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Combinatorial Paralleland S
ienti�
Computing�Ali P�nary and Bru
e Hendri
ksonz1 Introdu
tionCombinatorial algorithms have long played a pivotal enabling role in many appli
a-tions of parallel 
omputing. Graph algorithms in parti
ular arise in load balan
ing,s
heduling, mapping and many other aspe
ts of the parallelization of irregular appli-
ations. These are still a
tive resear
h areas, mostly due to evolving 
omputationalte
hniques and rapidly 
hanging 
omputational platforms. But the relationship be-tween parallel 
omputing and dis
rete algorithms is mu
h ri
her than the mere useof graph algorithms to support the parallelization of traditional s
ienti�
 
omputa-tions. Important, emerging areas of s
ien
e are fundamentally dis
rete, and they arein
reasingly reliant on the power of parallel 
omputing. Examples in
lude 
omputa-tional biology, s
ienti�
 data mining, and network analysis. These appli
ations are
hanging the relationship between dis
rete algorithms and parallel 
omputing. Inaddition to their traditional role as enablers of high performan
e, 
ombinatorial al-gorithms are now 
ustomers for parallel 
omputing. New parallelization te
hniquesfor 
ombinatorial algorithms need to be developed to support these nontraditionals
ienti�
 approa
hes.This 
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ribe some of the many areas of interse
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dis
rete algorithms and parallel s
ienti�
 
omputing. Due to spa
e limitations, this
hapter is not a 
omprehensive survey, but rather an introdu
tion to a diverse setof te
hniques and appli
ations with a parti
ular emphasis on work presented at theEleventh SIAM Conferen
e on Parallel Pro
essing for S
ienti�
 Computing. Sometopi
s highly relevant to this 
hapter (e.g. load balan
ing) are addressed elsewherein this book, and so we will not dis
uss them here.2 Sparse Matrix ComputationsSolving systems of sparse linear and nonlinear equations lies at the heart of many s
i-enti�
 
omputing appli
ations in
luding a

elerator modeling, astrophysi
s, nanos
ien
e,and 
ombustion. Sparse solvers invariably require exploiting the sparsity stru
tureto a
hieve any of several goals: preserving sparsity during 
omplete/in
ompletefa
torizations, optimizing memory performan
e, improving the e�e
tiveness of pre-
onditioners, and eÆ
ient Hessian and Ja
obian 
onstru
tion, among others. Theexploitation of sparse stru
ture involves graph algorithms, and is probably the bestknown example of the role of dis
rete math in s
ienti�
 
omputing.2.1 Sparse Dire
t SolversDire
t methods for solving sparse linear equations are widely used espe
ially forsolving ill-
onditioned systems su
h as those arising in fusion studies or interiorpoint methods for optimization. They are also used when high a

ura
y solutionsare needed as with the inversion operator for the shift-and-invert algorithms foreigen
omputations, solving 
oarse grid problems as part of a multigrid solver, andsolving subdomains in domain de
omposition methods. The sizes of the problemsarising in these appli
ations ne
essitate parallelization, not only for performan
e,but also for memory limitations. Most dire
t solvers require one pro
essor to holdthe whole matrix for prepro
essing steps su
h as reordering to preserve sparsityduring fa
torization, 
olumn/row permutations to avoid or de
rease pivoting dur-ing numeri
al fa
torization, and symboli
 fa
torization, and this requirement tohave one pro
essor store the whole matrix is an important bottlene
k to s
alability.Re
ent studies have addressed parallelization of these less time 
onsuming parts ofsparse dire
t solvers.Having large entries on the diagonal at the time of elimination is importantfor numeri
al a

