon-target data is poorly described by calculations based

on Migdals work.
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PAIR PRODUCTION IN CONSTANT FIELDS AND CRYSTALS

Over 50 years ago, H. Robl noted that for very high energy photons, matter is not nec-

essary for pair production: even static electromagnetic fields suffice [52]. This is analogous

to synchrotron radiation. The photon conversion depends on the parameter

χ =
kB⊥

2mBc

(34)

where B⊥ is the magnetic field perpendicular to the photon direction and Bc = m2/eh =

4.4 × 1013 Gauss is the critical field. The probability of photon survival for a distance d is

P (d) = exp (−ad) (35)

where [53]

a =
0.16αm

h̄k
K2

1/3(2χ/3) (36)

and K1/3(x) is a modified Bessel function. This equation is for the constant field approxima-

tion, and may fail when the field varies rapidly. Figure 9 shows the attenuation coefficient

a for photons of different energies. The absorption is small for χ≪ 1, or k < 2mBc/B⊥. In

this limit a = 0.46 exp (−4/3χ). The absorption rises sharply for χ > 1, reaching a peak for

k = 12mBc/B⊥. At this maximum, a = 1011/m; the conversion happens within microscopic

distances. For these large a (where alf > 1) the constant field approximation fails, but,

clearly, the conversion distance is short. As χ continues to rise, the attenuation coefficient

drops slowly; for χ > 1000, a = 0.6χ−1/3.

There are some minor discrepancies between various studies. Erber [53] uses a dimension-

less auxiliary function T (Υ) to calculate α. His Eq. 3.3d, defines T (Υ), with numerically

matching small and large Υ limits in Eq. 3.3c. However, Fig. 9 and Table VI of Ref.

[53] give T (Υ) are half as large as the equations; the equations appear to be correct. Ref.

[54] plots photon attenuation using the equations in Erbers review. However, it is not in

complete agreement with Fig. 9 here, especially at small Υ.

The momentum transfer to the field required for pair production is the same as for an

atomic target, Eq 3. Additional terms are required to account for the magnetic bending

which, like multiple scattering, reduces the electron and positron longitudinal velocity. The

field bends electrons smoothly, with

θB =
eB⊥lf
E

, (37)
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in contrast to the θ ≈
√

lf found for multiple scattering. Including the multiple scattering

for both the electron (θB−) and positron (θB+), the longitudinal momentum transfer is

q|| =
M2

p

2k
+
Eθ2

B−

2
+

(k − E)θ2
B+

2
=
M2

p

2k
+

e2B2
⊥l

2
fk

2E(k − E)
(38)

This leads to a a quartic equation for lf . At low photon energies, multiple scattering is small

and lf rises linearly with k. It reaches a maximum, and then decreases . For χ≫ 1,

lf =

(

h̄E(k − E)

e2B2
⊥k

)1/3

=

(

h̄km2

e2B2
⊥M

2
p

)1/3

, (39)

so lf ≈ k1/3.

Since Bc is so large, this process is only important for photons with quite high energies. In

fact, conversion in an external magnetic field has not been observed. However, it does have

important astrophysical applications. One example involves very high energy cosmic rays.

Very high energy photons may pair convert in the earth’s magnetic field [54, 55, 56]. The

earth’s magnetic field extends to altitudes of 1000’s of kilometers, far above the atmosphere

where lower energy showers originate. The produced electrons interact with the earth’s

magnetic field and emit synchrotron radiation. The combination of pair production in the

field and synchrotron radiation leads to an electromagnetic shower, even in the absence of

matter. The field-induced shower largely stops developing when the average particle energy

drops so that χ < 1 (roughly 1020 eV). The produced particles propagate downward until

they reach the atmosphere, where the shower develops conventionally. The initial high-

altitude reactions gives these showers a head-start. This early development is helpful in

differentiating photon initiate showers from proton initiated showers. Only a handful of

showers with energies above 1020 eV have been observed, but it appears that many of them

are not from primary photons [28].

Pair conversion can also occur in the strong magnetic fields that surround many astro-

physical objects. For example, many neutron stars support surface magnetic fields around

1012 G. In these fields pair conversion occurs quickly for k > 50 MeV.

Although pair conversion from an external magnetic field has not been seen in the labo-

ratory, a fairly close analog has been studied: pair conversion in crystals. When a photon

traverses a crystal parallel to one of the axes, the magnetic fields of the individual atoms

add together to act as a single, extremely strong field. The effective fields are largest when

the photon direction is precisely aligned with a crystal axis. The agreement should be
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within a characteristic angle which is roughly the atomic spacing in the lattice divided by

the formation length. For 100 GeV photons, this angle is a few mrad. Often, the target is

mounted in a goniometer which allowed precise adjustments of the crystal orientation. Pair

conversion is studied as the crystal orientation is varied; when the axis is properly aligned,

pair production is enhanced [60].

