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Summary

The quadratic function approaching method (QFAM) is
introduced for magnetotelluric sounding (MT) data
inversion. The method takes the advantage of that quadratic
function has single extreme value, which avoids leading to
an inversion solution for local minimum and ensures the
solution for global minimization of an objective function.
The method does not need calculation of sensitivity matrix
and not require a strict initial earth model. Examples for
synthetic data and field measurement data indicate that the
proposed inversion method is effective.

Introduction

Most well-known approaches for MT data non-linear
inversion, such as Newton’s method and conjugate
gradients-based methods, are based on an objective
function (Φ(m)) approximated with its first-order Taylor
expansion about the reference model (mk). This is because
that the objective function in the vicinity of extreme point
can be approximated by a quadratic function. Inversion
problems in geophysics do not search for the extreme value
of objective function, but the minimum value or global
extreme value of it. However, most MT inversion
algorithms, such as OCCAM (deGroot-Hedlin and
Constable, 1990), RRI (Smith and Booker, 1991) and
NLCG (Rodi and Mackie, 2001), are limited to solving for
the “extreme” value. These nonlinear inversion methods
use partial differentiation information (Jacobian matrix) to
determine the iteration search direction, which may lead to
a solution for local minimization. Computation of Jacobian
matrix is time consuming and limits the speed of MT data
inversion. In this paper, the quadratic function approaching
method (QFAM) is applied to the inversion of one-
dimensional MT data. The QFAM method is originally
used in the non-linear optimization study. This approach
avoids the calculation of gradient or second order
derivative by using the function value only, and does not
need calculation of sensitivity matrix which greatly
simplifies the inversion procedure. Additionally, the
proposed method does not require a strict initial earth
model.

Theory

The QFAM is implemented by constructing a quadratic
function through several control points in the model space.
At the control points, quadratic function is given the same

value as the corresponding objective function. The
minimum of objective function is approximated by
minimum value of the quadratic function. An optimization
algorithm developed by Zhao (2000) for searching control
points is used to update quadratic function and improve the
determination of minimum location. An iterative procedure
is followed until the optimized global minimum point has
been reached. The solution is considered to be the best
approximation of the real earth model.

Objective Function
MT data and earth model has a very complex nonlinear
relationship. We can write the inverse problem (N layers)
as
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where d is a data vector [d1, d2, …, dN], m is a model
vector, m=[m1,m2,⋅⋅⋅,mN], e is an error vector, and F(m) is a
forward modeling function. In this study, log values for the
data vector and model vector are used.

Inverse problems in geophysics are undetermined. We find
a specific model by minimizing a model objective function
subject to data constraints. In an iterative inverse
procedure, it is not enough by only matching field
measured data. The matching approach may lead to a very
complex earth model, or a false structure. One of the
effective approaches for reducing uncertainty of inversion
is by defining an objective function with parameters of the
model structure, and the inverse problem is solved by
minimizing the model objective function subject to
adequately fitting data. We solve the problem following
Tikhonov and Arsenin (1977), taking a regularized solution
to be a model minimizing an objective function, Φ, defined
by
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where λ is regularization factor and a positive number. The
positive-definite matrix V plays the role of the variance of
the error vector e. The second term of equation (2) defines
a stabilizing functional on the model space. The matrix L is
a second-difference operator. For a flattest model norm
matrix L, we adopt the equations by Routh and Oldenburg
(1999).

In solving inverse problem, the earth model is discretized
into 30-40 layers in a constant layer thickness (in log
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value). This scheme can avoid the requirement of layer
thickness in calculation.

Quadratic function approaching method
In the model space, (N+1)(N+2)/2 points are selected to
construct a quadratic function which is used to determine
global minimum. The function is defined as

cTT ++=Ω mbmHmm
2
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where m is an n-dimensional model vector, H(hij) is a
symmetric square matrix with a size of N×N, and the vector
b=(bj)1*N. From equation (3), it is easy to find that the Ω(m)
is exclusively determined by matrix H, vector b and the
constant c. Total (N+1)(N+2)/2 coefficients need to be
determined for the function. We adopt the scheme
developed by Zhao (2000) for selecting the (N+1)(N+2)/2
control points. This scheme ensures
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and provides a convenient computation method for gradient
and second order derivative of the function. In the model
space, N+1 initial model m0, m1,..., mn are randomly
selected. And then an affine transformation is applied to
these vectors based on equation (4).
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After transformation, m0, m1-m0, m2-m0, …, and mN-m0
become 0, ξ1, ξ2, …, and ξN,, respectively. In the new
coordinate system, ξ1, ξ2 , and ξn are unit vectors and the
distances from m1, m2, .., mN to m0 equal to 1.

