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Abstract: Above-boiling temperature conditions, as encountered, for example, in 

geothermal reservoirs and in geologic repositories for the storage of heat-producing 

nuclear wastes, may give rise to strongly altered liquid and gas flow processes in porous 

subsurface environments. The magnitude of such flow perturbation is extremely hard to 

measure in the field. We therefore propose a simple temperature-profile method that uses 

high-resolution temperature data for deriving such information. The energy that is 

transmitted with the vapor and water flow creates a nearly isothermal zone maintained at 

about the boiling temperature, referred to as a heat pipe. Characteristic features of 

measured temperature profiles, such as the differences in the gradients inside and outside 

of the heat pipe regions, are used to derive the approximate magnitude of the liquid and 

gas fluxes in the subsurface, for both steady-state and transient conditions.  
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1.   Introduction  
 
Thermal perturbations can have a strong impact on underground flows, in particular when 

the temperatures go beyond the boiling point of water and vapor is generated at 

significant rates. Such conditions often result in strong counterflow of liquid and gas 

phases and significant convective transfer of heat, commonly known as geologic “heat 

pipes” (e.g., Udell, 1985; Doughty and Pruess, 1990, 1992). Originally, the term “heat 

pipe” described engineered devices—typically hollow cylinders filled with a vaporizable 

liquid—that are used in many industrial applications to increase the efficiency of heat 

transport. Both technical and geologic heat pipes operate on the same basic principles. 

Since the density of vapor is much smaller than the density of liquid water, vaporization 

near the heat source creates a pressure buildup and causes vapor transport to cooler, more 

distant regions. The vapor condenses and deposits a large amount of latent heat. This 

condensation gives rise to an increase in saturation, thereby creating a capillary pressure 

gradient that drives the reflux of liquid water back to the heat source. The liquid 

vaporizes again and repeats the cycle. For condensate deposited above the heat source, 

gravity effects amplify the magnitude of reflux towards the boiling zone (Birkholzer et 

al., 2004).  

 

A thorough understanding of geologic heat pipes and their effect on flow and transport 

processes is essential, for example, in vapor-dominated geothermal systems such as the 

Geysers in California (e.g., Pruess, 1985), in thermally enhanced oil recovery, and in 

subsurface systems affected from buried pipelines and electrical cables (Udell, 1985). 

Heat pipes are also expected in the vicinity of the geologic repository for nuclear waste at 
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Yucca Mountain, Nevada (Pruess et al., 1990a, 1990b). Determining the magnitude of 

vapor-liquid counterflow in a heat pipe is relevant to the performance of this repository 

because the temperature and relative humidity close to the waste packages—important 

parameters for canister corrosion—are influenced by the relative rates of conductive and 

convective heat transfer. The reflux generated by heat pipes also raises concern about the 

potential for water seepage into the emplacement tunnels at Yucca Mountain (Birkholzer 

et al., 2004). Rapid preferential flow of condensate back to the heated rock zone may lead 

to local intrusion of water into the tunnels, even when the average temperature in the 

near-field rock is still above boiling (Birkholzer and Ho, 2003). Large-scale heater tests 

have been conducted in underground research tunnels at Yucca Mountain to assess the 

future repository’s response to the decay heat and to determine the impact of thermal 

perturbation on liquid and gas flow, showing clear evidence of heat pipe behavior in the 

fractured porous rock (e.g., Birkholzer and Tsang, 2000; Bechtel SAIC Company, 

2004a).  

 

While knowledge about the magnitude of vapor and liquid flow is very valuable in 

complex thermal settings such as geothermal reservoirs and geologic repositories, it is 

virtually impossible to directly measure these quantities in the field. A common practice 

is therefore to employ numerical models calibrated to data that can be more easily 

measured in the field. However, the coupled flow processes are very complex, and the 

model parameters affecting the flow field (e.g., hydraulic conductivity) often vary over 

orders of magnitude in field settings.  Thus, the calibration results may not always be 

unique, and quite often the flow estimates from numerical models are not very reliable. In 
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this paper, we propose a temperature-profile method that allows us to directly determine 

the quantity of reflux processes in geologic heat pipes.  

 

Temperature-profile methods have been originally employed to estimate ambient 

percolation fluxes in vadose environments, using measured deviations from the 

conduction-only geothermal gradient to evaluate the rate of convective heat transport 

with the percolating water (e.g, Bredehoeft and Papadopolous, 1965; Constantz et al., 

2003). Using a similar approach, our proposed method utilizes the fact that the vapor-

liquid flow processes within a heat pipe transmit a significant amount of energy. This 

creates a nearly isothermal zone maintained at about the boiling temperature, with 

temperature gradients much smaller than those in the surrounding conduction-dominated 

regions. We will show in this paper that the difference between the temperature gradient 

within a heat pipe and the larger gradient in the above-boiling temperature region is 

approximately proportional to the amount of condensate reflux towards the heated zone. 

Application of this method requires temperature profile data in sufficient resolution, 

knowledge of thermal properties, and a general notion on the geometry of the heat 

transfer behavior (for example, linear versus radial-symmetry). Since the measurements 

of temperature and thermal conductivity are relatively simple and accurate in subsurface 

systems, the estimated reflux rates using this method are approximate, depending on the 

quality of the temperature data, but in general fairly reliable. 

