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Abstract. 

A simplified approach to treating the electron correlation energy is suggested in which only the 

alpha-beta component of the second order Møller-Plesset energy is evaluated, and then scaled by 

an empirical factor which is suggested to be 1.3.  This scaled opposite spin second order energy 

(SOS-MP2) yields results for relative energies and derivative properties that are statistically 

improved over the conventional MP2 method.  Furthermore, the SOS-MP2 energy can be 

evaluated without the 5th order computational steps associated with MP2 theory, even without 

exploiting any spatial locality.  A 4th order algorithm is given for evaluating the opposite spin 

MP2 energy using auxiliary basis expansions, and a Laplace approach, and timing comparisons 

are given. 
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1. Introduction. 

 

The most popular electronic structure method for application to systems with large numbers of 

electrons is density functional theory (DFT) [1, 2].  However DFT methods at present completely 

neglect the dispersion interactions [3] that give rise to base pair stacking and other long-range 

correlation effects (for example the TCNE dimer dianion [4]).  Novel workarounds are being 

explored for dispersion interactions of monomers [5][6] or ordered layers and surfaces [7, 8], but 

do not presently apply to molecular systems.  More empirical modifications of standard 

functionals have also been developed to improve non-bonded interactions [9, 10].  Also we note 

that present-day DFT methods are somewhat suspect for reaction barriers.  Standard functionals 

tend to underestimate activation energies [11], largely as a consequence of the self-interaction 

issue [12]. 

The simplest electronic structure alternative to DFT that can correctly treat dispersion and 

hydrogen-bonding interactions is second order Møller-Plesset theory (MP2) [13].  MP2 theory is 

capable of quite accurately treating long-range dispersion interactions [14], as well as the 

dispersion, polarization and covalency effects associated with hydrogen bonding (for instance in 

water clusters [15]).  However, MP2 has several significant drawbacks:  First is relatively high 

computational cost, even with the best standard algorithms.  Second is the need for quite large 

atomic orbital basis sets in order to obtain good results [16], which can further reduce the upper 

limit on system size.  Third is the fact that poor results can be obtained for open shell systems 

[17], in contrast to the good behavior for closed shell molecules [18]. 

There has been significant progress in addressing the steep cost increase of MP2 

calculations with molecular size in recent years.  Three main types of developments can be 
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identified.  First are methods that reduce the prefactor without changing the underlying scaling, 

such as “resolution of the identity” methods [19, 20] or the pseudo-spectral approach [21], and 

others [22].  Second are methods that attempt to exploit “underlying locality” in the MP2 

problem, which have demonstrated linear scaling using small basis sets and 1-dimensional 

materials [23, 24].  Third, are “local MP2” methods that exploit locality of electronic structure by 

ansatz [25-28]. 

It is clearly desirable to implement and explore enhancements to the basic MP2 method 

that permit increased accuracy as well as improved computational performance.  One well-

known example of this type is the fact that MP2 correlation energies (or any wavefunction-based 

correlation energy) can be systematically extrapolated towards the complete basis set limit [16], 

using the X-3 behavior of the basis set error with respect to the cardinal number X, of the 

Dunning cc-pVXZ basis sets [29].  Indeed a refinement of this approach suggested separate 

scaling [30] of the same-spin (SS) and opposite spin (OS) correlation energies because the 

former actually converges as X-5 while the latter component, which is numerically far larger, 

converges as X-3. 

This different behavior of the two spin-cases may have provided part of the inspiration 

for a very intriguing recent report by Grimme [31] showing that MP2 energies can be 

systematically improved by separate scaling of the opposite-spin (OS) and same-spin 

components of the MP2 correlation energy: 

 2 2 2

OS SS

MP MP MPE E E= +  (1) 

This method was termed “spin-component scaled” MP2, or simply SCS-MP2, and, denoting the 

scaling factors as cOS and cSS, the modified correlation energy is simply: 

 2 2 2

OS SS

SCS MP OS MP SS MPE c E c E! = +  (2) 
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The scaling parameters used by Grimme are cOS = 6/5 for the OS correlation, and cSS = 1/3 for the 

SS correlation.  We note also that there have been ongoing efforts to scale the entire MP2 

correlation energy [32-34], with the objective of removing basis set deficiencies and limitations 

of the correlation treatment together.  For a given (large) basis, Grimme’s new approach showed 

clear statistical improvements in the quality of geometries (of diatomics), and a wide range of 

relative energies of reactions, and atomization energies.  Additionally, an application of this 

approach to problems that contain long-range correlation such as stacking complexes has been 

recently reported[35], as well as an extension to yield a scaled MP3 correlation energy [36]. 

The purpose of this report is to explore the consequences of a simplified variant of 

Grimme’s idea.  Since the damping of the SS contribution is large (cSS = 1/3), perhaps results of 

comparable quality can be obtained by scaling just the OS component (i.e. never evaluating the 

SS components).  If so, this would have very desirable practical implications for the efficiency of 

implementation, because many of the algorithmic complications that arise in fast MP2 methods 

are associated with the exchange contribution to the SS correlation.  Accordingly we define the 

“scaled opposite spin” second order correlation energy (or simply SOS-MP2) as: 

 2 2

OS

SOS MP SOS MPE c E! =  (3) 

The OS scaling factor we employ is cSOS = 1.3, which is (roughly) optimized based on results 

discussed in Section 2 below.  The rough magnitude of this value can be anticipated from 

Grimme’s parameters by noting that the ratio of OS:SS correlation is typically 3 or 4 to 1, and 

thus we need to increment the OS scaling factor by about 1/(3×3) in order to mimic the absence 

of explicit SS correlations, yielding about 1.3. 