ura
y during LU fa
torization. The dynami
 approa
h for thisproblem is to move a large entry to the diagonal at ea
h step during fa
torizationby row and 
olumn permutations. However, dynami
 pivoting hinders performan
esigni�
antly. Alternative is the stati
 approa
h where large entries are permutedto the diagonal a priori. Although somewhat less robust numeri
ally, this stati
pivoting approa
h a
hieves mu
h higher performan
e. The problem of permutinglarge entries to the diagonal to redu
e or totally avoid pivoting during fa
toriza-tion, 
an be fruitfully re
ast as the identi�
ation of a heavy, maximum-
ardinalitymat
hing in the weighted bipartite graph of the matrix. An example is illustratedin Fig. 1. In the bipartite graph of a matrix, ea
h row and ea
h 
olumn of thematrix is represented by a vertex. An edge 
onne
ts a row vertex to a 
olumn
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0 �0BBBBB� :8 :2:3 :6 :1:6 :4:2 :8:1 :9 1CCCCCAFigure 1. Permuting large entries to the diagonal. Dark edges in thegraph 
orrespond to edges in the mat
hing in the bipartite graph of the matrix onleft. Matrix on right is the permuted matrix with respe
ted to the mat
hing where
olumns are reordered as (mate of the 1st row, mate of the 2nd row, : : :).vertex if the 
orresponding matrix entry at this row and 
olumn is nonzero, andthe weight of the edge is set equal to the absolute value of the matrix entry. A
omplete mat
hing between rows and 
olumns identi�es a reordering of 
olumns orrows of the matrix, in whi
h all the diagonal values are nonzero. Heavier weightededges in the mat
hing translate to larger values on the diagonal after permutation.Noti
e that a maximumweighted mat
hing maximizes the sum of absolute values ofdiagonal entries. By assigning the logarithms of absolute values of entries to edgesone 
an maximize the produ
t of diagonal entries with maximum mat
hing.While bipartite mat
hing is a well-studied problem in graph theory, designingparallel algorithms that perform well in pra
ti
e remains as a 
hallenge. Mostsequential algorithms for bipartite mat
hing rely on augmenting paths, whi
h ishard to parallelize. Bertsekas' au
tion algorithm is symboli
ally similar to Ja
obiand Gauss-Seidel algorithms for solving linear systems, and thus more amenableto parallelization. As the name implies Bertsekas' algorithm resembles an au
tion,where the pri
es of the 
olumns are gradually in
reased by buyers (rows) that arenot mat
hed. Ea
h row bids on the 
heapest 
olumn, and the pro
ess ends, whenall rows are mat
hed to a 
olumn. Riedy and Demmel [18℄ studied the parallelimplementation of Bertsekas' au
tion algorithm. They observed, as in all parallelsear
h algorithms, speedup anomalies with superlinear speedups and slowdowns.Overall, they showed that the au
tion algorithm serves very well as a distributedmemory solver for weighted bipartite mat
hing.Another important and 
hallenging problem in sparse dire
t solvers is the de-velopment of parallel algorithms for sparsity preserving orderings for Cholesky/LUfa
torization. The two most widely used serial strategies for sparsity preservingorderings are instantiations of two of the most 
ommon algorithmi
 paradigms in
omputer s
ien
e. Minimum degree and its many variants are greedy algorithms,while nested disse
tion is an example of a divide-and-
onquer approa
h. Nested
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disse
tion is 
ommonly used for parallel orderings sin
e its divide-and-
onquer na-ture has natural parallelism, and subsequent triangular solution operations on thefa
tored matrix grant better eÆ
ien
y on parallel systems. Nevertheless, paralleliz-ing minimum degree variants remain as an intriguing question, although previousattempts have not been very en
ouraging [6℄.Another 
omponent of dire
t solvers that requires a distributed algorithm isthe symboli
 fa
torization phase [7℄ for sparse Cholesky/LU fa
torization. Sym-boli
 fa
torization is performed to determine the sparsity stru
ture of the fa
toredmatrix. With the sparsity stru
ture known in advan
e, the numeri
al operations
an be performed mu
h more qui
kly. Symboli
 fa
torization takes mu
h less timethan numeri
al fa
torization, and is often performed sequentially in one pro
essor.A distributed memory algorithm however, is 
riti
al due to memory limitations.Grigori et al. have studied this problem and reported promising initial results [7℄.A more in depth dis
ussion on Sparse Dire
t methods 
an be found in Chap-ter ?? of this book.2.2 De
ompositions with ColoringsIndependent sets and 
oloring algorithms are also 
ommonly used in sparse matrix
omputations. A set of verti
es is independent if no edge 
onne
ts any pair of ver-ti
es in the set. A 
oloring is a union of disjoint independent sets that 
over all theverti
es. The utility of an independent set arises from the observation that none ofthe verti
es in the set depend upon ea
h other, and so operations 
an be performedon all of them simultaneously. This insight has been exploited in the parallelizationof adaptive mesh 
odes, in parallel pre
onditioning and in other settings. Algebrai
multigrid algorithms use independent sets for 
oarse grid 
onstru
tion. Partitioningproblems that arise in the eÆ
ient 
omputation of sparse Ja
obian and Hessian ma-tri
es 
an be modeled using variants of the graph 
oloring problem. The parti
ular
oloring problem depends on whether the matrix to be 
omputed is symmetri
 ornonsymmetri
, whether a one-dimensional partition or a two-dimensional partitionis to be used, whether a dire
t or a substitution based evaluation s
heme is to beemployed, and whether all nonzero matrix entries or only a subset need to be 
om-puted. Gebremedhin [5℄ has developed a uni�ed graph theoreti
 framework to studythe resulting problems, and developed shared memory parallel 
oloring algorithmsto address several of them.2.3 Pre
onditioningIterative methods for solving linear systems also lead to graph problems, parti
ularlyfor pre
onditioning. In
omplete fa
torization pre
onditioners make use of many ofthe same graph ideas employed by sparse dire
t solvers. EÆ
ient data stru
turesfor representing and exploiting the sparsity stru
ture, and reordering methods areall relevant here. Domain de
omposition pre
onditioners rely on good partitions ofa global domain into subproblems, and this is 
ommonly addressed by (weighted)graph or hypergraph partitioning. Algebrai
 multigrid methods make use of graphmat
hings and independent sets in their 
onstru
tion of 
oarse grids or smoothers.
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Support theory te
hniques for pre
onditioning often make use of spanning trees andgraph embeddings.3 Utilizing Computational Infrastru
tureUtilization of the underlying 
omputational infrastru
ture 
ommonly requires 
om-binatorial te
hniques. Even for appli
ations where problems are modeled withte
hniques of 
ontinuous mathemati
s, e�e
tive utilization of the 
omputationalinfrastru
ture requires de
omposition of the problem into subproblems and map-ping them onto pro
essors, s
heduling the tasks to satisfy pre
eden
e 
onstraints,designing data stru
tures for maximum unipro
essors performan
e, and 
ommuni-
ation algorithms to ex
hange information among pro
essors. Solution to all theseproblems require 
ombinatorial te
hniques.3.1 Load Balan
ingOne area where dis
rete algorithms have made a major impa
t in parallel s
ienti�

omputing is partitioning for load balan
e. The 
hallenge of de
omposing an un-stru
tured 
omputation among the pro
essors of a parallel ma
hine 
an be naturallyexpressed as a graph (or hypergraph) partitioning problem. New algorithms ande�e
tive software for partitioning have been key enablers for parallel unstru
turedgrid 
omputations. Some problems, e.g. parti
le simulations, are des
ribed mostnaturally in terms of geometry instead of the language of graphs. A variety of ge-ometri
 partitioning algorithms have been devised for su
h problems. In addition,spa
e-�lling 
urves and o
tree methods have been developed to parallelize multipolemethods. Resear
h in partitioning algorithms and models 
ontinues to be an a
tivearea, mostly due to evolving 
omputational platforms and algorithms. For instan
ewith in
reasing gap between 
omputation and 
ommuni
ation speeds, distributionof the 
ommuni
ation work has be
ome an important problem. The next generationpeta
ops ar
hite
tures are expe
ted to have orders of magnitude more pro
essors.An in
reased number of pro
essors, along with the in
reasing gap between pro
essorand network speeds, will expose some of the limitations of the existing approa
hes.Novel de
omposition te
hniques and interpro
essor 
ommuni
ation algorithms willbe required to 
ope with these problems. Re
ent advan
es in load balan
ing aredis
ussed in depth in Chapter ?? of this book.3.2 Memory Performan
eThe in
reasing gap between CPU and memory performan
es argues for the designof new algorithms, data stru
tures, and data reorganization methods to improvelo
ality at memory, 
a
he, and register levels. Combinatorial te
hniques 
ome tothe fore in designing algorithms that exhibit high performan
e on the deep memoryhierar
hies on 
urrent ar
hite
tures and on the deeper hierar
hies expe
ted on thenext generation super
omputers. Ca
he oblivious algorithms [4℄, developed in thelast few years, hold the promise of delivering high performan
e for irregular problemswhile being insensitive to sizes of the multiple 
a
hes. Another approa
h for better
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a
he utilization is 
a
he aware algorithms [?℄, where the 
ode is tuned to makethe working set �t into the 
a
he (e.g. blo
king during dense matrix operations),or repeated operations are performed for the data already in the 
a
he (e.g. extraiterations for stationary point methods), sin
e the subsequent iterations 
ome at amu
h lower 
ost when the data is already in the 
a
he.Performan
e of sparse matrix 
omputations are often 
onstrained by the mem-ory performan
e due to the irregular memory a

ess patterns and extra memoryindire
tions needed to exploit sparsity. For sparse matrix-ve
tor multipli
ation, itis possible to reorder the matrix to improve memory performan
e. Bandwidth orenvelope redu
tion algorithms have been used to gather nonzeros of the matrixaround the diagonal for a more regular a