 

The proposed temperature-gradient method for heat pipes enables us to directly quantify 

the liquid and gas flow processes in a complex thermal-hydrological setting. In cases 
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where numerical models exist for a given application, results from the temperature-

profile method can be used as an additional piece of evidence for model calibration and 

validation. Provided that temperature profiles are available at many different locations in 

the thermal-hydrological system, the estimated fluxes provide valuable knowledge on the 

heterogeneity of flow processes, allowing us to distinguish between regions of large and 

small reflux. In the following sections, we discuss basic features of a heat pipe using a 

simple example problem, present the theoretical basis for the proposed temperature-

profile method at both steady-state and transient conditions, and test the method in 

comparison with numerical  solutions of thermally driven flow processes in porous 

subsurface systems.  

 

2.   Conceptual Model  
 
2.1  Thermal and Hydrological Conditions Influenced by Heat Pipes 
 
To illustrate the typical conditions inside of and near heat pipes in geologic media, we 

discuss an example problem with simplified radial geometry, as described in Doughty 

and Pruess (1992) and Pruess et al. (1999). A heat source with a constant-strength line 

load of 667 W/m is placed at radius r = 0 m into an unsaturated porous-medium 

environment with the properties given in Table 1. (For average waste canisters at Yucca 

Mountain, this thermal power corresponds to wastes approximately 40 years old.) 

Initially, the flow system is at steady state with no flow processes occurring; pressure, 

temperature, and liquid saturation have uniform values of P = 1 bar, T = 18oC, and 

SL = 0.8, respectively. These same values are set as fixed boundary conditions at an outer 

boundary far enough from the heat source so as not to affect the heat-pipe problem. 

Gravity is not considered. The numerical simulator TOUGH2 (Pruess et al., 1999) was 
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employed to simulate the transient two-phase, two-component fluid and heat flow 

processes that evolve once the system starts heating up.  

 

Figure 1a shows the simulated results in form of temperature and liquid saturation at time 

t = 4 years after heating is initiated. (For comparison, temperature profiles are also given 

at times t = 2 years and t = 8 years.) Profiles of both liquid and gas fluxes are depicted in 

Figure 1b, for the same time step. Although the chosen example case is simplified, it 

shows all the main characteristics of a more realistic, natural heat pipe. Both the 

temperature and flux profiles indicate clearly that a heat pipe has developed at 4 years 

that stretches from about 2.2 m to about 3.6 m in radius. Temperature is nearly isothermal 

in this region, with a gradient much smaller than the upstream or the downstream one. 

Liquid saturation is zero at the inner radius of the heat pipe and slightly higher than the 

initial value of 0.8 at the outer radius, indicating that water boils off at one end and vapor 

is deposited at the other.  This coincides with the significant gas flux of about 540 mm/yr 

in the outward direction (positive values). The outward gas flow is almost balanced by an 

inward liquid flux (negative values), driven by the strong capillary pressure gradient 

generated from saturation differences. Note that the maximum fluxes of both gas and 

liquid occur close to the boiling end of the heat pipe. 

 

The inner conduction region (between r = 0 and 2.2 m) is completely dry. With 

temperatures significantly above the boiling point, all liquid water has vanished. 

(Significant amounts of liquid water can only exist at above-boiling temperatures as a 

result of vapor pressure lowering in porous media with very strong capillarity. Such cases 
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are not considered in this paper.) Gas flow is zero in this region because the inner 

boundary is closed and offers no possibility for pressure release. The outer conduction 

region (beyond r = 3.6 m) has essentially no gas flow but some outward liquid flow. 

Since liquid saturation has increased above its initial value due to condensation, capillary 

pressure differences drive water not only back to the heat source, but, at a lesser rate, also 

towards the ambient-saturation regions farther away from the heat source.  

 

Figure 1a also depicts the mass fraction of air in the gas phase. The air mass fraction is 

zero in both the inner conduction zone and the heat pipe region, indicating that the system 

is vapor dominated at temperatures above and close to boiling. Similarly, for the 

conditions considered, the mass fraction of air in the liquid phase is essentially zero. In 

the context of this paper, where the focus is on the heat and mass transfer processes 

within the heat pipe and the inner conduction zone, the component air can be neglected in 

both the liquid and gas phases, and the terms “water” and “liquid” as well as “vapor” and 

“gas” are used interchangeably.  

 

In the literature, heat pipes are often described as steady-state systems, meaning that the 

location and intensity of the heat pipe does not vary with time (stationary heat pipes). In 

the steady-state case, the energy conducted from the heat source to the heat pipe region 

must be in equilibrium with the energy required to vaporize the refluxing water. The 

system depicted in Figure 1 has not yet reached a steady-state situation. As the additional 

temperature profiles for t = 1 year and t = 8 years demonstrate, the heat pipe slowly 

moves away from the heat source, transporting the regions of vaporization and 
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condensation further outward. Thus, the energy provided by the heat source is not only 

needed to vaporize refluxing water, but also to change the temperature in the solid phase 

and to boil the resident pore water in the system as the heat pipe migrates. Because of 

pore water vaporization, the gas flux shown in Figure 1b is slightly larger than the rate of 

liquid flux (i.e., more vapor is produced than provided by refluxing water). The 

considered example will eventually end up at steady-state conditions when the outer 

boundary of the model area is felt, provided that the heat load remains constant. In 

contrast, temporal changes in the heat load, as to be expected for the decay heats 

emplaced at Yucca Mountain, will continuously change the heat pipe location and 

intensity with time.     

