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1 Introduction

In this paper, we present a numerical method for solving the equations de-
scribing incompressible viscoelastic fluids such as dilute polymer solutions

ρ
∂u

∂t
+ ρ(u · ∇)u=−∇p+ µs∆u+∇ · τ (1)

∇ · u=0. (2)

Here, µs is the solvent viscosity, and the non-Newtonian contribution of the
stress is given by the Oldroyd-B model

τ + λ
∇
τ = 2µpD (3)

where
∇
τ is the upper-convected Maxwell (UCM) derivative (see Eq. 24 below).

If µs vanishes, then this system is often referred to as the Maxwell model. We
choose the Oldroyd-B model as it is sufficiently well-understood to serve as a
test bed for numerical methods.

Our approach is based on the method of Bell, Colella and Glaz (BCG) [3],
a second-order accurate version of Chorin’s projection method [5]. We use a
continuous splitting of the relaxation terms so that, in the limit of vanishing
λ, we recover a BCG-type algorithm for a Newtonian fluid with an augmented
viscosity. In particular, the time step is controlled only by the advective CFL
number in that limit. In the elastic limit λ → ∞, µp/λ finite, we obtain
a method whose time step is controlled only by the CFL condition for the
elastic shear waves. Kupferman employed a BCG-type projection method with
staggered centering to study stability of viscoelastic fluids in Taylor-Couette
flow [14]. Our method differs from the one presented there in that (1) in
general, we consider high We flows in the presence of geometric singularities;
(2) our method uses a much less restrictive time step in the viscous limit; and
(3) we use fixed cell centering which is more amenable to the approaches taken
in [2] for adaptive mesh refinement and [10] for embedded boundaries.

Numerical simulation of viscoelastic flow in contraction channels (Figure 1) is
a problem that has been given much attention over the past 30 years because
of its importance to polymer processing [7,6]. Much has been published on
the inability to compute strongly-elastic, “high Weissenberg number” flows –
ones for which the ratio of the elastic relaxation time scale to the advective
time scale is large – particularly in the presence of geometric singularities
such as re-entrant corners. These limits have been observed primarily in the
context of numerical simulations of steady flows. Keunings [13] used a finite-
element method to compute steady 2D flows of Maxwell fluids through 4:1
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planar sudden contractions. The observed critical values of We were less than
one (0.112 to 0.873, depending on the mesh). Lipscomb et al. [17] repeated
the Keunings calculations with the single change – the relaxation time was
set to zero in the re-entrant corner element to control the stress singularity
– increasing the critical We from 0.1 to 0.6 with no noticeable difference
in flow outside of the corner element. Many attempts followed, of which a
detailed literature review is given by Phillips and Williams [19] who used a
semi-Lagrangian finite volume method to observe steady-state solutions for
both creeping and inertial flows in planar contractions, obtaining results up
to We = 2.5. They also clarify definitions of Weissenberg and Deborah (De)
numbers, useful for comparing high We to previous studies in high De as in
[18]. Xue, Phan-Thien and Tanner [26] presented a finite volume method for
both 2D and 3D problems and observed a critical value ofWe = 4.4. Recently,
Aboubacar et al. [1] employed a hybrid finite volume/finite element scheme for
Oldroyd-B creeping flows in rounded and abrupt contractions, and observed
a critical value of We = 4.6.

The high Weissenberg number problem is actually a frustratingly low Weis-
senberg number problem for steady flows beyond which stable and convergent
calculations have not been achievable. There appears to be no analytic ex-
pression for the limiting value of the Weissenberg number, and considerable
indication that the critical value depends on the mesh resolution. One of the
principal conclusions of this paper is that the difficulties that have been ob-
served in the prior work may be an artifact of using steady-state or implicit
methods, rather than an appropriately-designed unsteady flow method that
can resolve the hyperbolic wave behavior of the problem. This is consistent
with the point of view taken in [25,12], in which the elastic Mach number
– the ratio of the fluid velocity to the elastic wave velocity – is identified
as the critical parameter in understanding viscoelastic flows. In particular,
we find that our method is stable and accurate for any value of the Weis-
senberg number, provided that the elastic Mach number is less than one. This
restriction on the elastic Mach number may be a consequence of the use of
a Lax-Wendroff discretization for the hyperbolic terms, rather than a well-
designed upwind method suitable for use in situations when discontinuities
might spontaneously appear. We will explore this possibility in future work.

A preliminary version of these results appears in [23].