ess pattern, and thus fewer 
a
he misses.A new more promising method is the blo
king te
hniques that have been used forregister reuse, and redu
ing memory load operations [19, 16, 10℄. These te
hniquesrepresent the sparse matrix as a union of dense submatri
es. This requires eitherrepla
ing some stru
tural zeros with numeri
al zeros so that all dense submatri
esare of uniform size [10℄, or splitting the matrix into several submatri
es so that ea
hsubmatrix 
overs blo
ks of di�erent sizes [19, 16℄. Experiments show that notablespeedups 
an be a
hieved through these blo
king te
hniques, rea
hing 
lose to thepeak pro
essor performan
es.3.3 Node Allo
ationA re
ent trend for parallel ar
hite
tures is 
omputational 
lusters built of o�-the-shelf 
omponents. Typi
ally in su
h systems, 
ommuni
ation is slower, but it ispossible to build very large 
lusters, due to easy in
rementability. With slow 
om-muni
ation, along with large numbers of pro
essors, 
hoosing whi
h set of pro
es-sors to perform a parallel job be
omes a 
riti
al task for overall performan
e bothin terms of the response time of individual tasks and system throughput. The prob-lem of 
hoosing a subset of pro
essors to perform a parallel job is studied as thenode allo
ation problem, and the obje
tive is to minimize network 
ontention byassigning jobs to maximize pro
essor lo
ality. Bender et al. [12℄ empiri
ally showeda 
orrelation between the average number of hops that a message has to go throughafter node allo
ation and the runtime of tasks. They also proposed node allo
ationheuristi
s that in
rease throughput by 30% on average. Their algorithms linearly or-der the pro
essors of the 
omputational 
luster by using spa
e-�lling 
urves. Nodesare then allo
ated for a task, to minimize the span of pro
essors in this linear order.This algorithm requires only one pass over the linearized pro
essor array. To breakties, best-�t or �rst-�t strategies were studied, and �rst-�t performed slightly betterin the experiments. One dire
tion for further work is to lift the linearized pro
essorarray assumption and generalize the node allo
ation te
hniques to higher dimensionswhere the 
onne
tivity of the parallel ma
hine is more expli
itly modeled.4 Parallelizing Irregular ComputationsIrregular 
omputations are amongst the most 
hallenging to parallelize. Irregularity
an arise from 
omplex geometries, multis
ale spatial or temporal dependen
ies, or
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a host of other 
auses. As mentioned above, graphs and hypergraphs are often usedto des
ribe 
omplex data dependen
ies, and graph partitioning methods play a keyrole in parallelizing many su
h 
omputations. However, there are many irregularappli
ations that 
annot be parallelized merely by partitioning, be
ause the datadependen
ies are more 
omplex than the graphs 
an model. Two examples aredis
ussed below: multipole 
al
ulations and radiation transport.4.1 Multipole Cal
ulationsPerhaps a better de�nition of an irregular problem is one whose solution 
annot bede
omposed into a set of simple, standard, kernel operations. But with this def-inition, the spa
e of irregular problems depends upon the set of a

