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Abstract

The techniques of normal form analysis, well known in the literature, can be used to provide a straightforward
characterization of linear betatron dynamicsin acoupled lattice. Here, we consider both the beam distribution
and the betatron oscillationsin a storage ring. We find that the beta functions for uncoupled motion generalize
in a simple way to the coupled case. Defined in the way that we propose, the beta functions remain well
behaved (positive and finite) under all circumstances, and have essentially the same physical significance for
the beam size and betatron oscillation amplitude as in the uncoupled case. Application of this analysisto the
online modeling of the PEP-11 ringsis also discussed.

Presented at EPAC 2004, Lucerne, Switzerland.

Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While this
document is believed to contain correct information, neither the United States Government nor any agency
thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty,
express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by its trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof or The Regents of the University of California.

LBNL isan equal opportunities employer.

Thiswork was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract
Nos. DE-ACO03-76SF00098 and DE-AC03-76SF00515.



NORMAL FORM ANALYSISOF LINEAR BEAM DYNAMICSIN A
COUPLED STORAGE RING*

A.Wolski”, LBNL, Berkeley, California 94720, USA
M.D.Woodley, SLAC, Menlo Park, California 94025, USA

Abstract

The techniques of normal form analysis, well known in
the literature, can be used to provide a straightforward
characterization of linear betatron dynamicsin a coupled
lattice. Here, we consider both the beam distribution and
the betatron oscillations in astoragering. Wefind that the
beta functions for uncoupled motion generalize in a
simple way to the coupled case. Defined in the way that
we propose, the beta functions remain well behaved
(positive and finite) under all circumstances, and have
essentially the same physical significance for the beam
size and betatron oscillation amplitude as in the
uncoupled case. Application of thisanalysisto the online
modeling of the PEP-II ringsis also discussed.

INTRODUCTION

Optimal performance of eectron storage rings in
synchrotron light sources and circular colliders often
depends on good control of the betatron coupling. Having
a convenient method of characterizing the coupling
becomes particularly important when the lattice includes
regions where the beam is significantly coupled by
design, asin the solenoid field of the interaction region of
a collider. In this note, we propose a simple way to
characterize the coupling. In particular, we extract from
thelinear single-turn map lattice functions that generalize
the usual Twiss parameters for an uncoupled lattice. Our
procedure avoids the ambiguities that can arise in other
treatments, with associating the lattice functions with the
different betatron modes [1]. This approach also has the
advantage that the beta functionsare directly related to the
equilibrium beam digtribution (for given norma mode
emittances).

Our treatment is based on the normal form analysis that
is well known in the beam dynamics literature [2]. The
linear single-turn map at any point in astoragering can be
written asa 4x4 matrix. Normal form analysisidentifiesa
transformation that puts this matrix into block diagonal
form, with each block a simple rotation. The essential
characteristics of the dynamics in the lattice are then
contained in the normalizing transformation: in the
uncoupled case, the components of the normalizing
transformation are constructed from the usual Twiss
parameters. By generalizing in a natural way to the
coupled case, we extract coupled Twiss parameters with
the same physical significance as those in the uncoupled
case.
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In this paper, we begin by considering the betatron
trgjectory of a particlein a coupled lattice. We show how
to construct the normalizing transformation, and how to
extract the coupled beta functions from this
transformation. We then relate the coupled beta functions
to the equilibrium beam distribution in a storage ring,
assuming Gaussian beam distribution and given beam
emittance. Further details and discussion on these issues
may be found in [3]. Finally, we consider application of
these techniques to the online model of the PEP-11 rings.

BETATRON TRAJECTORY

Let uswrite the transverse phase-space vector of aparticle
in alattice as:
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We define a vector ‘J> in terms of the action-angle
variables:
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Theinvariant action J, is associated with thetune v ; i.e.
in oneturn of thelattice, the changein the phase angle ¢,
is Ag, =2mv,. Similarly, the action Jy, is associated with
the tune v, . Note that the fractional parts of the tunes
can be found from the eigenvalues 4, and A, of the
single-turn matrix:

A :exp(i Zﬂvl) Ay :exp(i ZHVII)

The vectors \x) and ‘J> arerelated by amatrix N:
X)=N|J) (€

N is readily constructed as follows. Let &) be the

eigenvectors of the single-turn matrix M. The index i
runs from 1 to 4 for the four eigenvectors. We order the
eigenvectors so that \e1> and \e2> are associated with the
eigenvalues 4, , and \e3) and \e4> are associated with the

eigenvalues ), . We also use the normalization:
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where Sis the antisymmetric matrix:
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Then we have:
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Since M is symplectic, the eigenvectors come in complex
conjugate pairs, and N is red. N provides a
transformation that putsthe single-turn matrix into block-
diagonal rotation form:

N*MN=R(g, 4 )
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where W, =2 The relationship (1) between \x)

and ‘J> is seem from the transformation of \x) under a

single turn through the lattice:
x) = M|x) =NRN™|x)
from which it follows that:
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as expected.

