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Pulse Shape and Spectrum of Coherent Diffraction-Limited

Transition Radiation from Electron Beams

Abstract

The electric field in the temporal and spectral domain of coherent diffraction-limited

transition radiation is studied. An electron bunch, with arbitrary longitudinal momen-

tum distribution, propagating at normal incidence to a sharp metal-vacuum boundary

with finite transverse dimension is considered. A general expression for the spatiotempo-

ral electric field of the transition radiation is derived, and closed-form solutions for several

special cases are given. The influence of parameters such as radial boundary size, elec-

tron momentum distribution, and angle of observation on the waveform (e.g., radiation

pulse length and amplitude) are discussed. For a Gaussian electron bunch, the coherent

radiation waveform is shown to have a single-cycle profile. Application to a novel THz

source based on a laser-driven accelerator is discussed.

Keywords: Coherent transition radiation, Diffraction, Radiation temporal profile,

Electron beams
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1. Introduction

With wavelengths smaller than those achieved in electronic circuits, but longer than

generated by most optical sources, the terahertz (THz) regime occupies a relatively unex-

plored part of the electromagnetic spectrum. This lack of scientific attention can partly

be attributed to the limited number of available THz sources; however, this does not

make this frequency regime less attractive to numerous applications (Mittleman et al.,

1999; Orenstein & Mills, 2000; Ferguson et al., 2002). For example, generation and de-

tection of THz radiation find use in medical and biological imaging (Ferguson et al.,

2002), as well as material characterization (Li et al., 1999). More recently, applications

such as semiconductor imaging (Tae-In Jeon & Grischokowski, 1997), surface chemistry,

and high-field condensed matter studies (Orenstein & Mills, 2000) have appeared. Most

applications share the need for a source that is externally triggered to allow pump-probe

type of measurements. This requirement is naturally satisfied by sources that are trig-

gered by a laser, or sources that are directly produced from a laser. Biased-semiconductor

structures have been shown to provide THz pulses with pulse energies on the order of

0.5 µJ per pulse (Budiarto et al., 1996). Another method of THz-generation is based

on optical rectification in a nonlinear crystal by a femtosecond laser pulse, generating a

pulse train containing millions of THz pulses per second. In these methods, higher pulse

energy can be achieved by reducing the repetition rate (Lu et al., 1997).

One of the challenges for the THz community is the realization of bright sources, with

peak electric fields that exceed 1 MV/cm, as well as sources with a high average power

for rapid multi-dimensional imaging (Ferguson et al., 2002). Particle-based sources are

an interesting candidate for achieving high peak power and high average power THz

sources. Radiation generation from particle beams can be accomplished by introducing

a spatial dependent refractive index (e.g., transition radiation and diffraction radiation),
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or introducing an external magnetic field (e.g., synchrotron radiation). These various

methods of THz radiation generation rely on the coherent superposition of the electric

field for wavelengths that are longer than the bunch length. The emitted energy scales

quadratically with bunch charge for coherent emission, making these methods attractive

candidates for an intense THz source. The work presented in this paper will focus on the

radiation emitted when a charged particle passes a boundary with finite radial extent

between two media with different indices of refraction. Radiation is emitted in both

the forward and backward direction. This mechanism is referred to in this paper as

diffraction-limited transition radiation (DLTR).

During the last decade, several research groups in the particle accelerator (e.g. cy-

clotron, synchrotron, and linac) community have demonstrated the generation of short

(sub-ps) electron bunches and applied the characterization of transition radiation as a

diagnostic for these bunches (Catravas et al., 1999; Kung et al., 1994; Leemans, 1997;

Ricci & Smith, 2000; Lumpkin et al., 2001). Such short relativistic electron beams have

relatively small energy spread (δE/E . 10−4) and due to space charge effects the charge

per bunch is limited to the sub-nC regime. However, for ultra-relativistic electron beams

(E > 1 GeV), the space charge limitation on charge density is reduced and short bunches

containing charge on the order of several nC can be achieved (Cornacchia et al., 2001).