epted kernels.As parallel 
omputing matures, the set of well-understood kernels steadily in
reasesand problems that had on
e seemed irregular 
an now be solved in more straight-forward manners. An ex
ellent example of this trend 
an be found in the work ofHariharan and Aluru [8℄ on multipole methods for many-body problems.Multipole methods are used to simulate gravitational or ele
tromagneti
 phe-nomena in whi
h for
es extend over long ranges. Thus, ea
h obje
t in a simulation
an e�e
t all others. This is naively an O(n2) 
al
ulation, but sophisti
ated al-gorithms 
an redu
e the 
omplexity to O(n logn) or even O(n). These multipolealgorithms represent 
olle
tions of obje
ts at multiple s
ales, 
ombining the impa
tof a group of obje
ts into a 
ompa
t representation. This representation is suÆ
ientto 
ompute the e�e
t of all these obje
ts upon far-away obje
ts.Early attempts to parallelize multipole methods were 
omplex, albeit e�e
-tive. Spa
e was partitioned geometri
ally and adaptively, load balan
ing was fairlyad ho
, 
ommuni
ation was 
omplex and there were no performan
e guarantees.By anyone's re
koning, this was a 
hallenging, irregular 
omputation. In more re-
ent work, Hariharan and Aluru [8℄ have proposed a set of 
ore data stru
turesand 
ommuni
ation primitives that enable mu
h simpler parallelization. In thiswork, the 
omplexity of early implementations is repla
ed by a series of 
alls tostandard parallel kernels like pre�x and MPI 
olle
tive 
ommuni
ation operations.By building an appli
ation out of well-understood steps, Hariharan and Aluru areable to analyze the parallel performan
e and provide runtime guarantees. Withthis perspe
tive, multipole algorithms no longer need be seen as irregular parallel
omputations.4.2 Radiation Transport on Unstru
tured GridsAnother example of an irregular 
omputation is the simulation of radiation trans-port on unstru
tured grids. Radiation e�e
ts 
an be modeled by the dis
rete or-dinates form of the Boltzmann transport equation. In this method, the obje
t tobe studied is modeled as a union of polyhedral �nite elements, and the radiationequations are approximated by an angular dis
retization. The most widely usedmethod to solve these equations is known as sour
e iteration and relies on \sweeps"on ea
h dis
retized angle. A sweep operation visits all elements in the order of thespe
i�ed dire
tion. Ea
h fa
e of the element is either \upwind" or \downwind"
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1 Figure 2. Dire
ted graph for the sweep operation.depending on the dire
tion of the sweep. Computations at ea
h node requires thatwe �rst know all the in
oming 
ux, whi
h 
orresponds to the upwind fa
es, and theoutput is the outgoing 
ux, that 
orresponds to 
ux through downwind fa
es.As illustrated in Fig. 2, this pro
ess 
an be formally de�ned using a dire
tedgraph. Ea
h edge is dire
ted from the upwind vertex to the downwind one. The
omputations asso
iated with an element 
an be performed if all the prede
essorsof the asso
iated vertex have been 
ompleted. Thus, for ea
h angle, the set of
omputations are sequen
ed as a topologi
al sort of the dire
ted graph. A problemarises, when the topologi
al sort 
annot be 
ompleted, i.e., the graph has a 
y
le.If 
y
les exist, the numeri
al 
al
ulations need to be modi�ed, typi
ally by usingold information along one of the edges in ea
h 
y
le, thereby removing the depen-den
y. De
omposing the dire
ted graph into strongly 
onne
ted 
omponents willyield groups of verti
es with 
ir
ular dependen
ies. Thus s
alable algorithms foridentifying strongly 
onne
ted 
omponents in parallel are essential. Most algorithmsfor �nding strongly 
onne
ted 
omponents rely on depth-�rst sear
h of the graph,whi
h is inherently sequential. Pinar et al. [15℄ des
ribed an O(n lgn) divide-and-
onquer algorithm that relies on rea
hability sear
hes. M
Lendon et al. [13℄ workedon an eÆ
ient parallel implementation of this algorithm and applied it to radiationtransport problems.The eÆ
ient parallelization of a sweep operation is 
ru
ial to radiation trans-port 
omputations. A trivial solution is to assign a set of sweep dire
tions to ea
hpro
essor, this however requires dupli
ating the mesh at ea
h pro
essor, whi
h is in-feasible for large problems. A s
alable solution requires distributing the grid amongpro
essors and doing multiple sweeps 
on
urrently. This raises the questions of howto distribute the mesh among pro
essors and how to s
hedule operations on gridelements for performan
e.Sweep s
heduling is a spe
ial 
ase of the pre
eden
e-
onstrained s
hedulingproblem, whi
h is known to be NP-Complete. For radiation transport, severalheuristi
 methods have been developed and shown to be e�e
tive in pra
ti
e [14, 17℄,but they la
k theoreti
al guarantees. Re
ently, Kumar et al. [11℄ des
ribed the
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�rst provably good algorithm for sweep s
heduling. Their linear time algorithmgives a s
hedule of length at most O(log2 n) times that of the optimal s
hedule.Their random delay algorithm assigns a random delay to ea
h sweep dire
tion.Ea
h mesh element is then assigned to a pro
essor uniformly at random. Ea
hpro
essor parti
ipates in the sweeps without violating the pre
eden
e 
onstraints,and applying a random delay to ea
h sweep. Kumar et al. show that this algorithmwill give a s
hedule of length at most O(log2 n) times the optimal s
hedule. Later,they propose an improved heuristi
 with the same asymptoti
 bound on the worsts
hedule length, but that performs better in pra
ti
e. Experimental results onsimulated runs on real meshes show that important improvements are a
hieved byusing the proposed algorithms.5 Computational BiologyIn re
ent years, biology has experien
ed a dramati
 transformation into a 
om-putational and even an information-theoreti
 dis
ipline. Problems of massive sizeabound in newly a
quired sequen
e information of genomes and proteomes. Multi-ple alignment of the sequen
es of hundreds of ba
terial genomes is a 
omputationalproblem that 
an be attempted only with a new suite of eÆ
ient alignment algo-rithms on parallel 
omputers. Large-s
ale gene identi�
ation, annotation, and 
lus-tering expressed sequen
e tags (EST) are other large-s
ale 
omputational problemsin genomi
s. These appli
ations are 
onstru
ted from a variety of highly sophis-ti
ated string algorithms. Currently there are more than 5 million human EST'savailable in databases and this 
olle
tion 
ontinues to grow. These massive datasets ne
essitate resear
h into parallel and distributed data stru
tures for organizingthe data e�e
tively.Other aspe
ts of biology are also being transformed by 
omputer s
ien
e.Phylogeneti
s, the re
onstru
tion of histori
al relationships between spe
ies or in-dividuals, is now intensely 
omputational, involving string and graph algorithms.The analysis of mi
ro-array experiments, in whi
h many di�erent 
ell types 
ansimultaneously be subje
ted to a range of environments, involves 
luster analysisand te
hniques from learning theory. Understanding the 
hara
teristi
s of proteinintera
tion networks and protein-
omplex networks formed by all the proteins of anorganism is another large 
omputational problem. These networks have the small-world property: the average distan
e between two verti
es in the network is smallrelative to the number of verti
es. Semanti
 networks and models of the world-wideweb are some other examples of su
h small world networks. Understanding the na-ture of these networks, many with billions of verti
es and trillions of edges, is 
riti
alto extra
ting information from them or prote
ting them from atta
k. A more de-tailed dis
ussion on 
omputational problems in biology is provided in Chapter ??of this book.One fundamental problem in bioinformati
s is sequen
e alignment, whi
h in-volves identifying similarities among given sequen
es. Su
h alignments are used to�gure out what is similar and what is di�erent in the aligned sequen
es, whi
h mighthelp identify the genomi
 bases for some biologi
al pro
esses. One appli
ation of se-