 

2.2  Temperature-Gradient Method for Heat Pipes 
 
The temperature-gradient method proposed in this paper is based on simple one-

dimensional mass- and energy-balance formulations for a finite volume as depicted in 

Figure 2. We derive the governing equations for a radial-symmetric system; conversion 

into a system with linear heat and mass flow is straightforward.  The finite volume is 

defined by the inner radius r1 and the outer radius r2, spanning a distance r∆ . The radii 

are chosen such that the volume incorporates a small portion of rock at the boiling end of 

the heat pipe, with r1 situated in the inner conduction zone and r2 situated within the heat 

pipe region.  

 

Based on the observations in Section 2.1 (Figure 1), the following mass and heat flow 

components enter or leave the finite volume. At r1, across interfacial area A1 = 2 π r1, gas 

and liquid flow rates are zero (QL,1 = QG,1 = 0), while a significant amount of conductive 
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heat enters the finite volume owing to the large upper-temperature gradient ∇ . At r1T 2, 

across interfacial area A2 = 2 π r2, a much smaller amount of conductive heat leaves the 

element, since the temperature gradient 2T∇  is almost zero in the heat pipe region. Liquid 

water enters the finite volume across A2 at mass flow rate QL,2. As this water boils off, 

vapor is produced within the finite volume and leaves across A2 at mass flow rate QG,2. 

These flow processes result in convective transport of heat with the liquid phase (QL,2 hL) 

and with the gas phase (QG,2 hG), where hL is the specific enthalpy of liquid water and hG 

is the (much larger) specific enthalpy of vapor. (Note that the conceptual and 

mathematical formulation of the temperature-gradient method in the Appendix is 

developed for the more general situation where QG,1 ≠ 0; i.e., a situation where the vapor 

produced in the finite volume escapes into both directions. Bidirectional vapor flow can 

occur in the not-uncommon case that the heat-source location coincides with an open 

boundary for gas flow. This situation is given, for example, at Yucca Mountain, where 

hot waste packages are placed into open tunnels, while a heat pipe forms in the adjacent 

fractured rock.)  

 

Balancing the mass and heat flow components for the finite volume results in a set of 

equations for steady-state and transient heat pipes that link the magnitude of the water 

reflux to the temperature gradients measured at the inner and the outer radii of the 

element. Details on the governing equations and the mathematical derivations are given 

in the Appendix.  
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For steady-state heat pipes, the mass flow rate Q  of water driven back towards the 

boiling region in a heat pipe can be approximated as  

S
2L,

 

 
( )
( )LG

2211S
2L hh

TrTr2Q
−

∇−∇
≈

πλ
, .     (1) 

               
Equation (1), referred to hereafter as the quasi-steady solution, essentially states that the 

net amount of energy conducted to the finite volume is equal to the energy required to 

vaporize the refluxing liquid water. Since the produced vapor needs to escape from the 

volume (no storage at steady state), the gas flow rate naturally has identical magnitude, 

but opposite direction to the liquid flow rate (QG,2 = -QL,2). The terms on the right-hand 

side of Equation (1) contain either site-specific quantities that can be easily determined 

from laboratory and field measurements (thermal conductivity λ, radii, temperature 

gradients) or known thermodynamic properties of water and vapor (specific enthalpies).  

 

For transient heat pipes, the mass and energy balance equations include a storage term 

(see Appendix). As the heat pipe moves away from the heat source, resident pore water 

vaporizes and exits the finite volume, in addition to vapor produced from refluxing water. 

Also, some fraction of energy is necessary to accommodate the heating of lower-

temperature regions encountered by the migrating finite volume. Given that the transient 

characteristics of a heat pipe can be described using a boiling front velocity v , the mass 

flow rate Q  in a transient heat pipe can be approximately determined by adjusting the 

steady-state mass flow rate  using a transient flow rate correction  as follows 

&

T
2L,

S
2LQ ,
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with   

 ( ) ( )
( ) 2LL

LG

21SScorr
2L Svr2

hh
TTC

1vr2Q ,, φρπ
ρ

φπ && +
−
−

−≈ . (3) 

 
Here, r  is the average radius of the finite volume. The first term in Equation (3) can be 

determined in a straightforward manner; it contains mostly site-specific quantities that 

can be easily measured (porosity, average radius, grain density, grain heat capacity, 

temperature) or known thermodynamic properties of water and vapor (specific 

enthalpies). The boiling front velocity v  can be estimated from temperature profiles 

measured at sufficient temporal resolution. The second term contains the liquid saturation 

S

&

L,2 at location r2 within the heat pipe. Unfortunately, it is not easy to measure this 

parameter in the field. We will demonstrate below that the transient flow rate corrections 

are quite often much smaller than the steady-state flow rates, and that transient heat pipes 

can then be treated as quasi-steady systems for the purpose of estimating flow. The 

transient contribution is often negligible because the migration of the boiling front is 

relatively slow and because the temperature as well as the saturation differences within 

the finite volume are moderate. Nevertheless, Equation (3) should always be exercised to 

confirm that the transient component is indeed of small importance to the flow rate 

results. In case SL,2 is not available from field measurements, this check should be done 

using a range of reasonable estimates for the liquid saturation at radius r2.  