Previous work on detection of transition radiation by these accelerator generated electron

beams has primarily focused on deduction of bunch characteristics such as bunch length,

bunch shape, and beam divergence (Shibata et al., 1994; Kung et al., 1994; Le Sage et al.,

1999). Diffraction was typically not a limitation in these experiments because of the short

radiation wavelengths (e.g., optical) and the large transverse size of the optics (diameter

on the order of several cm).

Recent experiments at the Lawrence Berkeley National Laboratory (Leemans et al.,
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2003) have demonstrated a novel method for the generation of DLTR, namely by a laser-

driven plasma-wakefield accelerator. In these experiments, an ultra-short intense laser

pulse interacts with a plasma and sets up a density oscillation in which background

plasma electrons can be trapped and accelerated. As the bunch exits the plasma, the

change in index of refraction produces transition radiation, with the transverse plasma

size as the diffraction-limiting effect. This method has the advantages that the plasma en-

vironment provides shielding for space charge effects in the dense electron bunch (keeping

the charge concentrated) and that synchronization of the electron beam with the fs drive

pulse occurs naturally. Electron beams in these laser wakefield accelerator experiments

can contain up to several nC of charge, while the electron energy distribution is typically

described as a 100% energy spread Boltzmann distribution, with temperatures on the

order of 3–30 MeV (Leemans et al., 2003). Although the bunch charge is high, the fact

that the transverse plasma size is on the order of 100-500 µm imposes a severe limitation

on the intensity of the radiation. Theoretical work on the radiation characteristics of this

THz source was reported by Schroeder et al. (2004).

Most THz detectors or detection schemes for pulsed sources are either sensitive to total

pulse energy or to the spectral energy distribution; however, two recent techniques (Bro-

mage et al., 1999; Zhang et al., 1990) have proven capable of mapping out the temporal

electric field using an optical probe pulse. The mechanism behind these detection schemes

is the interaction of the THz pulse with an optical probe pulse onto a semiconductor sur-

face (Bromage et al., 1999) or in a nonlinear crystal (electro-optic sampling) (Zhang et

al., 1990). In the case of electro-optic sampling, the polarization of an optical probe beam,

co-propagating with the THz waveform, experiences linear rotation proportional to the

averaged THz electric field upon interaction with the nonlinear crystal. The resolution

of such measurements is equal to the pulse length of the optical probe pulse (which is



6

typically on the order of tens of fs). Not only can the power spectrum be derived from the

field profile, but also the spectral phase, allowing determination of the real and complex

components of the dielectric function of the sample of interest. Electro-optic sampling

has been applied to diffraction-limited near-field transition radiation (Yan et al., 2000),

although a theoretical model of the temporal field profile has not been reported.

This paper will address such an analysis and include the effects of the electron longitu-

dinal momentum distribution on the temporal waveform. The model is based on electron

bunches that propagate at normal incidence through a sharp metal-vacuum boundary.

The interface is considered to have a finite transverse extent. Electron energies ranging

from non-relativistic to ultra-relativistic are considered, with an arbitrary momentum

distribution function. Effects of the bunch length, transverse size of the boundary, and

angle of observation on the field amplitude and radiation pulse waveform are investigated.

The paper is organized as follows. Section 2 introduces the general formalism of co-

herent diffraction-limited transition radiation. Expressions for the angular and spectral

energy distribution are presented, as well as the temporal field profile. In Sec. 3, closed-

form solutions for mono-energetic bunches in different regimes are presented, as well as

the general solution for bunches with mono-energetic, Gaussian, and Boltzmann momen-

tum distributions. A summary and discussion is presented in Sec. 4.