\
s
"2005/2/10pagei i ii

i i ii

quen
e alignment is �nding DNA signatures. A signature is a group of subsequen
esin the DNA that is preserved in all strains in a set of pathogens, but unique when
ompared to all other organisms. Finding signatures requires multiple sequen
ealignments at the whole genome level. While dynami
 programming is 
ommonlyused to optimally align small segments, the 
omplexity of these algorithms is theprodu
t of the lengths of the sequen
es being aligned. The 
omplexity, and thegap between its mathemati
al optimality and biologi
al e�e
tiveness make dynami
programming algorithms undesirable for whole genome level alignments. Hysomand Baldwin [9℄ worked on an alternative. They use suÆx trees to �nd long subse-quen
es that are 
ommon in all sequen
es. In a suÆx tree, ea
h suÆx is representedby a path from the root to a leaf, and its 
onstru
tion takes only linear time andspa
e. On
e the suÆx tree is 
onstru
ted, long 
ommon subsequen
es 
an be easilyfound by looking at internal nodes of the tree. Among these long subsequen
esan
hors are 
hosen for the basis of alignment, so that in the �nal alignment an
horsare mat
hed to ea
h other, and the problem is de
omposed to align subsequen
esbetween the an
hors. Hysom and Baldwin use this de
omposition to parallelize thealignment pro
ess.6 Information AnalysisAdvan
es in te
hnology have enabled produ
tion of massive volumes of data throughobservations and simulations in many s
ienti�
 appli
ations su
h as biology, high-energy physi
s, 
limate modeling, and astrophysi
s. In 
omputational high-energyphysi
s, simulations are 
ontinuously run, and notable events are stored in detail.The number of events that need to be stored and analyzed is on the order of severalmillions per year. This number will go up dramati
ally in 
oming years as newa

elerators are 
ompleted. In astrophysi
s, mu
h of the observational data is nowstored ele
troni
ally, 
reating a virtual teles
ope whose data 
an be a

essed andanalyzed by resear
hers world wide. Genomi
 and proteomi
 te
hnologies are now
apable of generating terabytes of data in a single day's experimentation. A simi-lar data explosion is impa
ting �elds besides the 
onventional s
ienti�
 
omputingappli
ations and even the broader so
ieties we live in, and this trend seems likelyto 
ontinue.The storage, retrieval, and analysis of these huge data sets is be
oming an in-
reasingly important problem, that 
ries out for sophisti
ated algorithms and highperforman
e 
omputing. EÆ
ient retrieval of data requires a good indexing me
ha-nism, however even the indexing stru
ture itself often o

upies a huge spa
e due tothe enormous size of the data, whi
h makes the design of 
ompa
t indexing stru
turea new resear
h �eld [?℄. Moreover the queries on these data sets are signi�
antly dif-ferent than those for traditional databases and so require new algorithms for querypro
essing. For instan
e, Google's page ranking algorithm su