Two factors affect the enhancement. Impurities and other lattice defects lead to uneven

atom spacings which reduce the coherence; high quality crystals are required. The quality

requirement limits the choice of target material. At the highest photon energies, one limit

to the possible enhancement is lattice vibrations, which lead to small variations in the inter-

atomic spacing. Sometimes, the crystal may even be cooled to reduce these vibrations.

The second is the divergence (angular size) of the photon beam. In a beam with a large

divergence, many photons will not be within the characteristic angle of the crystal axis.

The simplest manifestation of the strong coherent fields is channelling; charged particles

in crystals may be strongly deflected. These studies show that the field enhancements are

real. The effective field is 25 Megagauss for silicon crystals [57]. Crystal channeling can in

some cases supplant conventional accelerator magnets, particularly for beam extraction [58].

With the increased bending, production of bremsstrahlung photons is also greatly

enhanced. This technique is mature enough that plans are advanced to use coherent

bremsstrahlung in a diamond crystal to general high-energy polarized photon beams for

a series of experiments [59].

The fields can also cause photon conversions. At CERN, pair conversion in germanium,

tungsten and iridium crystals has been studied with photons with energies up to 150 GeV.

The pair production cross section was enhanced over the isolated atom Bethe-Heitler predic-

tion; the enhancement grew linearly with energy, reaching a factor of 7 for k = 150 GeV [61].

The total and differential (with respect to E/k) cross sections agreed with the predictions

for coherent enhancement.

When a magnetic field also contains matter, both fields must be considered together. The

effects of the nuclei and the fields must be combined to find the conversion probability. This

is a complex calculation. Here we examine one limit, the reduction in pair conversion on a

target due to the motion caused by a moderate (χ < 1) magnetic field. Here, the magnetic

field plays a similar role to multiple scattering. When the magnetic bending terms in Eq.

38 dominate, the magnetic field suppresses the bremsstrahlung. The suppression equation
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is quartic, and, in the limit of strong suppression, the cross section is [5]

σ = σBH

(

kEB

E(k −E)

)2/3

(40)

where

EB =
mBc

B⊥
(41)

plays a similar role to ELPM . This approach only applies for very high energy photons

in relatively low-density matter. At high densities, LPM suppression dominates. When

χ > 1, pair conversion in the magnetic field is important. A parallel analysis finds a similar

suppression for bremsstrahlung; the bremsstrahlung calculation is supported by detailed

calculation using kinetic equations [62].

PAIR PRODUCTION AT PARTICLE COLLIDERS

Pair production also occurs at particle colliders. The colliding particles each emit a

photon; the two photons collide to form an e+e− or other lepton pair. Lepton pair production

at e+e− colliders has been studied intensely over the past 30 years. These studies have been

used for a variety of tests of QED [63]. The reactions have also been studied as backgrounds

to other interesting processes, especially those that are beyond the standard model. They

are also used to measure the internal (electromagnetic) structure of the photon [64].

Although these processes follow the same diagrams as pair production, Fig. 1, there are

some significant differences from the fixed target regime. The e+e− → e+e−e+e− reaction

found at e+e− colliders involves many more diagrams than are shown in Fig. 1. Second,

the photons are virtual. For e+e− colliders, and ep colliders, the virtuality is large, while

in proton and ion colliders it is smaller. For these reasons, this review will focus on photo-

production with almost-real photons (those with small virtuality) at ep, pp/pp and heavy

ion colliders. Finally, the symmetric initial state leads to some interesting effects. There

is a vast literature on photoproduction at colliders; here we only consider a few selected

examples to illustrate the similarities and differences with fixed target reactions.

Muon and electron pair production, ep→ epe+e− and ep→ epµ+µ− were studied by the

H1 collaboration at the HERA ep collider [65]. They observed lepton pairs with masses up

to 80 GeV, where electroweak corrections to QED are significant. The study was done to
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search for physics beyond the standard model, but the collaboration found good agreement

with the standard model.

In colliders, the ions are fully stripped of electrons. There is no screening, and, as

the beam energy rises, photoproduction occurs at larger and larger impact parameters.

Consequently, the cross section continues to rise with energy indefinitely. For example, in

gold on gold collisions at a center of mass energy of 200 GeV per nucleon at Brookhaven’s

Relativistic Heavy Ion Collider, the cross section is expected to be 33,000 barns, rising

to 200,000 barns in 5.5 TeV per nucleon lead on lead collisions at CERN’s Large Hadron

Collider [12]. Pair production can occur at ion-ion separations up to several µm.