2. General Formalism and Assumptions

The theory of transition radiation produce by a single electron was first studied by

Ginzburg and Frank (1946), and later extensively treated in the monograph by Ter-

Mikaelian (1972). The Coulomb field of a moving charged particle induces a transient

polarization at the boundary, and radiation is emitted by the transient polarization

current. Consider a sharp (infinite) boundary between medium 1 (ε = ε1 for z < 0) and
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medium 2 (ε = 1 for z > 0), where ε is the dielectric constant. The Maxwell equations

for linear dielectric media can be combined and written as the following wave equation

(Jackson, 1975)

(

c2∇2 + εω2
)

E =
4π

ıωε

[

c2∇ (∇ · Jb) + ω2εJb

]

, (2.1)

with E the electric field, Jb the current of the electron beam, and ω the frequency of

the radiation. The radiation fields can be calculated by solving for the wave equation in

both media, and applying continuity in the normal electric displacement as well as in

the tangential electric field across the boundary. The complete solution to Eq. (2.1) will

yield both the particular solution (particle field Ep) as well as the homogeneous solution

(radiation field Eh), or E = Ep + Eh, where the homogeneous solution can be rewritten

as Eh(ω, k) = E′(ω, k)δ(k2c2−ω2ε), with k the wave-vector of the radiation. By Fourier

space-decomposing Eq. (2.1) and substituting the Fourier-transformed beam current

Jb(ω, k) = −e

N
∑

j=1

cβj2πδ(ω − kzvj)e
−ık·rj , (2.2)

the particular solution is found, namely

Ep(ω, k) = ı4πec2
N
∑

j=1

(

ck

ωε1
kzβj −

ωβj

c

)

2πδ(ω − kzvj)

c2k2 − ε1ω2
e−ık·rj , (2.3)

with vj = (0, 0, vj) = cβj and rj the velocity and position at t = 0 of the jth particle,

respectively. Electron beam divergence as well as oblique incidence onto the interface are

ignored (all particles are assumed to move normal to the z=0 plane). Furthermore, only

a radially symmetric electron beam will be considered.

In the far-field (kR �1), and in the limit ε1 � 1, the homogeneous solution in the

region z ≥ 0 is found to be (Schroeder et al., 2004)

Eh(ω, k⊥, z) = ı
4πe

ω

N
∑

j=1

E(θ, uj)

cos θ
e−ıΨjeız

√
ω2/c2−k2

⊥e⊥, (2.4)
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with

E(θ, uj) =
uj

√

1 + u2
j sin θ

1 + u2
j sin2 θ

, (2.5)

and Ψj = k⊥ ·r⊥,j +ωrz,j/vj . The unit vector e⊥ is directed perpendicular to the vector

of observation (k) in the k-ẑ plane, with ẑ = (0, 0, 1). The ratio kz/|k| is expressed as

cos θ, and uj = γjβj with γj = 1/
√

1− β2
j =

√

1 + u2
j .

The above model can be extended to dielectrics with a finite transverse boundary. To

estimate the effect of diffraction owing to the transverse dielectric boundary, it is assumed

that the beam is propagating through the center of the circular boundary of radius ρ,

with σr � ρ (where σr is the characteristic transverse extent of the electron distribution).

Babinet’s principle (Jackson, 1975) relates the electric field of the radiation produced by

the finite transverse dielectric to the electric field of an electron bunch passing through

an infinite boundary (transition radiation) ETR = Eh, minus the electric field of an

electron bunch passing through an aperture with radius ρ (diffraction radiation) EDR.

The diffraction radiation in the far-field R � r⊥ sin θ may be determined by applying

Kirchhoff diffraction theory (Jackson, 1975) to the incident particle fields [Eq. (2.3)],

where R2 = x2
⊥

+ z2 = x2 + y2 + z2 is the observation distance. The total electric field

of the diffraction-limited transition radiation is EDLTR = ETR −EDR, or

EDLTR(ω, k⊥, z) = ı
4πe

ω
sec θ eız

√
ω2/c2−k2

⊥

N
∑

j=1

E(θ, uj)D(θ, ω, uj)e
−ıΨj e⊥, (2.6)

where (Schroeder et al., 2004)

D(b, u sin θ) = 1− J0(bu sin θ)

[

bK1(b) +
b2

2
K0(b)

]

− b2

2
K0(b)J2(bu sin θ). (2.7)

Here Jm and Km are the mth order regular and modified Bessel functions, respectively,

and the dimensionless impact parameter b is given by b = kρ/u. In the following sections,

the subscript DLTR will be omitted.