The remainder of this paper consists of three sections in which we first discuss chemical 

tests of the SOS-MP2 approach in Sec. 2.  These tests are largely similar to those reported by 
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Grimme [31], with additional tests on atomization energies, molecular geometries and barrier 

heights.  Comparisons are made to both usual MP2 theory, and also against the SCS-MP2 

method, and higher correlation methods.  In Sec. 3, we describe how the opposite spin MP2 

energy (and thus SOS-MP2) can be efficiently implemented by describing an algorithm that does 

not require any 5th order computational steps, without exploiting localization.  This contrasts 

with conventional MP2 methods that inevitably require a 5th order step.  Our approach uses 

auxiliary basis expansions [19, 20, 37-39], together with a Laplace approach [40] to eliminate 

energy denominators.  The final section demonstrates the computational effectiveness of this 

approach in comparison to a conventional 5th order-scaling auxiliary basis evaluation of the MP2 

energy.  We finish with some conclusions. 

 

2. Chemical tests. 

 

We have modified our standard MP2 program for energies and gradients [41] to implement the 

SOS-MP2 and SCS-MP2 energy and gradient, within a development version of the Q-Chem 

program [42].  This was used for all calculations reported in this section.  Unless stated 

otherwise, all geometries were completely optimized at the MP2 level using the 6-31G* basis 

set.  These were used to perform subsequent single-point calculations using the Dunning cc-

pVTZ basis [29].  All calculations were carried out using the frozen core approximation.  

The objective of this section is to estimate the optimal opposite spin scaling factor, cSOS 

and compare the performance of SOS-MP2 with Grimme’s SCS-MP2 [31], MP2 and higher 

correlation methods like QCISD and QCISD(T). In this study, we have not only adopted test 

molecules and reactions similar to those described by Grimme [31], but also included several 
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other molecules, and also reaction barriers. As a consequence of using different initial geometry 

(MP2/6-31G*) and basis (cc-pVTZ) there are also slight variations in the energy values reported 

herein and those reported by Grimme [31].  

 

2.1  Correlation Energies 

Table I shows the percentage of the total QCISD(T) correlation energy that is recovered 

by MP2, SCS-MP2 and SOS-MP2 ( with cSOS = 1.2 and 1.3 respectively). It can be seen that 

SOS-MP2 (cSOS = 1.3) performs almost as well as SCS-MP2 in most cases. SOS-MP2 (cSOS = 

1.2) does not perform as well as cSOS = 1.3 because in this case the value of cSOS is probably 

insufficient to mimic the same spin component, which is absent. This results in an 

underestimation of the correlation energy.  SOS-MP2 (cSOS = 1.3), on the other hand, 

approximately accounts for the absence of the same spin component with an increased scaling 

factor of the opposite spin component.  Indeed, the average recovery percentage for SOS-MP2 

(cSOS = 1.3) (93.3±2.9) seems better than SCS-MP2 (92.8±1.9) and MP2 (91.8±5.2).  With 

scaling it is of course possible to over-estimate the correlation energy.  This is most acute in the 

case of the H2 molecule, where there is no same-spin correlation energy, and as a consequence 

the total correlation (104.7%) is over-estimated by SOS-MP2.  However, even if one does not 

consider the H2 molecule in the statistics, SOS-MP2 (cSOS = 1.3) (92.7±1.2) is on a par with SCS-

MP2 (92.6±1.7) and performs better than MP2 (92.4±4.6), considering the range of deviation.  

 

2.2 Reaction energies 

Using a least-squares fitting procedure to the QCISD(T) reaction energies (see Table II) 

with the correlation consistent Dunning cc-pVTZ basis set, the opposite spin scaling factor cSOS 
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was optimized. Our reference set consisted of 41 reactions shown in Table II. The optimized 

value of cSOS was determined to be between 1.2-1.25 depending upon the choice of reactions. We 

choose to retain the initial estimate of cSOS = 1.3 as the final scaling factor for two reasons.  First, 

we found that small changes in the scaling factor (±0.1) resulted in modest rms changes of less 

than 0.4 kcal/mol, while, as Table I indicates, cSOS = 1.3 does a better job of recovering the 

QCISD(T) correlation energy than cSOS = 1.2.  Second, we have physical reasons for preferring a 

slightly larger scaling factor.  For long-range correlation (where electrons are distinguishable) 

the same spin and opposite-spin contributions become equal, and so both SCS-MP2 and SOS-

MP2 will underestimate the result relative to unscaled MP2.  Mimicking full MP2 thus requires 

cSOS = 2 in the long-range limit, and therefore we take the larger scaling factor.  Henceforth, we 

will refer to SOS-MP2 (cSOS = 1.3) as simply SOS-MP2. 

Table II shows us that both SOS-MP2 and SCS-MP2 produce smaller errors than MP2 

with respect to the QCISD(T) values in most of the reactions, and compare well with the QCISD 

values. Indeed, the rms errors of MP2 and QCISD come down from 4.4 and 3.8 kcal/mol to 2.2 

and 2.4 kcal/mol for SCS-MP2 and SOS-MP2 respectively. In particular, MP2 struggles with 

reactions that involve 1CH2, while SOS-MP2 produces the least error and does better than SCS-

MP2 and QCISD.  While SOS-MP2, SCS-MP2 and MP2 fare well with reactions that involve 

ozone (O3) molecule, QCISD produces the largest error in these cases. Some of the reactions that 

involve N2 prove to be difficult for both SOS-MP2 and SCS-MP2 and seem to be the only 

instance where the MP2 results are considerably better. These observations are consistent with 

those reported by Grimme [31]. We can conclude that SOS-MP2 and SCS-MP2 perform roughly 

equivalently, as can be seen from their similar rms errors (0.2 kcal/mol difference), mean 

absolute errors, and differences in reaction energies relative to QCISD(T) (refer Table II). 
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In the remainder of this section, we will test the performance of SOS-MP2 (cSOS = 1.3) by 

analyzing atomization energies of about 80 different molecules, barrier heights of 15 reactions 

and also look at the structure of some molecules that were optimized with SOS-MP2.  

 

2.3 Atomization Energies  

Table III shows the atomization energy errors obtained from various methods (MP2, 

SCS-MP2, SOS-MP2 and QCISD) with the QCISD(T) energy values chosen as the reference. 

