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Abstract

Simple models are constructed for “acceleressence” dark energy: the latent heat of a

phase transition occurring in a hidden sector governed by the seesaw mass scale v2/MPl,

where v is the electroweak scale and MPl the gravitational mass scale. In our models,

the seesaw scale is stabilized by supersymmetry, implying that the LHC must discover

superpartners with a spectrum that reflects a low scale of fundamental supersymmetry

breaking. Newtonian gravity may be modified by effects arising from the exchange of

fields in the acceleressence sector whose Compton wavelengths are typically of order the

millimeter scale. There are two classes of models. In the first class the universe is presently

in a metastable vacuum and will continue to inflate until tunneling processes eventually

induce a first order transition. In the simplest such model, the range of the new force

is bounded to be larger than 25 µm in the absence of fine-tuning of parameters, and for

couplings of order unity it is expected to be ≈ 100 µm. In the second class of models

thermal effects maintain the present vacuum energy of the universe, but on further cooling,

the universe will “soon” smoothly relax to a matter dominated era. In this case, the range

of the new force is also expected to be of order the millimeter scale or larger, although

its strength is uncertain. A firm prediction of this class of models is the existence of

additional energy density in radiation at the eV era, which can potentially be probed in

precision measurements of the cosmic microwave background. An interesting possibility is

that the transition towards a matter dominated era has occurred in the very recent past,

with the consequence that the universe is currently decelerating.



1 Dark Energy from a Phase Transition

Cosmological observations of Type Ia supernovae, the cosmic microwave background radiation

and large scale structure provide strong evidence that the universe is flat and composed of about

70% dark energy and 30% dark matter [1, 2, 3]. The dark energy, which is driving a recent

acceleration in the expansion in the universe, has negative pressure and cannot be interpreted

as matter or radiation. Rather, this unusual fluid may be some form of vacuum energy, with

an energy density of order (10−3 eV)4. A crucial question is whether this vacuum energy is

time independent – a “hard” cosmological constant, Λ – or evolves with time – a “soft” vacuum

energy. An example of the latter is “quintessence”, a scalar field energy that evolves slowly

over many decades of expansion of the universe [4]. However, theories of quintessence involve

an unnaturally small mass scale of order the Hubble parameter, 10−33 eV, and do not explain

why this field energy is just dominating the universe in the present epoch. A hard cosmological

constant also suffers from this “Why now?” problem; are we really witnessing the transition to

an era of eternal inflation?

Our present understanding of the hot big bang is one of a succession of phase transitions in-

terspersed with eras of smooth cooling. The phase transitions are the cosmological manifestation

of symmetry breaking, as the underlying vacuum shifts from one stable minimum to another.

Given the standard model of particle physics, it is extremely plausible that phase transitions

occurred both as the temperature cooled through the electroweak scale, v, and through the scale

of strong interactions, ΛQCD. At higher temperatures there may well have been other phase tran-

sitions associated, for example, with the breaking of lepton number (to generate right-handed

neutrino masses and for leptogenesis), the breaking of grand unified gauge symmetries, and the

generation of an early era of cosmic inflation. At each of these phase transitions it is likely that

the universe was dominated for a period by the vacuum energy, or latent heat, of the associated

change in vacuum state. It therefore seems plausible to us that the present cosmic expansion

is fueled by the soft vacuum energy of some phase transition associated with an energy scale of

10−3 eV. We label this phenomenon acceleressence.

At first sight it does not seem reasonable that there could be a phase transition in the universe

with a vacuum energy of order (10−3 eV)4, because we have not discovered any particle physics

symmetry breaking at the 10−3 eV scale. However, at low energies we know that interactions

between particles can get very small, suppressed by inverse powers of a large mass scale, so that

this new particle physics may be decoupled from us. For example, all interactions of the neutrino

decouple at low energies, and its mass is often assumed to arise from inverse powers of the large

right-handed neutrino mass MR, mν ≃ v2/MR. Suppose that acceleressence occurs in some

hidden sector that interacts with the standard model only by gravity. It could be that the mass
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scale of this sector is also generated by a seesaw mechanism, taking the value v2/MPl ≃ 10−3 eV,

where the Planck mass, MPl, is the scale of gravity. It is intriguing that this ratio of known scales

gives the observed energy scale of dark energy. If such a sector underwent a phase transition

it could cause cosmic acceleration, naturally explaining the “Why now?” problem [5]. In this

paper we aim to construct the simplest models of such a hidden phase transition.