9

2.1. Spectral and angular distribution of coherent diffraction-limited transition radiation

Using the expression for the electric field for the diffraction-limited case Eq. (2.6), one can

derive an expression for the coherent differential energy spectrum. By applying Parseval’s

theorem one can express the total energy radiated through a z=z0 plane in the far-field

as

dW =
c

2π

∫

∞

0

dω

2π

∫

d2k⊥

(2π)2
(k · ẑ)E∗(ω, k⊥, z) ·E(ω, k⊥, z), (2.8)

with E given by Eq. (2.6). By introducing dkxdky = 2πk⊥dk⊥ = k2 cos θdΩ it can be

shown that

d2W

dωdΩ
=

ω2 cos2 θ

(2π)4c
E∗(ω, k⊥, z) ·E(ω, k⊥, z)

=
e2

π2c

N
∑

j=1

N
∑

m=1

EjEmDjDmeı(Ψm−Ψj).

(2.9)

The coherent contribution to the energy are those summation terms where j 6= m. For

N1/2 � 1 (the ratio of the coherent to incoherent field amplitudes) one can introduce

an electron beam distribution f(r, u) and a momentum distribution g(u) =
∫

d3rf(r, u),

with normalization
∫

d3rduf(r, u) = 1. The coherent differential energy spectrum can

then be written as

d2W

dωdΩ
=

e2

π2c
N2 |〈EDF 〉|2 , (2.10)

where the angular brackets indicate an average over momentum distribution g(u), D is

given by Eq. (2.7), and the spatial form factor F is given by

F =
1

g(u)

∫

d2r⊥e−ık⊥·r⊥

∫

dze−ızω/vf(r, u). (2.11)

For a single electron (N = 1), incident on a boundary with infinite radial extent, it

follows that D = F = 1, and Eq. (2.10) reduces to the well-known result (Ginzburg &

Frank, 1946; Ter-Mikaelian, 1972)

d2We

dωdΩ
=

e2

π2c

u2
(

1 + u2
)

sin2 θ

(1 + u2 sin2 θ)2
. (2.12)
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Although the above analysis is valid for an arbitrary distribution f(r, u), the remainder

of this paper will consider an uncorrelated Gaussian distribution, such that f(r, u) =

f(r⊥, z, u) = f ′z(z)f ′
⊥

(r⊥)g(u), where f ′z(z) and f ′
⊥
(r⊥) are longitudinal and transverse

Gaussian distributions [characterized by root-mean square (rms) length and radius, σz

and σr, respectively]. For this special case, the form factor is

FG = exp [−(ωσz/v)2/2− (ωσr sin θ/c)2/2] ' exp [−(ωσz/v)2/2], (2.13)

provided that σr sin θ � σz , where typically θ < 1.

2.2. Temporal electric field profile of coherent diffraction limited transition radiation

The inverse spatial Fourier transform of Eq. (2.6), substituting the summation with an

integral over the distribution function f(r, u), yields

E(x, ω) =
ı4πeN

(2π)2ω

∫

d2k⊥
cos θ

〈E(θ, u)D(ω, u, θ, ρ)F (ω, u, θ)〉 eız
√

k2−k2

⊥
+ıx⊥·k⊥e⊥, (2.14)

where k⊥ = (ω/c) sin θ. Integrating over φ, where dkxdky = k⊥dk⊥dφ, Eq. (2.14) reduces

to

E(x, ω) = ı2eNe⊥

∫

∞

0

dk⊥
ω

tan θ 〈EDF 〉 eız
√

k2−k2

⊥J0(k⊥x⊥). (2.15)

In the far-field, where x⊥ · k⊥ � 1, the Bessel function can be approximated using the

asymptotic expansion J0(k⊥x⊥) ' (2/πk⊥x⊥)1/2 cos(ık⊥x⊥− ıπ/4) and the electric field

becomes

E(x, ω) =
2eN

ω
√

2πx⊥

[

eıπ/4

∫ ∞

−∞

dk⊥G(k⊥)e

“
ı
√

k2−k2

⊥
z+ık⊥x⊥

”

+e−ıπ/4

∫ ∞

−∞

dk⊥G(k⊥)e

“
ı
√

k2−k2

⊥
z−ık⊥x⊥/R

”]

e⊥, (2.16)

with G(k⊥) = H(k⊥)
√

k⊥ sec θ 〈EDF 〉, where H(k⊥) is the Heaviside function [i.e.,

H(x) = 1 for x ≥ 1 and zero for x < 0].