This is appropriate because we are not trying to compensate for basis set incompleteness effects 

– we are attempting to compare MP2, SCS-MP2 and SOS-MP2 in a given basis set.  As can be 

seen from Table III, SOS-MP2 provides better atomization energies than MP2 and QCISD in 

more than 70% of the cases. Particularly, SOS-MP2 performs really well with most of the 

molecules that contain fluorine and oxygen while MP2, QCISD and, in many cases (like BF3, 

CO2, O3, ClF3), SCS-MP2 suffer from large errors. The exceptions where SOS-MP2 produces 

errors larger than MP2 seem to arise from molecules that contain nitrogen. In fact, the N2 

molecule corresponds to the largest error for both SOS-MP2 and SCS-MP2. Statistical analysis 

shows that SOS-MP2 provides the smallest rms error (a value of 6.0 kcal/mol), followed by 

SCS-MP2 with 6.7 kcal/mol. This is a significant improvement when compared with the MP2 

and QCISD rms errors of 10.5 kcal/mol and 8.2 kcal/mol respectively. A similar trend is 

observed with the mean absolute errors. The success of SOS-MP2 at reproducing atomization 

energies (of QCISD(T) quality) is quite remarkable considering that the scaling factor of the 

opposite spin component (cSOS = 1.3) was not optimized over these atomization reactions.  It 
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again suggests that SOS-MP2 is of comparable quality to SCS-MP2, despite its greater 

simplicity. 

 

2.4 Molecular geometries. 

The molecules shown in Table IV were optimized using the Dunning cc-pVTZ basis. The 

QCISD(T) bond lengths were taken as the reference for statistical analysis. The rms values 

indicate that MP2 (rms = 0.0126 Å) and SOS-MP2 (rms = 0.0124 Å) perform comparably in 

predicting the bond lengths, while SCS-MP2 (rms = 0.0121 Å) seems slightly more favorable. 

We should point here that SOS-MP2 and SCS-MP2 perform as well as MP2 (or at least no more 

badly!) even for molecules like CN and NO that are known to be difficult systems. Also shown 

in Table IV are the calculated bond angles of a few molecules. QCISD(T) bond angles were set 

as reference. The rms and MAE values suggest that SOS-MP2 (0.11, 0.05) fares well when 

compared to SCS-MP2 (0.24, 0.10) and MP2 (0.20, 0.08) respectively. 

  

2.5      Barrier heights. 

Table V shows the calculated reaction barrier energies (both forward and reverse) for a 

set of 15 reactions adopted from Database/3 developed by Truhlar et al.34 The transition state 

(TS) geometries were optimized at MP2/6-31G* level and single-point calculations were further 

carried out using cc-pVTZ basis set similar to the calculations described before. The reaction 

barrier heights reported here refer to the difference in the total electronic energies between the 

TS and the reactants. Data in Table V shows that QCISD does the best job of predicting barrier 

heights of QCISD(T) quality, indicating that the correlation energy of the TS is important for the 

estimation of barrier heights. Both SCS-MP2 and SOS-MP2 seem to consistently overestimate 
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the barrier heights and fall behind MP2 when the respective rms and MAE values are compared.  

The extent of degradation is not severe, however. 

 

The above observations suggest that SOS-MP2 is a very reasonable variant of Grimme’s 

SCS-MP2 with comparable strengths (and weaknesses).  Both scaled approaches improve the 

MP2 results and produces results of almost QCISD(T) quality for several systems. SOS-MP2 has 

the added advantage of completely avoiding the same spin component of the correlation energy, 

leading to computational advantages that are exploited in the following two sections.  

 

3. 4th order algorithm using auxiliary basis expansion and Laplace transformation. 

 

The evaluation of the opposite spin MP2 correlation energy can be performed without any 5th 

order steps, unlike conventional MP2 theory.  This can be seen as follows.  Following Almlöf 

[40], we eliminate the energy denominators via the identity ( )
0

1 exp xt dt
x

!
= "#  so that: 

 
( )

( ) ( )
2

2

2
0

exp
OS ab
MP ijab

ia jb ia jbij

ia jb
E dt ia jb t

! !" "#
= $ = $ $%

%
&& &&'  (4) 

As usual, the two-electron repulsion integrals in the molecular orbital basis are given by: 

 ( ) ( ) ( ) ( ) ( )1
i a j bia jb d d ! ! ! !

"#
" " "= $ $

r r
r r r r r r  (5) 

The energy denominators are defined in terms of the orbital energies (in the canonical basis) of 

occupied levels i,j and empty levels a,b as ab
ij a b i j! ! ! !" = + # # .  Introducing a discrete 

quadrature (involving Q points) for the integration over t allows us to write the energy as: 
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 ( ) ( ) ( )
22

2 exp
Q Q

OS ab
MP q ij q

q ia jb q ia jb

E w ia jb t ia jb
! !" "

= # #$ = #% %% %%%  (6) 

The scaled canonical orbitals in Eq. (6) depend on each quadrature point q according to: 

 ( )
1
8 1

2
expi i q i qw t! ! "=  (7) 

 ( )
1
8 1

2
expa a q a qw t! ! "= #  (8) 

We next introduce an auxiliary basis for evaluation of the two-electron integrals.  This is 

crucial for eliminating the fifth order step present in regular MP2 (and also in MP2 with an 

auxiliary basis).  Denoting the auxiliary basis functions by K,L... we can write the Coulomb fit of 

a two-electron integral in terms of 2 and 3-center Coulomb integrals as: 

 ( )
N

K K
ia jb

K

ia jb B B=!  (9) 

 ( )( )
1

2
!

= "
N

K

ia
L

B ia L L K  (10) 

With this additional approximation we can now re-express the OS-MP2 correlation energy as: 

 
2

Q Q
OS K K L L
MP KL KLia jb ia jb

q ia jb KL q KL

E B B B B X X
!"

!"
= # = #$$$$ $$  (11) 

This working expression is now directly in terms of the auxiliary basis, where X is defined as: 

 K L

KL ia ia
ia

X B B

!
!