We note that there is a degeneracy in the normalization,
in that if the matrix N is avalid normalization, then sois
N [R(g,,6,) for any angles g, and g,. For convenience,
let us choose these angles so that the matrix elements ny,
and ng of N are zero. We then define g, p and

quantities 7, ¢, by:
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We then have expressions to describe the betatron motion
such as.
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Thisreducesto the familiar expression for x if either:
¢ Thereis excitation of betatron motion associated
only with thetune v, , i.e. J, =0, or

e The coupling parameter {,=0, i.e. the local
coupling in the latticeis zero.

BEAM DISTRIBUTION

We need do very little extra work to find expressions for
the second-order moments of the beam distribution. In
fact, if we define the emittance as the average of the
action of all particlesin the beam:
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then it follows immediately from equations (1) and (2)
that:
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Furthermore, if we define;
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then we have:
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Clearly, all second order moments of the beam

digtribution are contained in the components of the
normalizing matrix N. In fact, if we define matrices:
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then it may be shown [3] that the matrix of the second-
order beam distribution may be written:
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We note that these expressions generalize easily to
include synchrotron motion, in which case the 6x6
transfer matrix isused instead of the 4x4 matrix. Itisthen
possible to include the contribution of energy spread in
the beam to the beam size. For eectron storage rings, the
equilibrium emittances ¢, ¢, (ad g, in the
longitudinal plane) can be cal culated using a method such
as that of Chao [4]. For practical purposes, it is often
convenient to assume values for g, and ¢, based on the

design natural emittance of the lattice, and some coupling
value.

o O - O
o O O O
= O O

:
!

1



EXAMPLE: PEP-Il LER

As an illustration of the use of the lattice functions
defined in the previous sections, we consider the PEP-11
LER lattice. We have calculated the lattice functions
using a lattice model based on a particular machine
configuration, i.e. including variationsin magnet strengths
corresponding to a particular operational state.
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Figure 1. Top: vertical betafunction around the PEP-
Il LER interaction region calculated using the normal
form analysis and using MAD (the Edwards and Teng
method). Bottom: coupling function.
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Figure 2. Top: vertical beam size around the PEP-I1
LER IR. Bottom: beam *“tilt” (x-y correlation)
around the PEP-11 LER IR.

Figure 1 compares the vertical beta function defined in
(3), with that calculated in MAD using the same lattice,
over a range 80 m either side of the interaction point.
MAD calculates coupled beta functions using the method
of Edwards and Teng [5] (this method is also the basis of
[1]). For the typical case shown, the beta function from
MAD ranges from -3.5 km to 15 km; the physical
interpretation of a negative beta function is unclear.

Figure 1 also shows the coupling function ¢ that gives

the contribution of the horizontal emittance to the vertical

beam size. For this lattice, the coupling function has a
size comparable to the beta function, suggesting that the
horizontal emittance will make a significant contribution
to the vertical beam size, particularly since the horizontal
emittance is ten times larger than the vertical (25 nm,
compared to 2 nm). This is confirmed by comparison
with the top plot in Figure 2, which shows the vertical
beam size through the same region of the lattice. With the
“normal form” definitions, the beam size o is simply a

linear combination of the beta function and the (square of
the) zeta function, with coefficients equal to the
emittances. Note that the calculation from (3) using the
coupled lattice functions gives excellent agreement with
the MAD calculation of the beam size (as it should: the
beam size has an unambiguous physical definition).
Finally, the bottom plot in Figure 2 shows a comparison
of the correlation (xy) calculated for the same region of

the lattice, from (3) and from MAD. Again, there is
excellent agreement between the calculations.

CONCLUSIONS

We have shown that normal form analysis of the linear
single-turn matrix in a storage ring leads to natural
definitions of the beta functions for a coupled lattice. Itis
also possible to define functions (again, in terms of the
components of the normalizing matrix) that describe the
coupling. Using this approach, we find lattice functions
that are always well behaved, by being always positive
and finite. The lattice functions defined in this way can
be used in simple expressions with the beam emittances to
give the second-order moments of the beam distribution.
The lattice functions also have simple physical
interpretations in terms of the betatron motion of particles
in the lattice. For a lattice away from the coupling
resonance, there is no ambiguity with associating the
lattice functions with the emittances, since they are
associated with each other through the betatron tunes.
The “normal form” definitions of the lattice functions are
now being used in the PEP-II on-line model, to provide
convenient descriptions of the lattices under real operating
conditions.
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