 

The resulting quasi-steady and transient mass flow rates, as well as the transient 

corrections, denote the liquid flow over the entire radial-symmetric interfacial area A2. 

These can be easily converted into a Darcy fluxes as follows       
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Note the convention of positive fluxes moving outward, in positive r-direction. Thus the 

liquid fluxes, directed back towards the heat source, would come out as a negative value 

according to this convention.  

 

In a system with linear-geometry heat flow processes, Equations (1) and (3) can be 

formulated independent of the radius r. Eliminating radial contributions, the mass flow 

rate in a linear-geometry heat pipe can be approximated for quasi-steady conditions: 

 

 
( )
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21S
2L hh

TTQ
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λ

, .     (5) 

For transient conditions in a linear system, the steady-state mass flow rate is adjusted 

using Equation (2), with the transient flow rate correction given as 
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The mass flow rates in Equations (5) and (6) can be converted into Darcy fluxes as 

follows 
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3.   Testing the Method for A Radial-Symmetric Example 
 
To test its potential, we apply the temperature-gradient method to the radial-symmetric 

example problem introduced in Section 2.1 (see simulation results in Figure 1). Let us 

assume that the simulated temperature profiles are measured data from a field 

application. The nodal points of the finite volume discretization may represent 

temperature sensors distributed along a borehole that measure the temperature profile in 

radial direction. Let us also assume that the thermal conductivity used in the example 

problem is known from field or laboratory measurements. We may then apply Equations 

(1) through (4) to determine the approximate liquid fluxes at quasi-steady and transient 

conditions, respectively, and may compare these fluxes with the simulation results given 

by the numerical model. Good agreement between the estimated and simulated fluxes 

would suggest that the temperature-gradient method works in principle.  

 

The starting point of this process is a thorough analysis of the temperature profiles. A 

valuable practice is to determine the gradients between two adjacent sensors (nodal 

points) and to plot these together with the temperature profile. Plotting the gradients for 

the example problem clearly reveals the presence of a heat pipe at t = 4 years (Figure 3), 

with a strong change of the gradient within a short distance between r ≈ 2.2 m and r ≈ 

2.4 m. We choose a finite volume with appropriate radii r1 and r2 near the boiling end of 

the heat pipe, making sure that these radii are outside of the change-of-gradient region. In 

other words, radius r1 should be safely located in the inner conduction zone, with gradient 

changes related only to the radial geometry of the conductive heat flow processes. Radius 

r2 should be safely located in the heat pipe region, where the temperature gradients are 
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small and remain almost uniform with increasing radius. On the other hand, as pointed 

out earlier, r2 needs to be chosen near the inner end of the heat pipe where the maximum 

water reflux occurs (see Figure 1). With given radii, temperature gradients, and thermal 

conductivity, we use Equation (1) to determine the liquid fluxes in the heat pipe under 

quasi-steady assumptions. 

 

Application of Equations (2) and (3) for a transient heat pipe requires determination of 

the boiling front velocity v . The boiling front velocity can be easily estimated from 

temperature profiles measured at different times. To estimate the boiling front velocity 

for a heat pipe at time t, we suggest using two additional temperature profiles measured at 

times  and . The next steps are to determine the boiling point 

locations r, , and  at times t, , and  (i.e., the locations of the boiling end of each 

heat pipe), to obtain the differences 

&

t=ttta ∆−=

ar

ttb ∆+

tbr a bt

r aa rr −=∆  and rrr bb −=∆  between these 

locations, and to calculate two boiling front velocities trava ∆∆= /&  and v trbb ∆∆= /& . 

The resulting boiling front velocity  at time t is then derived as the arithmetic average 

of the two values v  and . Note that 

v&

a& bv& t∆  should be chosen small enough such that the 

boiling front velocities at t  and  are similar to that at time t. On the other hand, a bt t∆  

needs to be large enough such that the three temperature profiles have measurably 

different boiling point locations. 