Since the imaginary part of the exponent in the first integral of Eq. (2.16) has a
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maximum value at k∗
⊥

= kx⊥/R, the method of stationary phase (Mandel & Wolf,

1995) can be applied. This method approximates the integral by evaluating the integrand

around k⊥ = k∗
⊥

(such that k∗
⊥

/k = sin θ = x⊥/R). Since the imaginary part of the

exponent in the second integral of Eq. (2.16) peaks at k∗
⊥

= −kx⊥/R, the contribution

of this integral can be neglected. Applying the method of stationary phase, the integral

in Eq. (2.16) can be evaluated in the far-field limit (kR � 1), and has the solution

E(x, ω) = −2eN

cR
〈E(θ, u)D(ω, u, θ, ρ)F (ω, u, θ)〉 eıkRe⊥. (2.17)

The temporal electric field for any given electron momentum distribution in the far-field

is given by the inverse Fourier-transform integral

E(x, t) = −eN

πR
e⊥

∫

dk 〈E(θ, u)D(k, u, θ, ρ)F (k, u, θ)〉 e−ık(ct−R), (2.18)

where k = ω/c. For a Gaussian form factor F = FG = exp [−(ωσz/v)2/2],

(−σzR

eN

)

E(x, τ) = e⊥

2

π

〈

βE(θ, u)

∫ ∞

0

dη cos (ητ)D(ην, u sin θ) exp (−η2/2)

〉

, (2.19)

with the normalizations ν = βρ/(uσz), τ = β(ct−R)/σz and η = kσz/β. The parameter

ν can be interpreted as the ratio of the long wavelength cut-off in the spectrum due to

diffraction (∼ βρ/u) to the short wavelength cut-off due to coherence effects (∼ σz).

3. Radiation Temporal Waveforms

In this section, Eq. (2.18) is examined to determine the resulting temporal waveforms

in various parameter regimes. In particular the dependence of the temporal shape on the

normalized momentum u, observation angle θ, transverse dielectric size ρ, and longitu-

dinal electron beam momentum distribution are discussed.
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3.1. Infinite transverse boundary

The simplest parameter regime is the case of a single electron (N=1) passing a boundary

with infinite extent (ρ →∞ such that D = 1). Since there are no bunch effects considered

(σz = 0), the form factor reduces to F = 1. With F = 1 and D = 1, it can be shown

that Eq. (2.18) yields

E(x, t) = − 2e

cR

(

u
√

1 + u2 sin θ

1 + u2 sin2 θ

)

δ(t−R/c)e⊥. (3.1)

Although the spectrum of this delta function solution contains all frequencies, any phys-

ical system will have a long wavelength cut-off due to the physical dimensions of the

system, and, for sufficiently high frequency radiation, the assumption of a perfectly con-

ducting dielectric will no longer be valid, providing a short wavelength cut-off.

The above single-electron case can be extended to consider an electron bunch of finite

duration. For the case of a Gaussian charge distribution FG crossing a dielectric with an

infinite transverse boundary (ρ → ∞ such that D = 1) the expression for the electric

field is

(−σzR

eN

)

E(τ) =

√

2

π

〈

β

(

u
√

1 + u2 sin θ

1 + u2 sin2 θ

)

exp
(

−τ2/2
)

〉

e⊥, (3.2)

with τ = β(ct − R)/σz. In this case, the form-factor FG introduces a high frequency

cut-off.

It is interesting to note that Eqs. (3.1) and (3.2) are sub-cycle pulses and are therefore

unphysical. One consequence is the violation of the Lawson-Woodward-Palmer Theorem

(Lawson, 1979; Palmer, 1980), which states that any electromagnetic pulse in vacuum

must satisfy
∫∞

−∞
E(x, t)dt = 0. These unphysical waveforms are the result of the un-

bounded transverse extent of the dielectric (ρ →∞). This absence of a long wavelength

cut-off allows a DC-component in the spectrum. As shown below, for finite ρ (i.e., D 6= 1

and diffraction effects are included), the temporal waveform becomes single-cycle with
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∫

∞

−∞
E(x, t)dt = 0. Although the spectrum of Eq. (3.2) has a DC-component, in the large

transverse boundary limit b � 1, Eq. (3.2) well approximates the transition radiation

[with an error of order ∼ exp(−b)].