Because Zα ≈ 0.6, higher order corrections to the cross section could be large, and

pair production may probe non-perturbative strong-field QED. This possibility encouraged

many theoretical efforts. One approach extended the Bethe-Maximon approach to collisions

of heavy ions. The effect of the Coulomb potentials of both ions was to reduce the cross

section by 25% at RHIC and 14% at the LHC [66].

Tony Baltz made an all-orders calculation of pair production in ultra-relativistic heavy

ion collisions. He found an exact solution to the time-dependent Dirac equation [67]. In

an appropriate gauge, the Coulomb potential from an ultra-relativistic particle simplifies

into a simple two-dimensional potential, and pair production can be calculated exactly.

Surprisingly, the cross section matches the lowest order perturbative result [67], without any

Coulomb corrections. The apparent absence of Coulomb corrections caused some concern,

and, although there has been extensive study, the difference is still poorly understood [68, 69].

Since the theoretical issues are discussed in elsewhere in this volume, they will not be

considered extensively here.

Unfortunately, in most existing data on e+e− production in ion collisions, at least one of

the ions is light (typically sulfur). Experiment NA-45 at the CERN SPS studied 200 GeV

per nucleon bare sulfur ions hitting a platinum target and found cross sections consistent

with the lowest order perturbative result [70]. The measured cross section in a restricted

kinematic region is 0.99+0.33
−0.28 of that expected from lowest order QED. Here, the errors are

combined in quadrature. This result could be used to put limits on some models of radiative

corrections. Other SPS studies found similar results, with general agreement to lowest order

calculations [71, 72].

At ion colliders, the charges are large enough that multiple interactions between a sin-
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gle ion pair are very possible. For example, two pairs may be created by a single ion-ion

reaction [73]. Multiple pairs have not been studied yet. However, the STAR collaboration

has studied e+e− pair production accompanied by mutual Coulomb dissociation of the two

nuclei [74, 75]. The mutual Coulomb dissociation criteria selects collisions where the im-

pact parameter (minimum ion-ion separation) is about 30 fm, considerably smaller than for

unselected pair production. The reduction in impact parameter leads to stronger colliding

fields, and therefore to increased higher order corrections. Despite this, the collaboration

found that their results were well described by lowest order QED. They did find that it was

necessary to include the photon virtuality in the calculation to explain the pT spectrum of

the pair.

Multiple interactions are most common at small impact parameters, where the field den-

sities are strongest. For this reason, they are a good place to search for higher order effects.

Despite this, the STAR data are consistent with lowest order QED. Because of the restricted

impact parameter range, this data cannot be directly compared with existing studies of ra-

diative corrections [75].

The absence of atomic electrons allows some new reactions, such as pair production

with capture, where an electron is produced bound to one of the participating nuclei. This

reaction has a number of notable applications. At Fermilab, positrons were produced bound

to antiprotons, forming, for the first time, antihydrogen [76]. At heavy ion colliders, the

cross section for electron capture is sizable, of the order of 100-200 barns at RHIC and

the LHC [77]. The single-electron atoms are lost from the colliding beams, reducing the

luminosity, and giving pair production some importance for accelerator design.

CONCLUSIONS

Pair production at high energies covers a varied palette of physics. High mass pairs have

been a sensitive test of QED, and pair production at e+e− and ep colliders continues to be a

laboratory to search for new physics. These colliders allow the highest energy tests of QED.

Lower mass pairs have long formation lengths. These reactions are distributed over

many atoms, and probe bulk characteristics of the material. When the photon energy is

large enough, pair production is suppressed below the Bethe-Heitler cross section, and many

’obvious’ scaling laws fail. At very high photon energies, the pair production cross section
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may be smaller than the photonuclear cross section, and photonic showers will look like

hadronic showers.

Pairs may also be produced in strong magnetic fields. This has significant implications

in astrophysics. These strong magnetic fields also appear in crystals when the photon is

aligned with one of the crystal axes. These photons may coherently convert to an e+e− pair.
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FIG. 7: SLAC Experiment E-146 data (points) compared with Monte Carlo predictions using

the Bethe-Heitler (dashed line), LPM suppression (dot-dashed line) and with LPM and dielectric

suppression (solid line). The simulations include transition radiation. Adapted from Ref. [49].
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FIG. 8: Bremsstrahlung spectrum from (a) 287 GeV, (b) 207 GeV and (c) 149 GeV electrons

striking a 0.128 mm thick iridium target. The photon energy scale is logarithmic, with 25 bins per

decade if energy. The dotted line is a simulation using the Bethe-Heitler spectrum, while the solid

line includes LPM suppression. From Ref. [50].
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FIG. 9: Attenuation coefficient (inverse attenuation length) for photons in a magnetic field with

perpendicular components of 0.35 Gauss (the Earth’s average field - solid line), 100 Gauss (short

dashes), 104 Gauss (long dashes) and 106 Gauss (dotted line).
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