2 Analysis of PDEs

If we define the Cauchy stress by splitting the extra stress into a solvent and
polymer parts
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T = −pI+ 2µsD+ τ , (4)

then we can write the equations of motion as

ρ
∂u

∂t
+ ρ(u · ∇)u+∇p=µs∆u+∇ · τ (5)

∇ · u=0 (6)

∂τ

∂t
+ (u · ∇)τ −∇u · τ − τ · ∇uT =

1

λ
[µp(∇u+∇uT )− τ ] (7)

with u = (u, v, w) the solution velocity, τ the polymer stress, λ the relaxation
time, µs the dynamic viscosity of the solvent, µp the dynamic viscosity of the
polymer, and ρ the density of the aqueous solution (approximately that of
water). We also define two useful dimensionless measures relating elasticity
to the fluid. The Weissenberg number [4,11,13] is the ratio of the polymer
relaxation time to the advective time scale

We =
λU

L
(8)

where U is the characteristic velocity of the flow, usually the average fluid
velocity in the contracted channel, and L is the characteristic length scale of
the flow, usually half the width of the small channel in contraction flows. The
elastic Mach number [25,12] is the ratio of the advective wavespeed to the
elastic wavespeed

Ma =
U

√

µp/ρλ
. (9)

Continuum mechanics and applied mathematics conventions differ for the
compact notation used in (7). Here we use the convention that (∇u)αβ =
(∂u/∂x)αβ = ∂uα/∂xβ, whence (7) is equivalent to

∂ταβ

∂t
+ uγ

∂ταβ

∂xγ

− ∂uα

∂xγ
τ γβ − ταγ

∂uβ

∂xγ

=
1

λ

[

µp

(

∂uα

∂xβ

+
∂uβ

∂xα

)

− ταβ

]

.(10)

The momentum equation (5) is an advection-diffusion type with a source term
and is well understood in the context of our numerical approach. The stress
equation (7) at first glance is of similar type; however, we note two important
limits that affect the equation type: (i) the viscous limit where λ = 0, and
(ii) the elastic limit where λ → ∞, µp/λ finite. Therefore, we would like to
manipulate (7) into a form which exploits its hyperbolicity for coupling to (5)
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in the context of a BCG-type approach, while at the same time capturing the
viscous and elastic limits in a seemless and stable manner.

Boundary conditions are needed to completely specify the problem. Velocity
boundary conditions are as follows: (1) no-slip, no-flow solid walls, u = 0; (2)
prescribed plug flow at inflow; and (3) no gradients in normal direction at
outflow, ∂u

∂n
= 0.

2.1 Linearized Equations

We begin the system analysis by linearizing the equations in order to cast
them in a hyperbolic form. First, we consider the homogeneous part of (5)
expanded in 1D (direction 1 or x̂)

∂ui
∂t
+ u1 ·

∂ui
∂x1

− 1
ρ

∂τ1i
∂x1

= 0. (11)

Similarly, with the stress equation (7), we expand the homogeneous part in
1D to obtain

∂τ1j
∂t

+ u1
∂τ1j
∂x1

− ∂u1
∂x1

τ1j − τ11
∂uj
∂x1

− µp

λ

∂u1
∂x1

δ1j −
µp

λ

∂uj
∂x1

= 0. (12)

The linearized system of equations is then

∂U

∂t
+A

∂U

∂x1
= 0 (13)

where

U =





















u1
u2
u3
τ11
τ12
τ13





















(14)

and
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A =























u1 0 0 −1
ρ

0 0

0 u1 0 0 −1
ρ

0

0 0 u1 0 0 −1
ρ

−2τ11 − 2µpλ 0 0 u1 0 0
−τ12 −τ11 − µp

λ
0 0 u1 0

−τ13 0 −τ11 − µp
λ

0 0 u1























. (15)

The eigenvalues γ, ζ and eigenvectors ξ,χ can now be obtained for this system.
The transverse modes are doubly degenerate

γ± = u1 ±
√

(µp/λ+ τ11)/ρ, (16)

with eigenvectors

ξ+± =





















0
0
∓1
0
0

√

ρ(µp/λ+ τ11)





















, and ξ−± =





















0
∓1
0
0

√

ρ(µp/λ+ τ11)
0





















. (17)

The longitudinal modes are

ζ± = u1 ±
√

2(µp/λ+ τ11)/ρ (18)

with eigenvectors

χ± =

























∓(µp/λ+ τ11)
√
2

∓τ12
√
2

∓τ13
√
2

2(µp/λ+ τ11)
√

ρ(µp/λ+ τ11)

2τ12
√

ρ(µp/λ+ τ11)

2τ13
√

ρ(µp/λ+ τ11)

























. (19)

However, we note that for incompressible flow, the longitudinal modes cannot
appear, since plane waves of this type would violate the incompressibility
constraint.

According to (16,18) the system is hyperbolic as long as

τ11 > −
µp

λ
. (20)
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2.2 Proof of Hyperbolicity

A proof that the homogeneous PDEs are hyperbolic (see also Rutkevich [21,22],
Crochet [6] and Joseph [11, §1.16]) makes reference to the deformation gradi-
ent

F =
∂x

∂X
(21)

relating a spatial (Eulerian) coordinate system {x} to a material (Lagrangian)
coordinate system {X}. The Jacobian J = det(F) is the ratio of material
specific volume (1/ρ) to specific volume in the material reference frame. Since
J is strictly positive, the inverse of F exists:

g = F−1 (22)

is the inverse deformation gradient. The symmetric tensor ggT is positive
definite.