="  (12) 

with the obvious analog for beta spin. 

The steps and computational cost associated with implementing this algorithm are as 

follows: 

(1) Prepare the un-scaled B coefficients from the two and three-center Coulomb integrals.  This 

step is exactly like a conventional auxiliary basis MP2 algorithm, and requires evaluating: 



 12 

 ( ){ }{ }( )
1

2K

ia va i

L

B C C L L Kµ
µ!

µ!
"

=##  (13) 

This requires a cubic scaling step to form the inverse square root of the 2-center Coulomb 

integrals, followed by fourth order steps, 2
on N ovnN+ , to transform the 3-center integrals, 

and finally another fourth order step, 2
ovN , to postmultiply by the 2-center matrix function.  

Here o,v,n are the number of active occupied, virtual (empty) and atomic orbital functions, 

and N is the number of auxiliary basis functions. 

(2) For each quadrature point q, scale the B coefficients. 

 ( ) ( )
1
4 1 1

2 2
exp exp

K K
ia q i q a qia

B B w t t! != "  (14) 

This step requires QovN operations, and is thus ( )3O M  in the size of the molecule, since 

the number of quadrature points Q is independent of molecular size. 

(3) For each quadrature point, construct the X matrix (or matrices if open shell), by evaluating 

Eq. (12).  This step is the most expensive in the calculation and requires 2
QovN  operations, 

which is ( )4O M  in the size of the molecule. 

(4) Evaluate the increment to the correlation energy for the current quadrature point. This 

requires only quadratic effort. 

 

4. Timings 

 

Linear alkane chains to represent one-dimensional systems and silicon clusters for three-

dimensional systems were used for timings. All calculations (MP2, RI-MP2, and SOS-MP2) for 

timing purposes were performed on IBM Power 3 p640 servers (375Mhz) with a memory limit 
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of 1 GB. The standard 6-31G* Pople-type basis set was used as the atomic orbital basis, and 

Ahlrich’s SVP-type auxiliary basis set was used for SOSMP2. The contraction pattern of this 

auxiliary basis is (8s6p5d3f)/[6s5p4d1f] [20]. Weigend et al report that their optimized auxiliary 

basis expansions in RI-MP2 introduce errors less than 60 micro-hartree/atom compared to the 

canonical MP2 [20].  Comparable errors were also seen for the systems we considered here, as 

shown in Table VI.  For example, for C50H102, RI-MP2 yielded an error of 3 mH, relative to the 

conventional MP2. Conventional MP2 energies were evaluated with a semidirect algorithm [41]. 

The SOS-MP2 algorithm, in which the energy denominator is absorbed into the Laplace 

transformed orbitals in addition to the auxiliary basis expansion, will in principle exactly 

reproduce the alpha-beta component of the RI-MP2 correlation energy when a sufficient number 

of Laplace quadrature points are used.  Some additional error will be associated with the use of a 

modest number of quadrature points, which of course is desirable for efficiency. Table VII 

indeed shows that alpha-beta correlation energy in our Laplace-RI algorithm for SOS-MP2 is 

nearly the same as the same component from the RI-MP2 method. In achieving this accuracy, 7 

quadrature points were used. 

Timings are compared in Table VIII, IX and X.  Table VIII shows the overall speed-ups 

of RI-MP2 and the RI-based SOS-MP2 codes, relative to the conventional MP2 algorithm. Both 

RI-MP2 and SOS-MP2 methods are about 2~4 times faster than the semidirect MP2 for linear 

systems, and 4~32 times faster for 3D systems.  Greater speed-ups observed for 3D systems 

appear to be due to the larger number of significant function pairs for a system of given size, 

which in turn leads to repeated two-electron integral evaluation in the conventional code, due to 

the limited disk space available to store the half-transformed integrals. In our implementation of 

RI-MP2 and the Laplace-RI algorithm for SOS-MP2, the B matrix is stored on disk, which 
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requires ovN disk space, while memory requirements are only quadratic.  This means that 

calculations are limited primarily by the computer time demands.  

As described in the previous section, SOS-MP2 is a 4th order-scaling correlation method, 

while MP2 and RI-MP2 both are formally 5th order scaling. Timings in Table VIII indeed cleanly 

reflect the limiting scaling behavior of each method. While RI-MP2 is faster than the Laplace RI 

algorithm for SOS-MP2 on small systems, the two algorithms cross over as early as at systems 

with roughly 500 basis functions.  

In Table IX, the total timings for RI-MP2 and SOS-MP2 are decomposed into their major 

contributions.  In RI-MP2, the formation of (ia|jb) MO integrals from the B matrix is the 

dominant step, while in SOS-MP2, the formation of the X matrix from the B matrix is the most 

time-consuming step.  The data show that the scaling of these dominant steps are indeed 5th and 

4th order with the system size, respectively.  To summarize, the elimination of energy 

denominators in RI-MP2, by absorbing them into the Laplace transformed orbitals has reduced 

the formal scaling of calculating the alpha-beta correlation energy to 4th order.  For SOS-MP2 

this will be scaled by an empirical factor described in section 2 to produce the total second order 

correlation energy.  Interestingly, this difference in the scaling properties of the direct versus 

indirect correlation contributions in MP2 is reminiscent of the difference between evaluating 

Coulomb and exchange interactions in RI-based Hartree-Fock calculations. 

 

5. Conclusions. 

 (1) We have proposed a simplification of Grimme’s spin-component scaled (SCS) MP2 

method which entirely eliminates the same-spin component of the MP2 energy, and, to 
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compensate, scales the opposite spin contribution by a slightly larger empirical factor.  We call 

this method scaled opposite spin (SOS) MP2. 

(2) Based on both simple arguments, and in particular detailed calculations of absolute 

correlation energies, we suggest that this factor should be 1.3, although further tests are no doubt 

desirable.  Independent calculations of atomization energies suggest that there is relatively little 

difference in the quality of results obtained by SCS-MP2 and SOS-MP2.  Both are significantly 

improved relative to the parent MP2 method itself, for reaction energies and atomization 

energies.  Slight degradation is observed for reaction barriers. 