3.2. Finite transverse boundary and ultra-relativistic beam

In the limit b = kρ/u � 1 (e.g., an ultra-relativistic electron beam with u � 1), the

diffraction function D can be approximated as D ' (2 + u2 sin2 θ)b2/4. In this limit

(b � 1), integrating Eq. (2.18) yields

(−σzR

eN

)

E(τ) =

〈

β√
8π

(

u
√

1 + u2 sin θ

1 + u2 sin2 θ

)

(

2 + u2 sin2 θ
)

ν2(1− τ2) exp
(

−τ2/2
)

〉

e⊥,

(3.3)

where a Gaussian bunch distribution (FG) is assumed. As can been seen from Eq. (3.3),

for a mono-energetic beam, the length of the waveform (i.e. the rms radiation pulse

length) is not a function of ρ in this limit. Equation (3.3) predicts a single-cycle pulse

and satisfies
∫∞

−∞
E(x, t)dt = 0.

3.3. Waveform for mono-energetic electron beams

In this section, the general solution to Eq. (2.18) for the electric field of a mono-energetic

electron beam is examined numerically. Figures 1(a) and 1(b) show the electric field in

both the time domain and frequency domain, respectively, for the parameters u = 10 and

θ = 0.1 rad. Here the parameter ν = βρ/(uσz) is varied, while u sin θ is kept constant.

The solid curve represents ν = 1.2 (ρ/σz = 12), the dashed curve ν = 0.4 (ρ/σz = 4), and

the dotted curve ν = 0.1 (ρ/σz = 1). One can calculate the normalized rms pulse length

(στ = βcσt/σz, where σt is the radiation pulse duration) and the normalized frequency

bandwidth (σ bf = σzσf /c, where σf is the spectral bandwidth). For the radiation pulses

shown in Figure 1, στ =2.59, 1.75, and 1.24, and σ bf =0.122, 0.146, and 0.213, for the

solid, dashed, and dotted curves, respectively. As the ratio ρ/σz decreases, low frequency
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components in the spectrum are reduced and the spectral distribution changes its shape,

resulting in an increase of spectral bandwidth. Therefore, one can observe a reduced

normalized pulse length for smaller ρ/σz.

Figure 2 shows the electric field in time and frequency domains for the parameters

ν = 3 and u = 10. Here the parameters ν and u are fixed, while the observation angle

θ is varied. The solid curve represents θ = 0.04, the dashed curve θ = 0.2, and the

dotted curve θ = 0.3. Since the angular distribution has a maximum at a specific angle

θmax, one can see a lower electric field for both the θ = 0.04 as well as the θ = 0.3

case. For a relativistic electron bunch passing through an infinite boundary, this specific

angle is given by θmax ' 1/u, but for finite boundaries this angle is also a function

of boundary size. The root-mean square for the normalized pulse length (στ ) and the

normalized frequency bandwidth (σ bf ) for the pulses shown in Figure 2 are στ =1.45,

2.01, and 2.46, and σ bf =0.175, 0.134, and 0.123, for the solid, dashed, and dotted curves,

respectively. For larger observation angles, diffraction effects decrease the width of the

spectral distribution and the pulse length increases.

One can see in Fig. 3 the effects of a variation in the mono-energetic beam momentum.