The velocity gradient may be written in terms of the material derivative ( d
dt
)

of the deformation gradient:

∂uα
∂xβ

=
dFαγ

dt
gγβ. (23)

Using this result, the upper-convected Maxwell derivative of any tensor H,

∇

H ≡ dH

dt
− (∇u)H−H(∇u)T (24)

may be written

g
∇

HgT =
d

dt

(

gHgT
)

. (25)

The stress equation (7) may therefore be written

d

dt
(gτgT ) +

1

λ
gτgT = −µp

λ

d

dt
(ggT ), (26)

with solution
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g

(

τ +
µp

λ
I

)

gT =
µp

λ2

t
∫

−∞

ds e(s−t)/λggT . (27)

Now, since ggT is positive definite, g
(

τ + µp
λ
I
)

gT is also positive definite, and

so too is τ + µp
λ
I. The diagonal elements of a positive definite tensor must be

positive, so τ11 +
µp
λ

> 0, and therefore the homogeneous PDEs (11) and (12)
are hyperbolic.

3 Design of New Algorithm

Now that we have shown the hyperbolic nature of the stress equation (7)
we can exploit this result to design a new algorithm that makes use of the
advantages of a BCG-type projection method while capturing the viscous and
elastic limits of the stress equation. We begin by using the previous linear
analysis to cast the stress equation (7) in a relatively simple form in terms of
the inverse deformation gradient g:

d

dt
(gτgT ) = −1

λ

[

(gτgT ) + µp
d

dt
(ggT )

]

. (28)

Integrating (28) from tn to tn+1 = tn +∆t, using Duhamel’s formula and the
mean value theorem, we obtain

(gτgT )n+1 = (gτgT )ne−
∆t
λ −

∆t
∫

0

e−
(∆t−s)

λ
µp

λ

d

dt
(ggT )ds (29)

= (gτgT )ne−
∆t
λ + 2µp(gDgT )

[

1− e−∆t/λ
]

(30)

with

d

dt
(ggT ) = 2gDgT (31)

where D = 1
2
[(∇u)+(∇u)T ] and the overbar denotes the mean value theorem

average from 0 to ∆t.

We then recognize the two important limits for our algorithm design. First as
the relaxation time approaches zero, λ → 0, the polymer stress equilibrates
instantly with the polymer viscous stress:

τ = µp(∇u+∇uT ) (λ→ 0). (32)
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In this equilibrium limit, (30) becomes

(gτgT )n+1 = 2µpgDgT (λ→ 0). (33)

Second, as the relaxation time increases without bound, the polymer stress
equation becomes

∂τ

∂t
+ u · ∇τ − (∇u)τ − τ (∇u)T =

µp

λ
(∇u+∇uT ) (λ→∞) (34)

(Here we require that µp/λ approaches a definite nonzero limit.) In this fully
decoupled limit the integral expression (30) becomes

(gτgT )n+1 = (gτgT )n − µp

λ

[

(ggT )n+1 − (ggT )n
]

(λ→∞). (35)

In order to assure recovery of these limits in a discretization of (28), we intro-
duce a factor C(λ) with the following properties:

lim
λ→0

C(λ)=O(λ) (36)

lim
λ→∞

C(λ)= 1. (37)

For example,

C(λ) = 1− e−Kλ/tadv , (38)

where K is a positive constant, e.g., K = 1 or K = σ, and σ < 1 is the CFL
number. Also, we note use of the parameter, tadv, instead of ∆t. This advective
time scale on a discrete grid is obtained by applying the advective limit, and,
thus, it is defined as the ratio of discrete grid spacing to the maximum fluid
velocity,

tadv = ∆x/max
i,j,k

|u| (39)

where ∆x corresponds to the grid spacing in the direction of maximum u,
at the maximum velocity’s discrete cell center (i, j, k). By choosing tadv to be
independent of ∆t, a stable ∆t can be constructed explicitly from the CFL
condition in our discretization. We will also show that this choice of time scale
obeys the design limits of the algorithm (48,47).

We may use C(λ) to isolate the limiting parts of (30), and rearrange to give
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(gτgT )n+1 − (gτgT )n

∆t
=− (gτgT )n

[

1− e−∆t/λ
]

∆t

+2µp(gDgT )

[

1− e−∆t/λ
]

∆t
[1− C(λ)]

+ 2
µp

λ
(gDgT )C(λ)λ

[

1− e−∆t/λ
]

∆t
. (40)

This discretization of (30) recovers the desired limits. As λ→ 0,

(gτgT )n+1 − (gτgT )n

∆t
= −(gτgT )n

1

∆t
+ 2µp(gDgT )

1

∆t
(41)

and as λ→∞ (with λ(1− e−∆t/λ)→ ∆t)

(gτgT )n+1 − (gτgT )n

∆t
= 2

µp

λ
(gDgT ) =

λ→∞
− µp

λ

(ggT )n+1 − (ggT )n

∆t
. (42)

Let us associate the part surviving λ→∞ with an explicit hyperbolic scheme
having the form

∂

∂t
(gτgT )− 2a2(gDgT ) = ... (43)

This choice is motivated by the fact that in the fully uncoupled limit (34)
may be written as a conservation law accurately modeled with higher-order
advection schemes:

d

dt
g(τ +

µp

λ
I)gT = 0. (44)

By comparing (43) with (40) we define a wavespeed

a2=α(λ)a2∞ + [1− α(λ)]a20 (45)

α(λ)=
λ

∆t
C(λ)

[

1− e−∆t/λ
]