(3) It is possible to evaluate the opposite spin MP2 energy (and thus the SOS-MP2 

energy) with computational complexity that scales only with the 4th power of molecule size, in 

contrast to the usual 5th order scaling for full MP2 theory.  This 4th order algorithm requires use 

of the resolution-of-the-identity (RI) approximation, together with a Laplace transformation to 

treat energy denominators.  Timings show cross-overs between the two formulations occur as 

early as 500 basis functions. 

(4) While the reduced scaling of SOS-MP2 and its improved quality relative to MP2 are 

very desirable, the method does have some undesirable features.  First, of course is its empirical 

nature.  Second is the fact that the best scaling factor (1.3) is not physically correct for long-

range correlation where it should approach 2.  Considering alternative scalings that depend on 

the inter-electronic distance could be a way to address this issue in the future. 

(5) This 4th order form may offer a very promising starting point for lower-scaling 

algorithms for the opposite spin MP2 energy.  We hope to report on this problem in due course. 
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 Table I. Total Correlation Energy (CE) recovered by MP2, SCS-MP2 and SOS-MP2 (cSOS  = 1.2 

and 1.3) relative to QCISD(T).  

 

Molecule QCISD(T) MP2 SCS-MP2 SOS-MP2 (%CE) 
 (mH) SSa 

(mH) 
OSb 

(mH) %CE %CE cSOS = 1.2 cSOS  = 1.3 

        
1CH2 -169.1 -10.2 -118.2 82.0 87.9 83.9 90.9 
C2H2 -340.4 -36.1 -239.4 91.5 91.5 84.4 91.4 
C2H4 -375.4 -35.5 -264.7 89.4 90.9 84.6 91.7 
C2H6 -414.9 -37.1 -295.8 89.2 91.5 85.6 92.7 
CH4 -224.9 -18.1 -162.1 88.2 91.9 86.5 93.7 
CO -379.4 -45.6 -267.5 94.5 92.6 84.6 91.6 

Cyclopropene -533.7 -56.6 -374.1 91.3 91.2 84.1 91.1 
F2 -545.6 -65.8 -391.9 95.9 94.2 86.2 93.4 

H2O -276.1 -31.8 -198.6 95.0 94.0 86.3 93.5 
H2O2 -525.6 -61.9 -375.5 95.0 93.6 85.7 92.9 
HCN -371.8 -43.1 -263.7 94.1 92.8 85.1 92.2 
HF -281.3 -34.8 -203.0 96.9 94.8 86.6 93.8 
H2 -39.3 0.0 -31.7 80.5 96.6 96.6 104.7 
N2 -398.5 -49.3 -284.2 96.1 93.8 85.6 92.7 

N2H2 -475.4 -51.4 -337.8 92.7 92.5 85.3 92.4 
N2O -672.1 -89.6 -479.4 98.0 94.5 85.6 92.7 
NH3 -255.8 -26.0 -183.4 92.0 92.8 86.0 93.2 

Ozone -805.5 -105.3 -579.2 98.0 95.0 86.3 93.5 
N2H4 -475.4 -51.4 -337.8 92.7 92.5 85.3 92.4 
BH3 -137.6 -5.7 -102.0 82.4 91.7 88.9 96.4 

        

   Average 
% 

91.8  
± 5.2 

92.8  
± 1.9 

86.2  
± 2.7 

93.3  
± 2.9 

   Average 
%c 

92.4  
± 4.6 92.6 ±1.7 85.6 ± 1.1 92.7 ± 1.2 

        
a Same spin component of the correlation energy 

b Opposite spin component of the correlation energy 

c Average %CE recovered excluding H2 molecule 
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Table II. Calculated reaction energies with QCISD, MP2, SCS-MP2 and SOS-MP2 (cSOS  = 1.3) 

relative to QCISD(T) in kcal/mol. 

 Errora 

 
Reaction ΔEQCISD(T) 