If there is to be a new scale of particle physics at v2/MPl ≃ 10−3 eV, how can it be made

stable to radiative corrections? This appears even more daunting than the usual hierarchy

problem of making v stable to radiative corrections. Remarkably supersymmetry can do both.

The usual hierarchy problem is solved by requiring that the scale of supersymmetry breaking in

the standard model sector is of order the electroweak scale: m̃ ≃ v. If this is the only breaking

of supersymmetry in nature, and if the acceleressence sector only couples gravitationally to this

supersymmetry breaking, then the scale of supersymmetry breaking in the acceleressence sector

will naturally be

mD ≃ m̃2

MPl

≃ v2

MPl

≃ 10−3 eV, (1)

and is stable to radiative corrections.

Our task in this letter is to build the simplest models of acceleressence and study their con-

sequences. In general these theories possess a sector involving a scalar field φ, the acceleressence

field, such that all the supersymmetry breaking mass parameters in its potential are of order mD.

We assume that the cosmological constant vanishes in the true minimum of the zero tempera-

ture potential. Before the phase transition associated with dark energy has occurred, 〈φ〉 = 0.

Clearly the crucial question is the behavior of the field near the origin. In our first model, φ has

a positive mass squared and we live in a false vacuum, with the phase transition induced by a

trilinear φ3 interaction. The tunneling rate to the true minimum may be very slow, so that the

universe may enter a prolonged era of inflation before undergoing a first order phase transition.

In the second model, φ has a negative mass squared so that there is no local minimum of the

potential at the origin. Nevertheless, thermal corrections to the effective potential are sufficient

to maintain 〈φ〉 = 0 today. This thermal barrier will rapidly disappear as the universe cools,

and hence a phase transition towards a matter dominated era is imminent. An interesting pos-

sibility is that this transition has already occurred, albeit in the very recent past. In this case

the universe is currently decelerating, leading to observable consequences for future precision

measurements of the distance-redshift relation.

There are alternative ideas for understanding the size of the dark energy density. It may

be related to the neutrino energy density [6] in such a way that the dark energy resides in

a slowly evolving scalar field. In axion models, the dark energy may be false vacuum energy

associated with the size of explicit U(1)PQ breaking coming from higher dimension operators [7].

Alternatively, in theories with extra spatial dimensions, the smallness of the dark energy density

2



may follow from an exponential wavefunction profile in the bulk [8].

2 Models of Acceleressence

Our models have the following basic structure. We have a sector that contains a scalar field

φ, the acceleressence field, responsible for the dark energy. This acceleressence sector interacts

with the other sectors only through gravitationally suppressed interactions. In particular, once

supersymmetry is broken at the TeV scale in the standard model sector, its effects are transmitted

to the acceleressence sector through the following operators:

∫

d4θ
X†X

MPl
2 Φ†Φ,

∫

d4θ
X + X†

MPl

Φ†Φ, (2)

where Φ is a chiral superfield containing φ as the lowest component, and X is a superfield that

breaks supersymmetry so that FX ≃ (TeV)2. This generates a soft supersymmetry-breaking

mass and trilinear interaction for φ of order FX/MPl ≡ mD ≃ 10−3 eV, which eventually produces

dark energy of the observed size. In theories where tree-level couplings between Φ and X are

absent, the operators in Eq. (2) are generated effectively at loop level so that the scale of the

fundamental supersymmetry breaking can be FX ≃ (10∼100 TeV)2.

2.1 Acceleressence from a false vacuum

We now present the simplest model realizing our scenario. The acceleressence sector consists of

a single chiral superfield Φ with the superpotential

W =
λ

3
Φ3. (3)

Taking supersymmetry breaking effects into account, the scalar potential is given by

V = λ2|φ|4 − (Aφ3 + h.c.) + m2|φ|2 + V0, (4)

where, without loss of generality, λ and A can be taken real and positive by rotating phases of

fields. Here, m and A are supersymmetry breaking parameters of order mD, and V0 is a constant

determined by the condition that the cosmological constant is vanishing at the true minimum

of the potential.

We assume that m2 is positive so that the model has a (local) minimum at the origin in field

space. If A is sufficiently large, 9A2 > 8λ2m2, the model has a second minimum at 〈φ〉 6= 0.

This second minimum has a lower energy than the minimum at the origin if

A > λ m. (5)
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We require this condition to be satisfied, so that the minimum at 〈φ〉 = 0 is only a local minimum.

Then, for A sufficiently larger than λm, we find

V0 ≃
27A4

16λ6
= O

(A4

λ6

)

. (6)

This is the vacuum energy density we observe today, if the φ field is trapped in the local minimum

at the origin. The trapping at the origin naturally occurs because it is likely that the universe

starts at 〈φ〉 = 0 due to thermal effects or an induced φ mass term during inflation. The lifetime

for the decay of this metastable vacuum can easily be made longer than the age of the universe.