(46)

a2∞= lim
λ→∞

a2 =
µp

λ
(47)

while retaining some elastic freedom in recovering the viscous limit

a20= lim
λ→0

a2 = ητ . (48)

We define τ as the absolute value of the global minimum of the normal stresses,
τ = |minβ τββ|, and η is a positive control parameter usually equal to 1.
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Also, the remainder, or right-hand side, from comparing (43) with (40) con-
tains a proper source term and gradient viscous terms

−1
λ

[

(gτgT )− 2µp(gDgT )
]

− 2a2(gDgT ). (49)

All together, the stress equation (7) becomes

∂τ

∂t
+ u · ∇τ − (∇u)τ − τ (∇u)T − a2

[

(∇u) + (∇uT )
]

=

−1
λ
τ +

[

µp

λ
− a2

]

[

(∇u) + (∇u)T
]

. (50)

From here, our approach is to discretize (50) using an unsplit Lax-Wendroff
method which is appropriate for the hyperbolic left-hand side; and an implicit
discretization of the right-hand side to recover the viscous limit as λ→ 0.

4 Discretization Method

We discretize the equations of motion (5), (6) and (50) using a high-resolution
finite difference method to evolve velocity, pressure and stress in time. Time
is represented in discrete time steps as t = (n + 1)∆t, n = 0, 1, 2, .... At
the beginning of each time step we know cell-centered grid representations of
velocity, pressure and stress: un

i,j,k, ∇pni,j,k, τ
n
i,j,k.

4.1 Velocity Discretization

We summarize the velocity discretization following ideas in [3]. The projection
operator is used to advance the velocity in time while enforcing incompress-
ibility

un+1=u∗ − (I−P)(u∗) (51)

∇pn+
1
2 =∇pn−

1
2 +

ρ

∆t
(I−P)(u∗) (52)

where Q = GL−1D, P = I − Q, L = DG and D and G are numerical
divergence and gradient operators, respectively.

To predict the intermediate velocity, u∗, we first construct edge-centered ve-
locities using a Lax-Wendroff (LW) discretization of the PDE, omitting the
pressure gradient (for now)
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ũ
i+
1
2
,j,k
= 1
2
(un

i,j,k + un
i+1,j,k) +

∆t

2

(

−(u · ∇)u+ µs

ρ
∆u+

1

ρ
∇ · τ

)n

i+
1
2
,j,k

(53)

A projection is then applied to the edge-centered velocities to correct for the
omitted pressure term in the previous step

u
n+
1
2

i+
1
2
,j,k
= ũ

i+
1
2
,j,k
−∇(∆−1(∇ · ũ))

i+
1
2
,j,k

. (54)

In this predictor step we use inviscid, no-flow boundary conditions, or u · n̂ = 0
at solid walls, ∂u

∂n̂
= 0 at outflow, prescribed velocity at inflow and extrapola-

tion on tranverse components.

We obtain u∗ using the midpoint rule for temporal integration

u∗=un +∆t

(

−[(u · ∇)u]n+
1
2 − 1

ρ
∇pn−

1
2 +

µs

ρ
∆u∗ +

1

ρ
(∇ · τ )n+

1
2

)

(55)

where the viscous stresses are calculated using the backward Euler method
and the half time advective term is calculated using the edge velocities in
(54). We note that u∗ is not divergence-free by O(∆t2) because of a lagged
pressure gradient.

The equation used to predict the solution to the viscous problem has the
following form:

Lνu
∗=un +∆t(−(u · ∇)un+

1
2 − 1

ρ
∇pn−

1
2 +

1

ρ

(

µs +
(µp − λa2)∆t

2λ+∆t

)

∆un

+
1

ρ

2λ

2λ+∆t
(∇ · τ̃ )) (56)

where

Lν = I− ∆t

ρ

(

µs +
(µp − λa2)∆t

2λ+∆t

)

∆. (57)

The boundary conditions for the viscous problem are u · n̂ = 0 at solid walls,
∂u
∂n̂
= 0 at outflow and prescribed velocity at inflow, which is implemented

using residual correction.

A final projection operator is applied to the predicted velocity, u∗, enforcing
the incompressibility constraint on the velocity and updating the pressure
gradient:
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un+1=u∗ −∇(∆−1(∇ · u∗)) (58)

∇pn+
1
2 =∇pn−

1
2 +

ρ

∆t
∇(∆−1(∇ · u∗)). (59)

Projection boundary conditions are u · n̂ = 0, ∂p
∂n̂
= 0 at solid walls, ∂u

∂n̂
= 0,

p = 0 at outflow and prescribed velocity with ∂p
∂n̂
= 0 at inflow. Also, the final

projection yields a divergence-free velocity field which contains unphysical
checkerboard modes due to centered differencing. We use a simple, single-step
filter to eliminate these modes [15,20,8].