QCISD MP2 SCS-MP2 SOS-MP2b 

1 F2 + H2 →2HF -130.3 -3.2 -7.7 -2.4 0.3 

2 F2O + H2 → F2 + H2O -66.5 -2.4 -3.5 -2.0 -1.3 

3 O3 + 3H2 → 3 H2O -216.8 -15.4 1.6 3.2 4.0 

4 H2O2 + H2 → 2H2O -83.7 -2.0 -4.1 -1.3 0.1 

5 CO + H2 → CH2O -3.7 -0.2 -0.7 0.6 1.3 

6 CO + 3H2 → CH4 + H2O -61.1 -1.6 -2.1 1.7 3.7 

7 N2 + 3H2 → 2NH3 -35.6 -2.4 1.2 5.1 7.1 

8 1CH2 + H2 → CH4 -128.3 0.9 -7.2 -2.2 0.4 

9 N2O + H2 → N2 + H2O -79.3 -5.9 5.3 1.7 -0.1 

10 HNO2 + 3H2 → 2H2O + NH3 -116.8 -5.6 -4.6 -1.6 -0.1 

11 C2H2 + H2 → C2H4 -49.4 -1.0 2.0 2.3 2.5 

12 CH2=C=O + 2H2 → CH2O + CH4 -43.1 -2.1 1.8 0.6 0.0 

13 BH3 + 3HF → BF3 + 3H2 -98.0 1.4 -1.3 0.0 0.6 

14 HCOOH → CO2 + H2 1.3 1.4 -2.5 -2.8 -2.9 

15 CO + H2O → CO2 + H2 -7.7 2.4 -4.1 -1.9 -0.8 

16 C2H2 + HF → C2H3F -28.3 -0.3 3.0 2.6 2.4 

17 HCN + H2O → CO + NH3 -13.7 -1.1 3.4 2.1 1.4 

18 HCN + H2O → HCONH2 -21.9 -0.3 1.0 2.7 3.5 

19 HCN + NH3 → N2 + CH4 -39.2 -0.2 0.0 -1.3 -2.0 

20 CO + CH4 → CH3CHO 4.6 0.6 -1.4 0.8 2.0 

21 O3 + CH4 → 2H2O + CO -155.7 -13.8 3.7 1.5 0.4 

22 N2 + F2 → N2F2 18.0 0.8 2.4 5.5 7.1 

23 BH3 + 2F2 → BF + 3HF -242.5 -5.4 -11.6 -1.6 3.3 

24 2 1CH2 → C2H4 -198.4 3.3 -13.3 -4.2 0.3 

25 CH3ONO → CH3NO2 -0.5 0.8 -5.0 -3.3 -2.4 

26 CH2=C → C2H2 -44.3 1.5 -7.9 -4.8 -3.2 

27 Allene → Propyne -1.2 -0.2 -3.5 -2.9 -2.6 

28 Cyclopropene → Propyne -23.6 -0.3 -0.3 -1.0 -1.4 

29 Oxirane → CH3CHO -26.8 -0.2 1.1 0.3 -0.1 

30 Vinylalcohol → CH3CHO -10.1 -0.4 -0.3 -1.0 -1.4 

31 C2H4 + 1CH2 → C3H6 -114.4 1.7 -8.3 -2.3 0.6 
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32 3CH2 → 1CH2 10.3 0.9 5.1 -0.9 -3.9 

33 HF + H+ → H2F+ -124.9 0.1 0.9 0.1 -0.2 

34 H2O + H+ → H3O+ -172.9 -0.5 0.9 -0.1 -0.6 

35 NH3 + H+ → H4N+ -214.6 -0.6 1.0 -0.5 -1.2 

36 F– + H+ → HF -401.4 0.5 2.3 1.2 0.7 

37 OH− + H+ → H2O -423.2 -0.1 2.1 0.8 0.1 

38 NH2
− + H+ → NH3 -434.6 -0.7 1.6 -0.1 -0.9 

39 2NH3 → (NH3)2 -1.3 0.2 -0.1 0.3 0.4 

40 2H2O → (H2O)2 -5.9 0.3 -0.2 0.3 0.6 

41 2HF → (HF)2 -4.2 0.1 -0.1 0.2 0.4 

       

  MAEc 2.0 3.2 1.8 1.7 

  Rmsd 3.8 4.4 2.2 2.4 

  MAXe 15.4 13.3 5.5 7.1 

   MSEf -1.2 -1.2 -0.1 0.4 
a ΔE − ΔEQCISD(T) 

b cSOS = 1.3 

c mean absolute error 

d root mean square error,   !E"!EQCISD ( T )( )
2

N# , N = 41  

e maximum absolute error 

f mean signed error 
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Table III. Calculated atomization energies relative to QCISD(T) in kcal/mol 

Errora 
Molecule ΔEQCISD(T) 

QCISD MP2 SCS-MP2 SOS-MP2b 

      
1CH2 210.0 0.1 6.0 5.9 5.8 
3CH2 186.6 -0.8 -0.1 -1.3 -1.9 

BF 178.1 -3.5 8.3 3.1 0.5 

BF3 459.6 -7.3 26.2 10.5 2.7 

C2H2 393.3 -7.6 9.9 6.7 5.1 

C2H4 551.1 -6.7 3.0 3.5 3.8 

C2H6 699.2 -5.7 -0.1 2.9 4.4 

CH3CHO 660.2 -10.2 11.7 8.3 6.7 

CH3ONO 577.3 -18.6 17.3 12.1 9.4 

CH4 413.0 -2.6 -2.7 1.0 2.8 

CO 251.8 -7.1 13.0 8.2 5.8 

CO2 376.2 -12.5 25.3 13.9 8.3 

Cyclopropene 663.1 -11.2 12.9 7.9 5.4 

F2 34.9 -6.6 5.0 1.9 0.4 

F2O 85.0 -12.0 9.7 3.7 0.8 

FCl 55.2 -4.5 5.6 2.3 0.6 

H2 108.4 0.0 -4.8 -0.8 1.1 

H2O 225.0 -3.0 3.4 3.0 2.8 

H2O2 258.0 -7.9 7.5 5.5 4.5 

HCHO 363.9 -6.9 8.8 6.8 5.7 

HCN 301.2 -8.5 11.6 11.1 10.8 

HCOOH 485.9 -11.0 18.0 10.3 6.5 

HF 136.8 -1.7 4.0 1.7 0.6 

Ketene 517.0 -11.6 17.5 10.0 6.2 

N2 215.5 -9.0 12.9 15.1 16.3 

N2F2 232.4 -16.5 15.5 11.5 9.5 

NH3 288.1 -3.3 -1.4 3.8 6.3 

O2 113.2 -7.8 12.2 0.2 -5.9 

Ozone 133.2 -24.2 26.1 14.7 9.0 

C2H5 591.1 -4.9 0.3 1.6 2.3 
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CCH 254.0 -6.3 -0.3 -7.1 -10.6 