essfully identi�esimportant web pages among those relevant to spe
i�ed keywords. This algorithmis based on eigenve
tors of the link graph of the web. Linear algebra methods areused elsewhere in information pro
essing in latent semanti
 analysis te
hniques forinformation retrieval. In a similar 
ross-dis
iplinary vein, understanding the output
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of large s
ale s
ienti�
 simulations is in
reasingly demanding tools from learningtheory and sophisti
ated visualization algorithms.Graphs provide a ni
e language to represent the relationships arising in various�elds su
h as the Web, gene regulatory networks, or people intera
tion networks.Many su
h networks have power law degree distributions. That is, the numberof nodes with d neighbors is proportional to 1=d� for some 
onstant � > 0. This
onstant has been observed to be between 2 and 3 for a wide assortment of networks.One 
onsequen
e is that these networks have small diameters, O(log logn), wheren is the number of nodes. A deeper understanding of the properties of 
omplexnetworks, and algorithms that exploit these properties, will have a signi�
ant impa
tupon our ability to extra
t useful information from many di�erent kinds of data.The analysis of very large networks requires parallel 
omputing. To parallelizethe analysis, the network must �rst be divided among the pro
essors. Chow et al.have studied this partitioning problem [2℄. Partitioning a network into loosely-
oupled 
omponents of similar sizes is important for parallel query pro
essing, sin
eloosely-
oupled 
omponents enable lo
alizing most of the 
omputation to a pro
es-sor with limited 
ommuni
ation between pro
essors. Although existing partitioningte
hniques are suÆ
ient for many s
ienti�
 
omputing problems, the data depen-den
ies in 
omplex networks are mu
h less stru
tured, and so new parallelizationte
hniques are needed.7 Solving Combinatorial ProblemsThe in
reasing use of 
ombinatorial te
hniques in parallel s
ienti�
 
omputing willrequire the development of sophisti
ated software tools and libraries. These librarieswill need to be built around re
urring abstra
tions and algorithmi
 kernels. Oneimportant abstra
tion for dis
rete problems is that of integer programming. Awide assortment of 
ombinatorial optimization problems 
an be posed as integerprograms. Another foundational abstra
tion is that of graph algorithms. For both ofthese general approa
hes, good parallel libraries and tools will need to be developed.7.1 Integer ProgrammingMany of the 
ombinatorial optimization problems that arise in s
ienti�
 
omputingare NP-hard, and thus it is unreasonable to expe
t an optimal solution to be foundqui
kly. While heuristi
s are a viable alternative for appli
ations where fast solversare needed and sub-optimal solutions are suÆ
ient, for many other appli
ationsa provably optimal or near-optimal solution is needed. Examples of su
h needsarise in vehi
le routing, resour
e deployment, sensor pla
ement, protein stru
turepredi
tion and 
omparison, robot design and vulnerability analysis. Large instan
esof su
h problems 
an only be solved with high-performan
e parallel 
omputers.Mixed-integer linear programming (MILP) involves optimization of a linearfun
tion subje
t to linear and integrality 
onstraints, and is typi
ally solved inpra
ti
e by intelligent sear
h based on bran
h-and-bound and bran
h-and-
ut (
on-straint generation). Bran
h and Bound (B&B) re
ursively sub-divides the spa
eof feasible solutions by assigning 
andidate values to integer variables, i.e., xi =
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xj xkFigure 3. Bran
h-and-bound algorithm0; 1; 2; : : :. Ea
h bran
h represents the subdomain of all solutions where a variablehas the assigned value, e.g., xi = 0. These steps 
orrespond to the \bran
hing" 
om-ponent of a B&B algorithm. The other important 
omponent is bounding, whi
hhelps avoid exploring an exponential number of subdomains. For ea
h subdomain alower bound on the minimum (optimal) value of any feasible solution is 
omputed,and if this lower bound is higher than the value of the best 
andidate solution, thissubdomain is dis
arded. Otherwise, B&B re
ursively partitions this subdomain and
ontinues the sear
h in these smaller subdomains. Optimal solutions to subregionsare 
andidates for the overall optimal. The sear
h pro
eeds until all nodes havebeen solved or pruned, or until some spe
i�ed threshold is met between the bestsolution found and the lower bounds on all unsolved subproblems.EÆ
ien
y of a B&B algorithm relies on availability of a feasible solution thatgives a tight upper bound on the optimal solution value, and a me
hanism to �ndtight lower bounds on problem subdomains, to fathom subdomains early, withoutrepeated de
ompositions. Sin
e B&B 
an produ
e an exponential number of sub-problems in the worst 
ase, general and problem-spe
i�
 lower and upper boundte
hniques are 
riti
al to keep the number of subproblems manageable in pra
ti
e.Heuristi
s are 
ommonly used for upper bounds. What makes MILPs attra
tive formodeling 
ombinatorial models is that a lower bound on a MILP 
an be 
omputedby dropping the integrality 
onstraints and solving the easier linear-programmingrelaxation. Linear programming (LP) problems 
an be eÆ
iently solved with to-day's te
hnology. However, tighter lower bounds ne
essitate 
losing the gap betweenLP polytope and the MILP polytope, that is narrowing the LP feasible spa
e to
over only a little more than the integer feasible spa
e. This 
an be a
hieved bydynami
 