 

The thermodynamic properties of water and steam in Equations (1) through (7) are a 

function of temperature and pressure. Since the finite volume defined for the 

temperature-gradient method is at the boiling end of the heat pipe, the specific enthalpies 
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of water and vapor as well as the density of water should ideally be determined at the 

boiling point of water, which varies with pressure. Pressure, in turn, is affected by 

vaporization, which generally gives rise to some pressure buildup in the inner conduction 

zone and, to a lesser extent, in the heat pipe region. However, the temperature and 

pressure dependence of the relevant thermodynamic properties is not significant and can 

be neglected in most practical applications. For example, a boiling point increase from 

T = 99.6oC to T = 111.4oC, corresponding to a (quite significant) pressure increase from 

P = 1 bar to P = 1.5 bar, would lead to a less than 2% decrease in the net sum of the 

specific enthalpies  and a less than 1% decrease in water density ( LG hh − ) Lρ . These 

differences are much smaller than the uncertainties associated with the estimated liquid 

fluxes, which may stem from measurement inaccuracies, data noise, heterogeneity, and 

insufficient sensor resolution (see example in Section 4.3). All calculations in this paper 

are performed with the thermodynamic properties determined at a pressure of 1 bar and a 

boiling point temperature of T = 99.6oC (see Table 1). When applying the temperature-

gradient method, the inaccuracy introduced by this assumption can easily be evaluated by 

analyzing the pressure conditions. This is trivial for cases in which gas pressure 

measurements are available. Otherwise, the boiling temperature—and the corresponding 

gas pressure—can be estimated from the temperature measurements at the boiling end of 

the heat pipe. The temperature profile in Figure 3, for example, shows a temperature of 

about 105oC at this location, indicating that the local vapor pressure should be about 1.2 

bar.   
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Figure 4 compares the liquid fluxes obtained from the temperature-gradient method with 

those from the simulation model. Fluxes were estimated using the quasi-steady and the 

transient solutions given in Section 2—Equation (1) and Equations (2), (3), respectively. 

Results are presented for the temperature profile given in Figure 3 (at t = 4 years) as well 

as for two additional times at t = 2 years and t = 8 years. The plot shows excellent 

agreement between the estimated fluxes and the simulated results, for all three times. The 

quasi-steady fluxes are almost identical to the transient fluxes, indicating that the 

transient flux correction is negligible. Hence, the flux estimates obtained from the quasi-

steady assumption provide sufficiently accurate heat-pipe fluxes for this first example 

case; application of the more complex transient solution is not necessary.  

 

Table B1 in Appendix B gives more detail on how the estimated fluxes have been derived 

in this example case. The table lists the chosen radii r1 and r2 at both sides of the boiling 

end of the heat pipe and gives the gradients measured at those locations. The observed 

trend of liquid flux decreasing as the heat pipe gradually moves away from the heater is 

reflected in the measured temperature gradients that reduce with time and increasing 

radius. Note that the radii and gradients given in Table B1 are those for the “best-

estimate” finite volume, with r1 being the first radius that is safely located in the inner 

conduction zone. To demonstrate that the flux calculation is not sensitive to the choice of 

the r1 (as long as r1 is situated in the inner conduction zone), we have determined 

additional flux estimates using the next four upstream gradients, plotted as small green 

symbols in Figure 4. The results are virtually identical to those obtained for the “best-

estimate” finite volume.  
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Table B1 also provides supporting information on the transient flux-correction terms. The 

boiling front velocity required for estimating Q  is determined using ∆ = 0.25 years, 

meaning that, for example, the approximate progress of the boiling front at t = 4 years is 

evaluated using additional temperature profiles at times t

corr
2L, t

a = 3.75 years and tb = 4.25 

years. The boiling front migrates with small velocities of about 0.4 m per year (at 2 years) 

down to about 0.2 m per year (at 8 years). Such velocities are small and do not allow for 

a significant transient contribution to the estimated fluxes. Table B1 gives the transient 

flux corrections separately for the temperature-dependent term and the saturation-

dependent term. It turns out that the transient contributions are indeed very small (on the 

order of a few millimeter per year), similar in magnitude to the differences between the 

estimated quasi-steady fluxes and the simulated results. Consequently, these transient 

contributions can be safely neglected in this first example case.  

 

4.   Two-Dimensional Test Cases with Gravity-Driven Flow 
 
4.1  Base Case 
 
In this section, the temperature-gradient method is applied to two-dimensional test cases 

more representative of the horizontal-tunnel emplacement design envisioned for the 

geologic repository at Yucca Mountain. The first test case, referred to hereafter as base 

case, is defined as follows. A heat source with a constant-strength line load is placed into 

a horizontal tunnel located in the center (x = 0 m and z = 0 m) of a vertical domain of 200 

× 200 m2 extent. The axis of the heater and the tunnel axis are orthogonal to the vertical 

domain. The tunnel radius is 2.75 m, identical to the future emplacement drifts planned at 
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the Yucca Mountain repository. The thermal-hydrological properties in the porous 

medium surrounding the tunnel, as well as the initial and boundary conditions, are 

identical to the radial-symmetric example introduced in Section 2.1, with the exceptions 

(1) that gravity is considered as a driving force for flow, (2) that the initial saturation of 

the subsurface is set to 0.6 instead of 0.8, and (3) that the heater power is 1,095 W/m 

instead of 667 W/m. The initial saturation was reduced in this example case to avoid 

unrealistically high gravity-driven percolation flux at ambient conditions. The selected 

heater power is identical to the average line load generated by the nine floor heaters in the 

Drift Scale Test, a large-scale underground heater test currently being conducted at the 

geologic repository for nuclear waste at Yucca Mountain (Datta et al., 2004). 

 

The numerical simulator TOUGH2 (Pruess et al., 1999) was employed to determine the 

thermal-hydrological flow processes in the model domain. The open tunnel was modeled 

as a gas-filled, zero-capillarity medium with a thermal conductivity of 10.6 W/(m-K).  