4.2 Stress Discretization

The stress discretization follows a similar algorithm as in [23]. First, we con-
struct a Lax-Wendroff stress using only the elastic (hyperbolic) terms:

τ̃
i+
1
2
,j,k
=
1

2
(τ n

i,j,k + τ
n
i+1,j,k) +

∆t

2

(

−(u · ∇)τ +∇u · (τ + a2I) + (τ + a2I) · ∇uT
)n

i+
1
2
,j,k

.(60)

We then predict a half time stress for the viscous problem, again, using the
backward Euler method for viscous stresses

τ
n+
1
2

i+
1
2
,j,k
= τ̃

i+
1
2
,j,k
− ∆t

2

(

1

λ
τ
n+
1
2

i+
1
2
,j,k
− 2

(

µp

λ
− a2

)

D(u∗)

)

(61)

=
2

2λ+∆t

(

λτ̃
i+
1
2
,j,k
+∆t(µp − λa2)D(u∗)

)

. (62)

The stress is updated to the new time as follows:

τ n+1= τ n +∆t
(

−(u · ∇)τ +∇u · (τ + a2I) + (τ + a2I) · ∇uT
)n+

1
2

−∆t

λ
(τ n+1 − 2(µp − a2λ)D(un+1)) (63)

=
λ

λ+∆t

(

τ n +∆t
[{

−[(u · ∇)τ ] + (∇u · (τ + a2I)) +

((τ + a2I) · ∇uT )
}n+

1
2 + 2(

µp

λ
− a2)D(un+1)

])

. (64)

Stress boundary conditions are implemented numerically using a zeroth-order
extrapolation. For the normal components of the stress this condition is jus-
tified by the characteristic analysis in section 2.1 plus the assumption that
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a uniform elastic stress distribution will, by itself, generate no waves. The
tangential components on boundary edges are not used.

4.3 Stability

We have applied von Neumann stability analysis to the Lax-Wendroff method
in general. In 2D we consider the scalar advection equation

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= 0 (65)

on a periodic domain with given initial conditions [9]. A sufficient condition
for the method to be stable in the long wavelength limit is

σ2xn
4
x + σ2yn

4
x > (σxnx + σynx)

4 (66)

where σx =
a∆t
∆x
, σy =

b∆t
∆y
and (nx, ny) are components of the unit normal

for the orthonormal basis formed by the complex exponentials on the given
interval. This sufficiency condition yields a CFL number of |σx|, |σy| < 1

4
. In

3D, we obtain a slightly more restrictive CFL of |σx|, |σy|, |σz| < 1
9
.

For our method a stable time step is obtained from the following advective
CFL condition (σ < 1

9
):

max
i,j,k
[|ui,j,k|+ (2(τxx + a2)/ρ)

1
2 ]∆t < σ∆x (67)

max
i,j,k
[|vi,j,k|+ (2(τyy + a2)/ρ)

1
2 ]∆t < σ∆y (68)

max
i,j,k
[|wi,j,k|+ (2(τzz + a2)/ρ)

1
2 ]∆t < σ∆z. (69)

4.4 Viscoelastic Limits of Algorithm

The viscous limit of our method, λ = 0 =⇒ a2 = 0, reveals the stress of a
Newtonian fluid with augmented viscosity due to the polymer:

τ
n+
1
2

i+
1
2
,j,k
=2µpD(u

∗) (70)

τ n+1=2µpD(u
n+1) (71)
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Lν = I− (µs + µp)∆t

ρ
∆. (72)

The elastic limit of the method, λ → ∞, µp/λ finite =⇒ a2 → µp/λ, demon-
strates the hyperbolic nature, with finite, non-zero wavespeed, which the stress
discretization assumes in this limit, with no viscous contribution by the poly-
mer:

τ
n+
1
2

i+
1
2
,j,k
= τ̃

i+
1
2
,j,k

(73)

=
1

2
(τ n

i,j,k + τ
n
i+1,j,k)

+
∆t

2

(

−(u · ∇)τ +∇u · (τ + µp

λ
I) + (τ +

µp

λ
I) · ∇uT

)n

i+
1
2
,j,k
(74)

τ n+1= τ n +∆t
(

−(u · ∇)τ +∇u · (τ + µp

λ
I) + (τ +

µp

λ
I) · ∇uT

)n+
1
2

(75)

Lν = I− µs∆t

ρ
∆. (76)

For Maxwell fluids where µs = 0 we note that no-slip boundary conditions are
not imposed because the viscous terms vanish.

5 Results

We apply the method to unsteady flow of Oldroyd-B and Maxwell fluids in
abrupt planar contraction channels (Figure 1). First, we simulate the Oldroyd-
B fluid without viscosity (µs = 0) in sudden contraction channels to demon-
strate stable and convergent calculation of the flow of an unsteady Maxwell
fluid, which allows finite elastic wave propagation. We then add viscosity to
the Maxwell fluid (Oldroyd-B) and demonstrate stable and convergent simula-
tions of highWe in abrupt contractions for unsteady flow with hybrid viscous
and elastic behavior. The method is valid for both 2D and 3D flows, though
only 2D results are shown here for simplicity in demonstrating the robustness
of the algorithm. For 3D results we refer to our previous work in [23]. We
also present results for the viscous limit of an Oldroyd-B fluid in abrupt con-
traction channels. We characterize our results with the elastic Mach number
and Weissenberg number where the characteristic velocity, U , is the average
velocity in the contraction channel, or the average inflow velocity times the
contraction ratio. We demonstrate accuracy of the method for each case. For
viscous flows convergence results are obtained away from the inlet of the chan-
nel in order to isolate the re-entrant corner and to omit known singularities
at the inlet due to prescribed constant velocity boundary conditions.
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5.1 Flow of a Maxwell Fluid