We then obtain the observed magnitude of the dark energy for natural values of parameters,

λ ≃ 1 and A ≃ 10−3 eV.

2.2 Acceleressence from a thermal vacuum

In the model discussed above, the mass squared for the acceleressence field φ was assumed to

be positive. We can also consider a model in which the acceleressence field has a negative mass

squared, but is trapped at the origin by thermal effects. Building such a model, however, is not

entirely trivial due to the potential conflict between the observed size of the dark energy and

the constraint from big-bang nucleosynthesis on the thermal energy density of the acceleressence

sector. For example, we cannot simply take the model of section 2.1 and make m2 negative, as

the resulting model does not have a viable parameter region explaining the observed dark energy

while satisfying all phenomenological constraints. In this section we present a realistic model

with the acceleressence field having a negative mass squared at the origin.

We take our acceleressence sector to be a supersymmetric U(1) gauge theory with three

chiral superfields Φ(+1), Φ̄(−1) and S(0), where the numbers in parentheses represent the U(1)

charges. The superpotential of the model is

W = λSΦΦ̄, (7)

where λ is a coupling constant. Now, suppose that Φ and Φ̄ obtain negative squared masses,

−m2
φ and −m2

φ̄, and S obtains a positive squared mass, m2
s, from supersymmetry breaking (where

m2
φ, m

2
φ̄, m

2
s > 0 are of order m2

D). The scalar potential is given by

V = |λφφ̄|2 + |λsφ|2 + |λsφ̄|2 +
g2

2
(|φ|2 − |φ̄|2)2

+m2
s|s|2 − m2

φ|φ|2 − m2
φ̄|φ̄|2 + V0, (8)

where g is the U(1) gauge coupling and V0 is a constant to be chosen to make the cosmological

constant vanishing at the true minimum of the potential. Note that in addition to the gauge
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symmetry, this theory possesses a global U(1) symmetry under which φ and φ̄ have the same

charge. Here we have assumed the absence of scalar trilinear interactions for simplicity.

For a somewhat suppressed superpotential coupling λ2 ≪ g2, the minimum of the potential

Eq. (8) lies at 〈s〉 = 0 and 〈φ〉2 ≃ 〈φ̄〉2 ≃ (m2
φ + m2

φ̄)/2λ2. At this point in field space both

the gauge and the global symmetries are broken, so the spectrum contains a massless Goldstone

boson. Requiring V = 0 at the minimum, we obtain

V0 ≃
(m2

φ + m2
φ̄)2

4λ2
. (9)

The potential Eq. (8) with Eq. (9) does not support a constant vacuum energy, as there is no

local minimum in the potential. The situation, however, can be different if this sector has a

finite temperature T 6= 0. In this case the effective potential receives an additional contribution,

which is given at high temperature by

δV ≃ λ2

4
T 2|s|2 +

g2

2
T 2(|φ|2 + |φ̄|2), (10)

for λ2 ≪ g2. Therefore, as long as g2T 2/2 >∼ m2
φ and m2

φ̄, the fields are thermally trapped

to 〈s〉 = 〈φ〉 = 〈φ̄〉 = 0 and the vacuum energy is given by V0 in Eq. (9). This leads to the

accelerated expansion of our universe as long as the thermal energy density is smaller than the

vacuum energy density, which is actually the case as we will see below.

In general, models of acceleressence using thermal effects are subject to severe phenomenolog-

ical constraints. The success of big-bang nucleosynthesis constrains the radiation energy density

in the acceleressence sector, ρφ, to be much smaller than that in photons, ργ. We here parame-

terize this constraint as ρφ
<∼ ǫ ργ , where ǫ ≃ 0.1. Since ρφ ≃ (π2/30)gφT

4 and ργ ≃ (π2/15)T 4
γ ,

the constraint can be written as

T 4 <∼
2ǫ

gφ

T 4
γ , (11)

where gφ is the number of effective degrees of freedom in the acceleressence sector and Tγ is

the photon temperature. In the present model, gφ = 15. The temperature of the acceleressence

sector must also satisfy the condition such that it traps the fields in a local minimum. In the

present model, this condition is given by

g2

2
T 2 >∼ m2

φ, m2
φ̄. (12)

Using Eqs. (11, 12) in Eq. (9) we then find that the parameters of the model must satisfy

λ

g2
<∼
(

ǫ

30

T 4
γ

V0

)
1

2

≃ 10−3, (13)
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where we have used V0 ≃ 3 × 10−11 eV4 and Tγ ≃ 2.4 × 10−4 eV. Assuming g = O(1), this

requires a somewhat small coupling of λ <∼ 10−3. The small value of the quartic coupling for

the acceleressence field is protected against radiative corrections by imposing an approximate

U(1)R symmetry on the acceleressence sector that forbids a U(1) gaugino mass. Note that with

the condition Eq. (11) satisfied, the radiation energy density in the acceleressence sector, ρφ,

is much smaller than the vacuum energy density, V0, so that the accelerated expansion of the

universe necessarily follows.