The curves represent fixed parameters σz, ρ, and θ (and therefore νu sin θ is constant),

but with ν and u sin θ varying: (ν, u sin θ)=(3, 2) for the solid curve, (6, 1) for the dashed

curve, and (12, 0.5) for the dotted curve. For sin θ=0.1, the three cases refer to u=30 for

the solid curve, u=10 for the dashed curve, and u=5 for the dotted curve. The normalized

rms pulse length (στ ) and the normalized frequency bandwidth (σ bf ) are calculated for

each case, yielding στ =2.09, 2.00, and 2.21, and σ bf=0.132, 0.134, and 0.126, for the

solid, dashed, and dotted curves, respectively. For each choice of the ratio ρ/σz, there is

specific umax for which the spectral bandwidth is maximized, resulting in the shortest

pulse. For the parameters of Fig. 3, this value is found to be umax '15. Therefore, for
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both the u=5 and the u=30 case, a small increase in pulse length is observed compared

to the more optimized u=10 case.

3.4. Waveform for various momentum distributions

To demonstrate the effect of electron momentum distribution on the electric field wave-

form, three distributions are considered in this section. Figure 4 displays the waveforms

for a Boltzmann momentum distribution, g(u) = (1/utemp) exp (−u/utemp) with temper-

ature utemp=10 (solid curve), a Gaussian momentum distribution, g(u) = exp [−(u− umean)
2/u2

rms]/(urms
√

π)

with mean umean=10 and spread urms = 3 (dashed curve), and a mono-energetic momen-

tum distribution, g(u) = δ(u − um) at um = 10 (dotted curve). One can see that the

pulse shape is fairly insensitive to the type of momentum distribution. Furthermore, the

amplitude of the electric field is weakly influenced by the various momentum distribu-

tions.

4. Summary and Discussion

In this paper, the theoretical understanding of diffraction-limited coherent transition

radiation (DLTR) has been extended to the time-domain. For arbitrary charge and longi-

tudinal momentum distributions of the electron bunch the spatiotemporal electric field is

calculated. The model considers electrons that are incident normal to a sharp (step func-

tion) metal-vacuum boundary with finite transverse dimension. The form-factor F of the

electron bunch, which is equivalent to the Fourier transform of the charge distribution,

and the diffraction function D, determine the spectrum of the electric field. Coherence

effects (F ) determine the high frequency cut-off, while diffraction effects (D) determine

the low frequency cut-off. For a Gaussian charge distribution, characterized by the rms

length σz , the coherent electric field in the temporal domain is a single-cycle structure.

The pulse shape solely depends on the parameters ν = βρ/(σzu) and u sin θ, while the
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amplitude of the radiation is a function of ρ/σz, u, and θ. Analysis shows that, for a given

mono-energetic momentum distribution, the shortest normalized waveforms are realized

at small angles of observation and small values for ρ/σz. The total radiated energy is

maximized for a large ratio ρ/σz and a beam with high mean longitudinal momentum.

Recent experiments on DLTR from laser-wakefield accelerated electron beams (Lee-

mans et al., 2003), indicate that a typical bunch contains N = 1010 electrons (1.6 nC),

with a mean momentum u = 10 and a bunch length of σz=10 µm. Since the boundary

size is on the order of 500 µm (ν ' 5,) the peak electric field, observed at an angle of

θ=0.1 and R=15 cm from the source, is found to be on the order of 30 kV/cm. Calcu-

lation of the root-mean square σt of the waveform yields σt=63 fs. Future experimental

research on this laser-plasma driven radiation source is planned.
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Figure 1. Normalized electric field in time-domain (a) and frequency domain (b) for the

parameters u=10, θ=0.1, and ρ/σz = 12 (solid curve), 4 (dashed curve), and 1 (dotted curve).
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Figure 2. Normalized electric field in time-domain (a) and frequency domain (b) for the pa-

rameters ν = βρ/(uσz)=3, u=10, and θ = 0.04 (solid curve), 0.2 (dashed curve), and 0.3 (dotted

curve).
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Figure 3. Normalized electric field in time-domain (a) and frequency domain (b) for fixed

νu sin θ = (βρ sin θ)/σz with u = 30 (solid curve), 10 (dashed curve), and 5 (dotted curve).
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Figure 4. Normalized electric field in time-domain (a) and frequency domain (b) for the pa-

rameters ν = βρ/(uσz) = 6 and u sin θ = 1. The solid line represents a Boltzmann distribution

with utemp=10, the dashed line a Gaussian momentum distribution centered at umean =10 and

urms=3 and the dotted line represents a mono-energetic bunch at u=10.