The example which best demonstrates the robustness of our method is the
unsteady flow of a Maxwell fluid. Again, the Maxwell fluid is the Oldroyd-B
fluid with µs = 0; also, propagation of waves with finite elastic wave speeds
is allowed. We show results for flow of a Maxwell fluid in both 2:1 and 4:1
contractions. Figures 2 and 3 are time sequences of velocity that demonstrate
convergence for We = 205.6, Ma = .31 in a 2:1 contraction and We = 822.4,
Ma = .62 in a 4:1 contraction, respectively. Figures 4 and 5 show the difference
between pressures for the viscous and elastic limits, clearly demonstrating the
wave behavior in the Maxwell fluid. In Tables I and II we show convergence
results for the Maxwell fluid at very long time: Ma = 0.3, We = 205.6 in 2:1
contraction; Ma = 0.6, We = 822.4 in 4:1 contraction. The solution shows
second-order convergence in L1 and L2 norms and only first-order convergence
in L∞ norm. We attribute the slight drop off in convergence in the L∞ norm
to the geometric singularity and wave interactions. We note again that the
no-slip boundary condition is not imposed because of the vanishing viscous
terms in these flows.

We make several observations from the flow data in the Maxwell fluid case.
First, we note that elastic wave behavior is captured in these results using
the same algorithm and same stability condition as the results generated for
the more viscous fluids seen in later sections. Second, these results are valid
for very long time without violating hyperbolicity and while maintaining sta-
bility and convergence, even though there is a build up of stress at corners.
Third, results for the Maxwell fluid are not limited by We, but only subject
to subcritical elastic Mach number which requires µp/λ to be finite for well-
posedness in the elastic limit, or µp/λ > ρU 2. Finally, we have not physically
validated the computed behavior, though the solution does clearly converge
and is not a numerical artifact.

5.2 Elastic Flow of an Oldroyd-B Fluid

We have also applied the method to elastic flows of Oldroyd-B fluids in planar
contractions to demonstrate mixed viscous and elastic effects. For regimes
where the solvent viscosity is large enough we note not much difference in
the solution from viscous limit examples. However, for hybrid flows, where the
elastic waves interact with viscous forces we find that there is definite unsteady
behavior. Time sequences of velocity in 2:1 (Ma = 0.06, We = 8) and 4:1
contractions (Ma = 0.12,We = 32) are shown in Figures 6 and 7, respectively,
demonstrating that the flow is viscous, though not a classic parabolic velocity
profile due to the effect of elastic shear waves. More experimentation is needed
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to quantify the extent of this behavior and to determine the critical values of
We at which the transition to hybrid, unsteady behavior occurs [16]. In Tables
III and IV we show convergence rates for the Oldroyd-B fluid at early times.
In Tables V, VI and VII we show convergence rates for the Oldroyd-B fluid at
late times. The solution does not show second-order convergence, as expected,
due to the use of backward Euler for viscous stresses, but it is better than
first-order because the flow is not purely viscous. We attribute the drop off in
convergence in the L∞ norm to the presence of the viscous effects interacting
with elastic waves near the corner singularity. We also note the drop off in the
L∞ norm at the late times, seen in Table VII and the last frames of Figure 7
for the 4:1 contraction.

5.3 Viscous Limit of Oldroyd-B

We demonstrate convergence of velocity in the viscous limit (We = 0) of
an Oldroyd-B fluid for both 2:1 and 4:1 contractions in Figure 8. We note
singularities at both inflow (due to constant velocity boundary condition)
and re-entrant corners. We show convergence rates for this data in Tables
VIII and IX. The convergence rates are first-order, as expected, due to the
use of backward Euler for viscous stresses. In the L∞ norm the results are
O(h

1
2 ) due to the presence of geometric singularities at re-entrant corners. We

also note the restriction on the time step in the viscous limit. The maximum
advective velocity for these flows is approximately 0.05 while the wavespeed
which uses a2 is about 1.5, demonstrating the slight restriction on time step
in our method, about a factor of 30. However, if the elastic wavespeed is used
to determine the time step in this viscous case as in [14], then the restriction
is much greater, or a factor of 106.

6 Conclusions

We demonstrate a stable and convergent numerical method for viscoelastic
flow in abrupt contraction channels. The method is different from prior steady-
state or implicit methods in that it is an appropriately designed unsteady
flow method which can capture wave motion in strongly elastic flows for any
value of the Weissenberg number and is only restricted by subcritical elastic
Mach number. The method requires a single CFL condition for the range
of elastic flows, from the viscous limit to the elastic limit. This is achieved
through a variation of the BCG method which obeys the desired viscous and
elastic limits of the equations of motion. For Maxwell fluids we demonstrate
unsteady results for arbitrarily high We and Ma < 1 where elastic shear
waves propagate in an incompressible fluid and are captured by the method

17



in a stable and convergent manner. The method has also been shown to be
stable and convergent for unsteady high Weissenberg number flows of Oldroyd-
B fluids in abrupt contractions. More experimentation is needed to quantify
the extent of the behavior (vortex enhancement, for example) in these flows.
The method also calculates the viscous limit of the Oldroyd-B equation, with
a time step restricted only slightly more than that governed by the advective
velocity alone. The method compares very well to known exact solutions and
preliminary data from experimental flows in microfluidic devices [23].