Additional N(N+1)/2 model vectors can be determined by
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Apparently, mij and mji are equal. We can also apply affine
transformation by equation (4) to these vectors. In the
transformed coordinate system, the distance between m’ij
and m’0j or m’i0 is 0.5.

To determine the coefficients of the quadratic function, the
objective functions corresponding to (N+1)(N+2)/2 model
vectors are noted as
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It is supposed that the quadratic function equals to the
objective function at the control points. We have:

jiNjNi
Ni

ijij

ii

≠⋅⋅⋅=⋅⋅⋅=Φ=Ω
⋅⋅⋅=Φ=Ω

;,,2,1,0;,,2,1,0,
,,2,1,0,

The coefficients can be easily determined using the
following relationships:
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The minimum model solutions based on these coefficients
are models under the new coordinate system. We need to
transform these solutions back to its original coordinate
system,  that is done by
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A new minimum model mN+1 is obtained from equation (6).
It is the best approximation for global minimum model at
this stage. Together with initial models, N+2 model
solutions are now available. In the next iteration, the worst
model is discarded. The left N+1 models are used to
generate N(N+1)/2 new model vectors by following
equation (5). Using the same procedure as discussed above,
new quadratic function coefficients are determined and
then again a new minimum model is obtained by using the
equation (6). This iteration procedure is repeated until a
satisfied solution is reached.

Example with synthetic data

The QFAM is applied to inversion of synthetic data
obtained from two earth models. The fist model consists of
three layers (Figure 1), and the second model (Figure 2)
consists of five layers. Figure 1 and Figure 2 show the
inversion results for the two models respectively. Both
results match their corresponding Earth model quite well.
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Field data Inversion

In this section, we demonstrate the application of the
QFAM to real field MT data. The data was collected at an
oil field in the Northeast China. The MT measuring line is
parallel to a seismic exploration line, which is about 2
kilometers away.

MT Data inversion for single point measurement
To calibrate rock properties of the geological layers at
surveying area, a single point measurement was conducted
near station 65 of the measuring line. The apparent
resistivity curves from both TE and TM model indicate that
there is almost no influence of static shift, and also, the
curves show the characteristics approximating to the
response of one-dimensional earth structure. Therefore, this
problem can be treated as a one-dimensional inversion
problem and solved using the QFAM. Figure 2 shows
comparison between inversed resistivity distribution and

electrical logs at the borehole WS#1. The two curves match
each other quite well.

Figure 3 Comparison of inversion result and electrical logs.
(Solid line: log; Dash line: inversion result)

Figure 4 shows inversion results of the 2D resistivity cross-
section along the measuring line. Layering distribution of
resistivity is very clear at the top layers (for the top 2
kilometers). A thick layer with lower resistivity lies
underneath the top layers.  The base rock demonstrates high
resistivity. Depth of the top surface of the base rock is
about 5 kilometer at the left side of the cross-section and is
less than 2 kilometer at the right side (Figure 4(a)). By
comparing to seismic time profile (Figure 4(b)) measured at
the site, we can find that the both results have very similar
layering distribution. MT inversion and seismic survey
produce almost identical results for top surface of the base
rock. MT inversion results also provide detail information
of resistivity changes inside the base rock.
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Figure 1 Inversion result of 3-layer model. Solid line:
Model; Dot line: Inversion result.
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Figure 2  Inversion result of 5-layer model. Solid line: Model;
Dot line: Inversion result.
Model parameters:
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Conclusions

The QFAM realizes global non-linear inversion and
reduces the possibility of solution uncertainty. This method
avoids the calculation of gradient or second order
derivative by using the function value only, and does not
need calculation of sensitivity matrix which greatly
simplifies the inversion procedure. Additionally, the
proposed method does not require a strict initial earth
model. Examples for synthetic data and field data inversion
indicate that the QFAM is an effective method for non-
linear MT data inversion.
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Figure 4 Comparison of inversion results and seismic time profile. (a) Inverted resistivity profile, (b) Seismic time profile
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