CH3OH 500.1 -6.0 4.8 5.0 5.1 

CH3Cl 385.3 -4.7 3.1 2.6 2.3 

CH3SH 461.6 -5.5 0.4 2.3 3.3 

CH3 301.7 -1.6 -1.9 0.2 1.2 

ClF3 105.0 -13.8 19.4 6.1 -0.5 

CN 169.1 -7.5 -5.3 -9.2 -11.2 

CS 162.9 -8.5 7.4 3.4 1.4 

SO 114.6 -6.9 9.1 0.8 -3.3 

H2S 177.2 -2.0 -2.7 0.0 1.4 

HCl 103.9 -1.3 0.4 0.2 0.0 

HCO 270.1 -6.9 10.5 5.5 3.1 

HOCl 156.4 -6.0 6.3 3.6 2.3 

N2H4 420.6 -7.3 0.8 8.1 11.7 

NF3 191.9 -13.7 15.1 6.8 2.7 

PF3 340.4 -8.3 20.0 10.5 5.8 

NH 79.2 -0.9 -3.0 0.5 2.2 

NH2 175.3 -2.1 -3.2 2.2 4.9 

OH 102.9 -1.4 0.1 1.0 1.5 

Oxirane 633.4 -10.5 12.8 8.6 6.6 

PH2 148.1 -1.0 -6.8 -0.7 2.4 

PH3 233.4 -1.7 -8.5 -0.3 3.8 

SH 84.0 -0.9 -2.0 -0.2 0.7 

Si2H6 520.6 -2.7 -11.5 -0.4 5.2 

Si2 69.0 -6.5 0.1 -3.4 -5.1 

P2 104.0 -9.1 3.0 4.8 5.6 

S2 93.4 -6.3 5.4 -0.5 -3.5 

Cl2 52.1 -4.0 4.3 1.2 -0.4 
1SiH2 170.2 0.5 2.6 4.7 5.8 
3SiH2 129.3 -0.4 -2.9 -1.8 -1.2 

SiH3 222.1 -0.6 -5.7 -0.5 2.1 

SiH4 316.9 -0.8 -8.2 0.2 4.4 

SiO 181.4 -7.1 12.2 7.6 5.3 

SO2 232.5 -14.9 24.2 13.4 8.0 
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BH3 276.2 -0.7 -1.4 2.8 5.0 

CH3NH2 566.2 -6.4 0.7 5.8 8.3 

C2H3F 558.5 -9.0 10.8 5.8 3.3 

HNO2 296.2 -14.8 15.2 10.6 8.4 

Vinylalcohol 650.1 -10.6 11.5 7.3 5.2 

CH2=C 349.1 -6.1 1.9 1.9 1.9 

CH3CN 597.6 -11.7 14.7 13.1 12.3 

(NH3)2 573.6 -6.7 -2.2 7.4 12.2 

(H2O)2 455.9 -6.2 6.9 5.6 5.0 

HCONH2 548.1 -11.2 14.0 11.4 10.1 

Propyne 686.7 -10.9 13.2 8.9 6.8 

B2H6 552.4 -1.5 -2.9 5.7 9.9 

(HF)2 277.8 -3.5 8.0 3.2 0.8 

      

 rms 8.2 10.5 6.7 6.0 

 MAE 6.6 8.2 5.2 4.9 

 MSE -6.6 6.1 4.5 3.7 

 MAX 24.2 26.2 15.1 16.3 
a ΔE − ΔEQCISD(T) 

b cSOS = 1.3 
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Table IV.  Molecular geometries obtained from optimization calculations.a 

Molecule QCISD(T) MP2 SCS-MP2 SOS-MP2b 

Bond Lengths (Å) 

H2 0.7424 0.7371 0.7375 0.7375 

N2 1.1043 1.1136 1.1098 1.1080 

CH4 1.0891 1.0853 1.0869 1.0877 

H2O 0.9594 0.9591 0.9594 0.9594 

F2 1.4155 1.3977 1.4088 1.4148 

BF 1.2722 1.2682 1.2682 1.2682 

CN 1.1791 1.1265 1.1228 1.1211 

CO 1.1368 1.1384 1.1361 1.1350 

FCl 1.6455 1.6358 1.6424 1.6459 

HCHO (C=O) 1.2102 1.2104 1.2097 1.2094 

     (C−H) 1.1036 1.1004 1.1007 1.1008 

HF 0.9175 0.9182 0.9182 0.9182 

HF+ 1.0019 1.0001 1.0001 0.9997 

NO 1.1592 1.1371 1.1364 1.1361 

O2 1.2133 1.2243 1.2112 1.2056 

C2H2    (C≡C) 1.2103 1.2114 1.2099 1.2092 

     (C−H) 1.0636 1.0615 1.0620 1.0622 

NH3 1.0142 1.0114 1.0123 1.0128 

CO2 1.1673 1.1693 1.1673 1.1663 

HCN    (C≡N) 1.1607 1.1668 1.1640 1.1628 

            (C−H) 1.0670 1.0643 1.0645 1.0647 
1CH2 1.1106 1.1044 1.1057 1.1064 
3CH2 1.0785 1.0736 1.0744 1.0747 

F2O 1.4112 1.4012 1.4088 1.4131 

SiH4 1.4826 1.4774 1.4779 1.4779 

H2S 1.3407 1.3352 1.3366 1.3371 

PH2 1.4229 1.4150 1.4165 1.4170 

 MSEc -0.0050 -0.0048 -0.0047 

  rmsc 0.0126 0.0121 0.0124 

 MAEc 0.0074 0.0056 0.0054 

 MAXc 0.0525 0.0562 0.0580 

Bond Angles (degrees) 

CH4 109.47 109.47 109.47 109.47 
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H2O 103.62 103.51 103.62 103.62 

HCHO (CCH) 121.94 121.87 121.89 121.91 

      (HCH) 116.12 116.26 116.21 116.19 

NH3 105.63 105.96 105.95 105.91 
1CH2 101.61 101.81 101.81 101.76 

F2O 103.12 102.88 102.76 103.23 

SiH4 109.47 109.47 109.47 109.47 

H2S 92.25 92.55 92.65 92.30 

PH2 91.99 92.27 92.36 91.86 
 MAEc 0.08 0.10 0.05 
 rmsc 0.20 0.24 0.11 
 MAXc 0.17 0.18 0.08 
 MSEc 0.33 0.40 0.27 
 

a cc-pVTZ basis  

b cSOS = 1.3 

c with QCISD(T) as reference  
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Table V. Calculated errors in reaction energy barriers with QCISD(T) as reference. Both forward 

and reverse barrier heights (in parentheses) are shown for each reaction in kcal/mol.   