In the future we will modify the scheme in several ways. To improve the accu-
racy of viscous flows to second-order, we will implement the implicit Runge-
Kutta scheme of Twizell, Gumel and Arigu in [24] for the viscous stresses as
it is known to be stable in the presence of boundaries, unlike Crank-Nicolson
[10]. We will also take advantage of the ability to cast the PDEs (5) and (7) in
a hybrid conservation form which exploits hyperbolicity while maintaining the
viscous and elastic limits. This means we will naturally extend the method to
make use of the higher-order Godunov method of the BCG formulation, allow-
ing us to eliminate the current subcritical Mach number restriction. Higher-
order Godunov methods are more robust than LW for hyperbolic systems;
and the CFL time step is an order of magnitude larger than that of the LW
method used here. Therefore, for certain applications such as particle-laden
flow in microfluidic devices and other complex microscale geometries where
sharp gradients (or even waves) exist it would be advantageous to develop
BCG for viscoelasticity. Finally, though biological flows in the planar geome-
tries of microfluidic devices are the application of interest, a more robust test of
the algorithm would be to simulate vortex enhancement seen in experimental
flows through axisymmetric contractions. In this we would also like to extend
the scheme to other viscoelastic constitutive equations because the Oldroyd-B
model does not provide a realistic description of polymeric fluids, though it
serves well as a test bed for the numerical method. FENE-type equations, for
example, are more physical as they model nonlinear elastic effects in the fluid.
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Fig. 1. 2D illustration of viscous flow in a planar contraction channel with axial
direction z and transverse direction x.
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(a) Transverse velocity, u, -0.021 (blue) to 0.021 (red) cm/sec.

(b) Axial velocity, w, -1.2 (blue) to 3.2 (red) cm/sec.

Fig. 2. Convergence of Maxwell fluid in 2:1 contraction, Ma = 0.3, We = 205.6.
(L) 200 time step increments, h = 1/128; (R) 400 time step increments, h = 1/256.
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(a) Transverse velocity, u, -0.04 (blue) to 0.04 (red) cm/sec.

(b) Axial velocity, w, -2.0 (blue) to 6.6 (red) cm/sec.

Fig. 3. Convergence of Maxwell fluid in 4:1 contraction, Ma = 0.6, We = 822.4.
(L) 200 time step increments, h = 1/128; (R) 400 time step increments, h = 1/256.
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Fig. 4. Pressure in elastic, viscous limits for 2:1 contraction. Normalized to
pelasticmax = 0.03 bar; pviscousmax = 16 bar.
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Fig. 5. Pressure in elastic, viscous limits for 4:1 contraction. Normalized to
pelasticmax = 0.07 bar; pviscousmax = 116 bar.
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(a) Transverse velocity, u, -0.07 (blue) to 0.07 (red) cm/sec.

(b) Axial velocity, w, -0.1 (blue) to 3.5 (red) cm/sec.

Fig. 6. Convergence of Oldroyd-B fluid in 2:1 contraction, Ma = 0.06, We = 8.
(L) 200 time step increments, h = 1/128; (R) 400 time step increments, h = 1/256.
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(a) Transverse velocity, u, -0.12 (blue) to 0.12 (red) cm/sec.

(b) Axial velocity, w, -0.2 (blue) to 6.5 (red) cm/sec.

Fig. 7. Convergence of Oldroyd-B fluid in 4:1 contraction, Ma = 0.13, We = 32.
(L) 200 time step increments, h = 1/128; (R) 400 time step increments, h = 1/256.
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(a) Transverse velocity, u, -0.009 (blue) to 0.009 (red) cm/sec, 2:1.

(b) Transverse velocity, u, -0.02 (blue) to 0.02 (red) cm/sec, 4:1.

(c) Axial velocity, w, -0.007 (blue) to 3.0 (red) cm/sec, 2:1.

(d) Axial velocity, w, -0.02 (blue) to 6.0 (red) cm/sec, 4:1.

Fig. 8. Convergence of viscous limit (We = 0) of Oldroyd-B fluid at 2000 time steps.
(L) h = 1/128; (R) h = 1/256.
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Table I
Error and convergence rates for tranverse (left) and axial (right) velocity of Maxwell
fluid, Ma = 0.3, We = 205.6 in 2:1 contraction channel at 2328 time steps (h =
1/256).

u w

Norm e1/64 Rate e1/128 e1/64 Rate e1/128

L1 5.24× 10−3 1.78 1.54× 10−3 6.66× 10−1 2.16 1.49× 10−1

L2 5.28× 10−3 1.42 1.98× 10−3 4.90× 10−1 1.47 1.77× 10−1

L∞ 1.47× 10−2 0.52 1.03× 10−2 9.65× 10−1 0.52 6.75× 10−1
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Table II
Error and convergence rates for tranverse (left) and axial (right) velocity of Maxwell
fluid, Ma = 0.6, We = 822.4 in 4:1 contraction channel at 2554 time steps (h =
1/256).