This large thermal conductivity approximates the effective radiative heat transfer that 

occurs between the heat source located in the center of the tunnel and the tunnel walls. 

Initially, the flow system is at steady state, with a gravity-driven percolation flux of about 

115 mm/yr in most of the vertical domain (except for the immediate tunnel vicinity). The 

vertical flow field is disturbed in the immediate tunnel vicinity because the tunnel 

opening acts as a capillary barrier, diverting the downward percolation flux sideways 

around the tunnel. 
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Figure 5 shows a close-up view of the two-dimensional temperature and saturation fields 

together with liquid flux vectors at t = 4 years. The flow system has heated up 

considerably to maximum temperatures of more than 160oC at the tunnel wall, and a dry 

conduction-dominated zone has evolved in the porous medium extending a few meters 

away from the tunnel. While the temperature field appears radial-symmetric—as the heat 

transfer is conduction dominated—the saturation and flux fields show distinct differences 

between the regions above and below the heat source. These differences result from 

gravitational forces. Vapor that condenses above the heat source is driven back to the 

boiling zone by the combined impact of capillarity and gravity. (A significant fraction of 

the water also diverts in the lateral direction, around the boiling zone.) As the refluxing 

water encounters the boiling zone, it vaporizes again and repeats the cycle, thereby 

enhancing the intensity of the heat pipe flows above the heater. In contrast, condensate 

below the heater is exposed to counteracting forces as capillarity pulls upward and 

gravity pulls downward. While there is a net upward flow of water just below the boiling 

front (because of capillary forces dominating gravity forces), a considerable fraction of 

the condensate drains off and is thus not available to drive the heat pipe. As a result, there 

are higher saturations and stronger reflux processes above the heater than below. This 

phenomenon should be detectable by the temperature-gradient method proposed in this 

paper. 

 

Similar to Section 3, we apply the temperature-gradient method to the simulated 

temperature profiles, estimate the heat-pipe fluxes from the gradients, and compare the 

estimated fluxes to the simulated fluxes to test the accuracy of the method. First, 

- 19 - 



however, we need to make sure that the heat transfer processes are approximately one-

dimensional, as the method requires. In addition, the boreholes for temperature 

measurements need to be oriented parallel to the direction of the main heat flow. These 

requirements are met in our test case, since both the temperature field and the nodal 

points of the finite volume discretization (representing temperature sensors) are 

approximately radial-symmetric (see Figure 5a). Note that the liquid fluxes depicted in 

Figure 5b are not radial-symmetric. The temperature-gradient method provides the radial 

flux components in such cases, i.e., the flux components that are driven back to the 

boiling zone and affect the temperature profiles. Tangential fluxes do not contribute to 

heat pipe processes and are thus not detectable by gradient changes. 

 

Three boreholes have been selected for the flux analysis, the first vertically up, the 

second vertically down, and the third horizontally in the positive x-direction (Figure 5a). 

Each borehole starts at the tunnel wall at a radial distance of 2.75 m measured from the 

center of the tunnel. The vertical boreholes are parallel to the direction of flow. In 

contrast, fluxes have a horizontal and a vertical component for the horizontal borehole. 

Figure 6 shows the simulated temperatures, liquid saturations, and liquid fluxes along the 

three boreholes at t = 4 years as a function of distance from the center of the tunnel. For 

better comparison of the heat-pipe intensity, fluxes are plotted following the convention 

that positive values indicate flow away from the heat source and negative values indicate 

flow towards the heat source. (Thus, negative fluxes above the heater flow downwards; 

negative fluxes below the heater flow upward). The strongest reflux occurs above the 

heater, where capillarity and gravity create a maximum downward flux of -430 mm/yr 
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(Figure 6b). The reflux towards the boiling zone is significantly smaller below the heater, 

at -235 mm/yr, where gravity works against capillarity. The horizontal reflux component 

along the third borehole is somewhere in between the two vertical ones, at -326 mm/yr. 

The differences in the reflux magnitude between the three boreholes are clearly reflected 

in the temperature profiles and saturation profiles. The heat-pipe signatures, i.e., the 

differences in gradients at the boiling zone and the extent of the nearly isothermal heat-

pipe zone, are strongest for the vertical profile above the tunnel. Also note the different 

location of the boiling and the dryout zones, indicating that the outward migration of the 

boiling front below the tunnel is faster than above. 

 

In Figure 7, the flux results from the temperature-profile method are plotted in 

comparison with the simulated fluxes for the three boreholes and three selected times at t 

= 2, 4, and 8 years. There is excellent agreement between the transient flux estimates and 

the simulated fluxes. Thus, the proposed temperature-gradient method works well not 

only for the simple radial-symmetric example of Section 3, but also for cases with more 

realistic two-dimensional heat and mass flow processes. The quasi-steady results are 

reasonably close, but tend to overestimate the magnitude of the simulated fluxes by a few 

percent. In all practical field applications, such percentages are smaller than the expected 

margin of error associated with the temperature-gradient method (see example in Section 

4.3). Thus, while the transient flux corrections are more important than in the radial-

symmetric example case presented in Section 3, they are still rather insignificant 

compared to the overall fluxes and can be neglected without much loss in accuracy. Note 
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that Table B2 in Appendix B gives additional details on the temperature-gradient 

calculations conducted to derive the flux estimates in Figure 7.  