What is the future of the universe in such a scenario? At some point the temperature in the

acceleressence sector falls to a point where the inequality Eq. (12) is no longer satisfied. The field

of higher m2 then start evolving at the Hubble rate, tracking the minimum of its thermal effective

potential. However, during this era the vacuum energy only changes by a negligible amount so

that w is still essentially −1. This era ends when the field reaches some critical value. At this

point thermal effects in the potential disappear, and both φ and φ̄ fields rapidly acquire large

values and oscillate about the minimum of the potential. The vacuum energy is then essentially

instantly converted first into matter and then into the radiation energy of Goldstone bosons in

the acceleressence sector. This makes the ultimate future of the universe to be dominated by

cold dark matter. An intriguing possibility is that the conversion of dark energy to radiation

energy described above has already occurred, albeit in the very recent past, with the deceleration

parameter jumping from ≈ −0.5 to ≈ +0.8, so that the universe is currently decelerating. The

present value of the deceleration parameter may vary as the model is changed and typically

lies between ≈ +0.5 and ≈ +0.8 in simple models. This leads to observable consequences for

the very recent expansion of the universe, which may be probed by future observations of the

distance-redshift relation.

2.3 Origin of supersymmetry breaking

In the models discussed above, the scale of the fundamental supersymmetry breaking should be

low, FX ≃ (1 ∼ 100 TeV)2, to have mD ≃ 10−3 eV. Here we discuss some explicit examples

for such theories. The first example we discuss is a class of theories where supersymmetry is

dynamically broken at around a TeV by nearly conformal gauge interactions. These theories

have a dual 5D description in which supersymmetry is broken on the infrared (TeV) brane in

a warped extra dimension [9, 10]. The standard-model gauge fields propagate in the bulk and

matter fields are located on the ultraviolet (Planck) brane. Now, suppose we introduce a Φ

superfield on the Planck brane with the superpotential of Eq. (3). Supersymmetry breaking

on the TeV brane then produces the soft supersymmetry breaking parameters for φ through

anomaly mediation [11]: m2 = 4λ4M2 and A = 2λ3M , where M = m3/2/16π2 with m3/2 the

gravitino mass. The soft mass squared m2 also receives contribution from the possible terms
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on the Planck brane:
∫

d4θ H†HΦ†Φ/M2
Pl if the Higgs fields are localized towards the Planck

brane (cH > 1/2), or
∫

d2θ (Φ/MPl)W
αWα via a finite sum of one-loop diagrams involving the

standard-model gauge bosons and their superpartners. In this class of models m3/2 can naturally

be in the 10 TeV region [10], so that the desired values for m2 and A (satisfying Eq. (5)) can be

generated in certain parameter regions. This then gives the correct amount of dark energy with

λ = O(0.1∼1).

Another example is based on the gauge mediation scenario [12], but with the messenger and

standard-model matter fields geometrically separated by extra spatial dimensions, for example

by a flat extra dimension having the size around the grand unification scale. The standard-model

gauge fields located in the bulk then transmit supersymmetry breaking from the messenger sector

to the standard model sector. The size of supersymmetry breaking in the messenger sector can

be of order 10∼100 TeV. If this is the largest supersymmetry breaking in the model, the Φ field

located on the standard-model brane receives soft supersymmetry-breaking parameters m2 and

A with the appropriate size through anomaly mediation and operators located on that brane, as

in the models in the previous paragraph. This type of model also provides an explicit example

of our scenario.

In both examples of supersymmetry breaking given above, the spatial separation of Φ from

the supersymmetry breaking field FX implies that φ does not feel supersymmetry breaking from

tree-level supergravity mediation; rather the dominant contribution arises at one loop from

anomaly mediation. This leads to m ≃ 10−4λ2(
√

FX/10 TeV) eV, easily allowing FX to be

in the range of 10 ∼ 100 TeV. These low values of FX imply a rather light gravitino mass of

0.01∼ 1 eV, so that the lightest supersymmetric particle cannot be weakly interacting cold dark

matter. The dark matter in our theories should be provided by a generic particle with TeV-sized

mass and cross section. Such a particle may arise from fields localized on the infrared brane in

warped models.