Errora 
Reaction ΔEQCISD(T) 

QCISD MP2 SCS-MP2 SOS-MP2b 

Cl + H2 → HCl + H 10.0(5.5) 1.8(0.4) -1.1(4.1) 2.7(3.7) 4.6(3.5) 

OH + H2 → H + H2O 6.4(20.2) 1.5(-0.2) 1.4(9.5) 4.3(7.1) 5.7(5.9) 

CH3 + H2 → H + CH4 12.1(15.1) 1.1(0.2) 0.9(4.9) 2.5(4.1) 3.3(3.8) 

OH + CH4 → CH3 + H2O 7.4(18.3) 2.2(1.5) 1.0(5.0) 4.3(5.5) 6.0(5.7) 

H + CH3OH → CH2OH + H2 9.5(15.6) 0.6(1.2) 4.9(0.6) 4.8(2.1) 4.7(2.9) 

H + H2 → H2 + H  10.0(10.0) 0.3(0.3) 3.3(3.3) 3.5(3.5) 3.6(3.6) 

OH + NH3 → H2O + NH2 4.3(13.6) 2.7(2.3) 3.3(4.8) 6.6(7.0) 8.3(8.1) 

HCl + CH3 → Cl + CH4 2.2(9.6) 1.5(1.9) 0.5(-0.7) 2.0(2.6) 2.7(4.3) 

OH + C2H6 → H2O + C2H5 4.6(18.7) 2.3(1.6) 1.4(5.2) 4.8(5.5) 6.5(5.6) 

F + H2 → H + HF 2.2(30.7) 1.0(-0.7) 3.0(11.8) 5.6(8.1) 6.8(6.3) 

H + PH3 → PH2 + H2 2.0(25.0) 0.6(1.3) 3.7(0.5) 3.9(2.7) 4.1(3.8) 

H + ClH' → HCl + H' 19.8(19.8) 1.0(1.0) 4.6(4.6) 5.4(5.4) 5.8(5.8) 

OH + H → H2 + O 10.0(15.5) 0.2(1.5) 7.0(2.1) 6.4(4.5) 6.1(5.7) 

H + H2S → H2 + HS 3.5(18.7) 0.6(1.7) 3.8(-0.4) 3.8(2.7) 3.8(4.3) 

CH4 + NH → NH2 + CH3 23.4(8.2) 2.0(1.8) 1.5(2.1) 3.2(4.1) 4.1(5.1) 

      

 MSEc 1.2 3.2 4.4 5.0 

 rmsc 1.4 4.3 4.7 5.2 

 MAEc 1.2 3.4 4.4 5.0 

 MAXc 2.7 11.8 8.1 8.3 
a ΔE − ΔEQCISD(T) 

b cSOS = 1.3 

c considering both forward and reverse barrier data (N = 30) 
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Table VI. Accuracy of RIMP2, relative to the canonical MP2, with optimized SVP-type auxiliary 

basis set. Energies are in hartrees.  

 

 Nbas a MP2 RIMP2 Error 

1D 
C10H22 194 -1.317544 -1.316951 -0.000593 

C20H42 384 -2.631574 -2.630387 -0.001187 
C30H62 574 -3.945605 -3.943822 -0.001782 

C40H82 764 -5.259634 -5.257257 -0.002377 
C50H102 954 -6.573645 -6.570673 -0.002972 

3D 
Si9H14 199 -0.738268 -0.737022 -0.001246 

Si21H22 443 -1.781793 -1.779456 -0.002337 

Si41H38 855 -3.543034 -3.537852 -0.005182 
 

a Number of atomic orbital basis functions 
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Table VII. Accuracy of SOSMP2 with optimized SVP-type auxiliary basis set, compared to the 

opposite spin component of RIMP2 correlation energy (OS-RIMP2). 7 quadrature points were 

used in achieving the following accuracy. Energies are in hartrees. 

 

  OS-RIMP2 SOSMP2 a Error 

1D 
C10H22 -1.006416 -1.006417  0.000002 

C20H42 -2.003362 -2.003362  0.000000 
C30H62 -3.000309 -3.000307 -0.000002 

C40H82 -3.997255 -3.997252 -0.000003 
C50H102 -4.994189 -4.994185 -0.000004 

3D 
Si9H14 -0.579078 -0.579079  0.000001 

Si21H22 -1.348226 -1.348221 -0.000005 
Si41H38 -2.644667 -2.644660 -0.000007 
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Table VIII. RIMP2 and SOSMP2 speed-ups, relative to the conventional MP2. 

 

 MP2a RIMP2a SOSMP2a RIMP2 
speed-up 

SOSMP2 
speed-up 

1D 

C10H22 158 53 98 3.0 1.6 

C20H42 2719 893 1145 3.0 2.4 

C30H62 13400 5681 4955 2.4 2.7 

C40H82 45490 21540 14550 2.1 3.1 

C50H102 144400 58640 34130 2.5 4.2 

3D 

Si9H14 245 36 75  6.8 3.3 

Si21H22 5588 759 1126  7.4 5.0 
Si41H38 417400 14410 13110  29.0 31.8 
 

a Timings are in seconds, on a 375 MHz IBM Power3-based computer (p640) 
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Table IX. RIMP2 detailed timings in seconds, on a 375 MHz IBM Power3-based computer 

(p640) 

 

 (K|L)-1/2 (ia|K) Bia
K (ia|jb) total 

1D 
C10H22 11 13 6 22 53 

C20H42 84 114 89 606 893 
C30H62 273 423 435 4550 5681 

C40H82 611 1095 1394 18440 21540 
C50H102 1090 2226 3254 52070 58640 

3D 

Si9H14 9 13 4 10 36 

Si21H22 95 139 85 440 759 

Si41H38 910 1594 1098 10810 14410 
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Table X. SOSMP2 detailed timings in seconds.  The steps (and the timings) for making (K|L)-1/2, 

(ia|K), and the B matrix are identical to those of RIMP2 (above in Table IX), and therefore are 

omitted here. 

 

 XKL Total 

1D 

C10H22 63 98 

C20H42 803 1145 

C30H62 3585 4955 

C40H82 11030 14550 

C50H102 26520 34130 

3D 

Si9H14 45 75 

Si21H22 757 1126 
Si41H38 9083 13110 
 

 