 

4.2  Sensitivity Case with Increased Transient Contribution 
 
We present a second two-dimensional example to evaluate the accuracy of the 

temperature-gradient method for conditions where the transient contribution is more 

important. The base case is modified by (1) increasing the heat load to 1,450 W/m (a 

value representative of the average initial thermal output of Yucca Mountain waste 

canisters before the waste starts decaying), and (2) increasing the porosity of the porous 

medium from φ = 0.1 to φ = 0.4. The first modification increases the boiling front 

velocity, which affects both the temperature-dependent and the saturation-dependent flux 

correction terms in Equation (3). The second modification affects only the saturation-

dependent term; the larger porosity increases the amount of pore water that is initially 

present in the flow system and that needs to boil off as the boiling front migrates. (Note 

that the emplacement strategy for the Yucca Mountain repository calls for a 50-year 

period of forced ventilation in the tunnels, which is expected to reduce the heat load 

imposed on the tunnel walls by at least 70%. The effect of forced ventilation is not 

considered in this example case.)  

 

Figure 8 depicts the quasi-steady and transient flux estimates from the temperature-

gradient method together with the simulation results. Additional details on the flux 

calculation are given in Table B3. The fluxes calculated from the quasi-steady heat-pipe 

assumption are not very accurate. They are consistently much larger in magnitude (more 
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negative) than the simulated results, indicating that a noticeable fraction of energy is used 

for heating the system and vaporizing pore water as the heat pipe migrates. The 

difference between the quasi-steady flux estimates and the simulated fluxes is as much as 

about 100 mm/yr, or up to 30% of the overall flux. Such differences are significant, even 

in light of the various uncertainties in the flux estimates, and should not be disregarded. 

The transient fluxes, on the other hand, are in very good agreement with the simulated 

target values. In other words, the transient effects can be accurately accounted for by 

adjusting the quasi-steady fluxes using the transient flux correction terms defined in 

Equation (3).  

 

The above assessment clearly demonstrates that the approach for calculating transient 

fluxes works very well in theory. In praxis, however, the transient contribution may be 

hard to quantify in a precise manner. While calculation of the temperature-dependent flux 

correction is straightforward, because the temperature values T1 and T2 can be easily 

determined from the temperature profile, calculation of the saturation-dependent flux 

corrections requires knowledge of the liquid saturation values SL,2, which may not be 

measured in the field. Unfortunately, as the respective results in Table B3 suggest, the 

saturation-dependent flux correction is significantly more important than the temperature-

dependent flux correction.  

 

In light of this discussion, we suggest the following approach for the temperature-

gradient method in heat pipe systems with important transient contributions. In the trivial 

case that saturation has been measured together with the temperature profiles—e.g., by 
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having combined neutron logging and temperature measurements in boreholes (Bechtel 

SAIC Company, 2004b)—the transient fluxes should be calculated using the measured 

saturation data. Otherwise, there are two options. The first option is to simply go with the 

quasi-steady flux estimates (or to use the quasi-steady estimates corrected for the 

temperature-dependent term), knowing that these provide upper-bound values for the 

correct transient results. Using upper-bound values for the water reflux towards 

emplacement tunnels is conservative with respect to the overall performance of the 

geologic repository at Yucca Mountain, because this will overestimate the potential of 

water seeping into the tunnels and contacting waste packages. The second option is to 

evaluate the transient flux correction using a range of reasonable values for the liquid 

saturation SL,2. This range can be based on educated guesses, on analytical estimates 

(linking, for example, pressure buildup, temperature, and saturation), or on a 

complementary numerical study. In porous media, the range of reasonable saturation 

values is limited because the resulting saturations at radius r2 are generally much smaller 

than the initial saturation. The simulated saturation values given in Tables B1, B2, and 

B3, for example, range from 0.09 to 0.22, compared with the initial saturation of 0.8. We 

prefer the second option over the first one because it provides approximate information 

on the importance of the transient component in a given heat-pipe application.    

 
4.3  Sensitivity Case with Heterogeneity 
 

In field studies, temperature measurements will be affected by measurement inaccuracies 

and effects of heterogeneity. To test the potential of our method in such conditions, we 

apply the temperature-gradient method to an additional simulation example featuring a 

spatially variable thermal conductivity field. Except for this modification, the example 
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case is identical to the base case analyzed in Section 4.1. Thermal conductivity is chosen 

as the heterogeneous parameter because it has a direct impact on the temperature data 

used for the temperature-gradient method. An uncorrelated random field of thermal 

conductivity values was generated and mapped to the grid elements in the model domain, 

assuming a normal probability distribution with a mean thermal conductivity of 

2.0 W/(m-K) and a standard deviation of 0.2 W/(m-K). This level of heterogeneity is 

representative of the thermal conductivity variability observed at Yucca Mountain 

(Bechtel SAIC Company, 2004c).  