3 Potential Signatures

Here we discuss some potential signatures of our models. In our scenario, fields in the acceler-

essence sector may interact with the standard model fields through Planck-suppressed operators.

Suppose that the Φ field in the model of section 2.1 interacts with the standard-model gauge

fields through the following operator:

∫

d2θ
Φ

MPl

Tr [W αWα] → φ

MPl

Tr [F µνFµν ] , (14)

where Wα represents the field-strength superfields for the standard-model gauge fields. This

induces a modification of the gravitational potential between two bodies of masses m1 and m2
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separated at a distance r through the φ exchange: Vgrav = −(1+αe−r/l)GNm1m2/r. The size of

the modification, α, depends on an unknown coefficient of the operator in Eq. (14); we naturally

expect that it is of order unity, but it could be small. The range of modification, l, is determined

by the mass of the φ scalar: l ≃ m−1. An interesting aspect of the model is that the size of the

dark energy has an implication for the range of the modification l. To see this we can explicitly

minimize the potential of Eq. (4) and write V0 as

V0 =
m4

λ2
f

(

λm

A

)

, (15)

where f is a function defined by f(x) = (27 − 36x2 + 8x4 + (9 − 8x2)3/2)/32x4. The function

f(x) has the property that for x < 0.8, f(x) > 1. Therefore, for a parameter region λm/A <∼ 0.8

we obtain a lower bound on l ≃ m−1:

l >∼
1√
λ

V0
− 1

4 . (16)

For the vacuum at φ = 0 to be metastable, λm/A < 1 (see Eq. (5)), so that this bound on l

applies to most of the parameter space of the model. (The exception is when A is very close to

λm.)

A numerical bound on the range l is obtained from the upper bound on the coupling λ:

λ <∼ 4π. Using V0 ≃ 3 × 10−11 eV4, we obtain l >∼ 24 µm. An even stronger bound arises if we

require that the coupling λ is perturbative up to the Planck scale. In this case the renormalization

group analysis gives that λ <∼ 0.76 at the scale mD, so that we obtain l >∼ 110 µm. These distance

scales are within striking range of experiments searching for deviations from Newtonian gravity

at sub-millimeter distances [13]. For a review of the current and future experimental status, and

for alternative theories which also predict deviations from Newtonian gravity at sub-millimeter

distances, see [14].

A similar signature can be obtained in the model of section 2.2 through the coupling of the S

field to the standard-model gauge fields (Eq. (14) with Φ replaced by S – operators linear in Φ or

Φ̄ are forbidden by the gauge symmetry). In this case l is determined by the mass of the scalar s:

l ≃ m−1
s , which does not have a solid bound as in the previous case. However, the naturalness of

the model implies that radiative corrections to mφ and mφ̄ from ms cannot be much larger than

the values of mφ and mφ̄ themselves, which gives the bound l >∼ (λ/4π)
√

ln(M∗/Λ)m−1
φ . For

λ ≃ 10−3, this gives l >∼ 2 µm. Moreover, in the case that all the supersymmetry-breaking masses

are the same order, i.e. ms ∼ mφ, mφ̄, we obtain much tighter bound l >∼ 3 mm. The strength

of the modification, α, can be of order 1 but, if the S field is responsible for the suppression of

λ in Eq. (7), it could be of order λ2 ≃ 10−6.

Another possible signature of our models arises from the radiation energy density in the

acceleressence sector, which we call dark radiation. This is especially interesting in the model of
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section 2.2 because the acceleressence sector necessarily has a finite temperature. In particular, if

the bound on Eq. (11) is nearly saturated, which is the case if λ is not much smaller than 10−3g2,

the radiation energy density ρφ is close to the upper bound allowed by nucleosynthesis, implying

that this dark radiation will be seen in future cosmic microwave background experiments such

as PLANCK or CMB-Pol. The signature from the dark radiation could also arise in the model

of section 2.1 if the temperature of the acceleressence sector is not much lower than the value

allowed by the big-bang nucleosynthesis constraint.

Finally, we note that the equation of state for acceleressence is essentially w = −1, except

perhaps in the very recent past. Furthermore, superpartners must be discovered at the LHC

with a spectrum that reflects a low mediation scale for supersymmetry breaking. If either of

these proves to be incorrect, acceleressence dark energy will be excluded, at least in its minimal

form as described in this paper.
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