u w

Norm e1/64 Rate e1/128 e1/64 Rate e1/128

L1 6.44× 10−3 2.06 1.54× 10−3 5.69× 10−1 2.40 1.08× 10−1

L2 7.19× 10−3 1.56 2.44× 10−3 5.36× 10−1 1.75 1.59× 10−1

L∞ 2.72× 10−2 0.97 1.39× 10−2 1.65 0.84 9.19× 10−1

32



Table III
Error and convergence rates for tranverse (left) and axial (right) velocity of Oldroyd-
B fluid, Ma = 0.06,We = 8 in 2:1 contraction channel at 40 time steps (h = 1/256).

u w

Norm e1/64 Rate e1/128 e1/64 Rate e1/128

L1 2.39× 10−4 1.13 1.09× 10−4 3.89× 10−2 1.39 1.48× 10−2

L2 8.48× 10−4 1.17 3.77× 10−4 4.16× 10−2 1.39 1.59× 10−2

L∞ 1.72× 10−2 0.73 1.04× 10−2 2.01× 10−1 0.81 1.14× 10−1
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Table IV
Error and convergence rates for tranverse (left) and axial (right) velocity of Oldroyd-
B fluid, Ma = 0.12, We = 32 in 4:1 contraction channel at 40 time steps (h =
1/256).

u w

Norm e1/64 Rate e1/128 e1/64 Rate e1/128

L1 4.05× 10−4 1.19 1.78× 10−4 6.28× 10−2 1.40 2.38× 10−2

L2 1.52× 10−3 1.19 6.69× 10−4 8.37× 10−2 1.39 3.20× 10−2

L∞ 3.06× 10−2 0.68 1.91× 10−2 3.71× 10−1 0.78 2.16× 10−1
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Table V
Error and convergence rates for tranverse (left) and axial (right) velocity of Oldroyd-
B fluid, Ma = 0.06, We = 8 in 2:1 contraction channel at 1270 time steps (h =
1/256).

u w

Norm e1/64 Rate e1/128 e1/64 Rate e1/128

L1 3.44× 10−4 1.10 1.61× 10−4 5.66× 10−2 1.47 2.05× 10−2

L2 9.23× 10−4 1.12 4.26× 10−4 5.17× 10−2 1.51 1.82× 10−2

L∞ 1.19× 10−2 0.64 7.63× 10−3 1.55× 10−1 0.84 8.63× 10−2
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Table VI
Error and convergence rates for tranverse (left) and axial (right) velocity of Oldroyd-
B fluid, Ma = 0.12, We = 32 in 4:1 contraction channel at 400 time steps (h =
1/256).

u w

Norm e1/64 Rate e1/128 e1/64 Rate e1/128

L1 4.56× 10−3 1.30 1.85× 10−3 5.26× 10−1 1.32 2.10× 10−1

L2 7.37× 10−3 1.12 3.40× 10−3 6.63× 10−1 1.22 2.84× 10−1

L∞ 4.07× 10−2 0.44 3.01× 10−2 1.63× 10−1 0.63 1.06× 10−1
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Table VII
Error and convergence rates for tranverse (left) and axial (right) velocity of Oldroyd-
B fluid, Ma = 0.12, We = 32 in 4:1 contraction channel at 800 time steps (h =
1/256).

u w

Norm e1/64 Rate e1/128 e1/64 Rate e1/128

L1 5.92× 10−3 0.39 4.53× 10−3 5.46× 10−1 1.00 2.72× 10−1

L2 6.67× 10−3 0.16 5.99× 10−3 7.33× 10−1 1.06 3.50× 10−1

L∞ 2.72× 10−2 0.10 2.53× 10−2 1.70 0.20 1.48
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Table VIII
Error and convergence rates for tranverse (left) and axial (right) velocity of viscous
limit (We = 0) Oldroyd-B fluid in 2:1 contraction channel at 2000 time steps (h =
1/256).

u w

Norm e1/64 Rate e1/128 e1/64 Rate e1/128

L1 5.43× 10−5 1.04 2.64× 10−5 6.40× 10−3 1.18 2.83× 10−3

L2 1.03× 10−4 0.90 5.51× 10−5 9.96× 10−3 0.99 5.00× 10−3

L∞ 1.32× 10−3 1.23 5.62× 10−4 1.17× 10−1 1.28 4.83× 10−2
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Table IX
Error and convergence rates for tranverse (left) and axial (right) velocity of viscous
limit (We = 0) Oldroyd-B fluid in 4:1 contraction channel at 2000 time steps (h =
1/256).

u w

Norm e1/64 Rate e1/128 e1/64 Rate e1/128

L1 6.36× 10−5 0.96 3.27× 10−5 1.06× 10−2 1.31 4.29× 10−3

L2 1.89× 10−4 0.82 1.07× 10−4 2.15× 10−2 1.02 1.06× 10−2

L∞ 3.32× 10−3 0.45 2.44× 10−3 3.08× 10−1 0.50 2.18× 10−1
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