onstraint (a.k.a. 
utting plane) generation, either for the whole problemor for the subdomains.Bran
h-and-bound algorithms 
an e�e
tively utilize large numbers of pro
es-sors in a parallel pro
essing environment. However, the ramp-up phase remains asa 
hallenge. E
kstein et al. [3℄ designed and developed a Parallel Integer and Com-binatorial Optimizer (PICO) for massively parallel 
omputing platforms. They
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Integer  
optimal

LP optimal

Cutting plane
LP feasible
regionFigure 4. Cutting planes 
lose the gap between IP and LP feasible regions.observed that the presplitting te
hnique that starts with bran
hing to de
omposethe problem into one subdomain per pro
essor often leads to poor performan
e,be
ause it expands many problems that would be fathomed in a serial solution.Alternatively, they studied parallelizing the ramp-up phase, where many pro
essorswork in parallel on a single subdomain. This requires parallelization of prepro
ess-ing, LP solvers, 
utting plane generation, and gradient 
omputations to help with
hoosing whi
h subdomain to de
ompose. A more detailed dis
ussion on massivelyparallel integer programming solvers 
an be found in Chapter ?? of this book.7.2 Libraries for Graph AlgorithmsThe importan
e of graph algorithms is growing due to the broad appli
ability ofgraph abstra
tions. This is parti
ularly true in bioinformati
s and s
ienti�
 datamining. S
ienti�
 problems often generate enormous graphs that 
an only be an-alyzed by parallel 
omputation. However, parallelization of graph algorithms isgenerally very hard and is an extremely 
hallenging resear
h �eld. Bader and 
ol-leagues have studied the parallelization of a number of fundamental graph opera-tions, su
h as spanning trees and ear de
ompositions on SMPs for small numbersof pro
essors. In Bader's spanning tree implementation [1℄, ea
h pro
essor startsgrowing trees from di�erent verti
es by repeatedly adding a vertex adja
ent to avertex in the 
urrent tree. Ra
e 
onditions are handled impli
itly by the SMP,and load balan
ing is a
hieved by work stealing between pro
essors. Bader andCong [1℄ also studied 
onstru
tion of a minimum spanning tree (MST), where theobje
tive is to 
onstru
t a spanning tree with minimum edge-weight sum. Theyused Boruvka's MST algorithm, whi
h labels ea
h edge with the smallest weightto join the MST, and at ea
h iteration adds the edge with minimum 
ost to thetree. Bader and Cong experimented with di�erent data stru
tures for Boruvka'salgorithm, and with a new algorithm where ea
h pro
essor runs Prim's algorithmuntil it is maximal, and then swit
hed to Boruvka's algorithm. Their approa
h wasthe �rst to obtain speedup on parallel MST algorithms.This and related work needs to be bundled into easy-to-use toolkits to fa
ilitatethe greater use of graph algorithms in parallel appli
ations.
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8 Con
lusionsIn this 
hapter, we have introdu
ed a few of the areas in whi
h 
ombinatorial al-gorithms play a 
ru
ial role in s
ienti�
 and parallel 
omputing. Although some ofthese examples re
e
t de
ades of work, the role of dis
rete algorithms in s
ienti�

omputing has often been overlooked. One reason for this is that the appli
ationsof 
ombinatorial algorithms are s
attered a
ross the wide lands
ape of s
ienti�

omputing, and so a broader sense of 
ommunity has been hard to establish. This
hallenge is being addressed by the emergen
e of 
ombinatorial s
ienti�
 
omputingas a re
ognized subdis
ipline.It is worth noting that some of the most rapidly growing areas within s
ienti�

omputing (e.g. 
omputational biology, information analysis, et
.) are parti
ularlyri
h in 
ombinatorial problems. Thus, we expe
t 
ombinatorial ideas to play anever-growing role in high performan
e 
omputing in the years to 
ome.A
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