 

Figure 9 shows the simulated temperature and gradient results along the two vertical and 

the horizontal profiles at t = 2 years, 4 years, and 8 years, together with the spatial 

distibution of the thermal conductivity values along the selected borehole. Circular 

symbols indicate the location of “temperature sensors”; i.e., the center nodes of the finite 

volume discretization. For comparison, the respective temperature results of the 

homogenous base case are depicted as dashed lines. The temperature profiles of the 

heterogeneous case appear very smooth, a result of the forgiving nature of heat 

conduction, and the differences between homogeneous and heterogeneous seem quite 

small. The gradient profiles, on the other hand, show clear indication of the effect of 

heterogeneity, which will challenge the accuracy of the flux estimates from the 

temperature-gradient method. Discrepancies between the heterogeneous temperature 

results and the homogeneous background profiles are directly correlated to the local 

thermal conductivity, with smaller conductivities creating gradients larger in magnitude 

(more negative).  
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When applying the temperature-gradient method to the heterogeneous simulation results, 

we have to assume that the specific spatial distribution of thermal conductivity along the 

selected boreholes is unknown, as it would be in field applications. Thus, we use the 

average thermal conductivity value of 2.0 W/(m-K) in our flux evaluation. As in the 

homogeneous cases, the first step is to visually define the “best” finite volume for the 

flux calculation at the boiling end of the observed heat pipes. However, the noise in the 

temperature data makes the determination of radii and the choice of gradients somewhat 

subjective and arbitrary in the heterogeneous case. As Figure 9 suggests, the smaller 

gradients ∇  are usually less problematic, with relatively small gradient changes within 

the heat-pipe region. The upper gradients 

2T

1T∇ , on the other hand, exhibit considerable 

zigzag behavior. In such cases, the resulting flux estimates would be strongly affected by 

the subjective selection of radius r1 and upper gradient 1T∇ . To evaluate the uncertainty 

introduced by data noise, we generally recommend using more than one radius r1 and 

gradient  for the calculation of fluxes. The radii r1T∇ 1 of each profile in Figure 9, for 

example, have been defined by choosing the first upper gradient location clearly outside 

of the change-of-gradient region at the boiling end of the heat-pipe zone. The 

temperature-gradient method is applied to this radius and gradient, plus the next four radii 

and gradients in the upstream direction, and the average flux is then used as the “best-

estimate” result. The range of fluxes covered by the individual flux estimates is indicative 

of the degree of uncertainty of the temperature-gradient method caused by heterogeneity. 

 

Figure 10 shows the calculated flux estimates from the temperature gradient method for 

the three selected boreholes and three times. Solid symbols give the average fluxes over 
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five upstream locations and gradients, calculated from the transient heat-pipe solution. 

Error bars indicate the range covered by the five individual fluxes. Again, the flux 

convention is that negative flux values denote flow towards the heat source. The 

simulated “correct” fluxes are depicted as dashed lines. For most of the heat pipes 

analyzed in Figure 10, the average flux estimates provide a good approximation of the 

simulated target values. In other words, the temperature-gradient method delivers 

reasonably accurate flux results even for a simulation case with considerable 

heterogeneity in a key thermal parameter, the details of which are assumed to be 

unknown in the application of the method.  

 

The largest flux discrepancy occurs for the horizontal borehole at 4 years, where the 

average as well as all five individual flux estimates are smaller than the simulated result 

by about 30 to 60 mm/yr. This is clearly related to the prominent cluster of above-average 

thermal conductivity values just inward of the finite volume in Figure 9c. As a result, all 

five temperature gradients obtained for the flux calculation are small compared to those 

expected from a homogeneous medium with average thermal conductivity. Hence, one 

important source of uncertainty in the temperature-gradient method stems from the fact 

that the chosen thermal conductivity value may not be representative of the conditions 

where the gradients are measured. Compared to other thermal-hydrological properties of 

subsurface soils such as permeability, however, the spatial variability of thermal 

conductivity is usually fairly small in porous media applications, with variability 

coefficients similar to those considered in this example case. Note that the average flux 

estimates differ from the simulation results by less than 3% for the borehole facing 
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vertically up, by less than 7%for the borehole facing vertically down, and by less than 

13% for the horizontal borehole. This level of accuracy would be reasonably good for 

any kind of field data, but is especially impressive considering the specific difficulties 

and uncertainties in estimating underground fluxes in the field. Any type of measurement 

that can provide flux data within an uncertainty range of, say, a factor of two or three is 

certainly a valuable tool for the analysis of subsurface flow processes. 

 

The error bars in Figure 10 give an indication of the uncertainty range of the flux 

estimates stemming from the variability of the five upstream temperature gradients. In 

our example, this variability is a result of heterogeneity in thermal conductivity; in field 

applications, some additional noise may be caused by measurement errors or by 

heterogeneity in other relevant flow and transport properties. Over all three boreholes and 

times, the error related to data noise bars ranges from about 10% to about 20% of the 

average fluxes. Again, this level of uncertainty is very reasonable considering the 

inherent uncertainty involved in measuring underground flows. 

 
5.   Summary and Conclusions  
 
Evaluating the magnitude of flux perturbation in superheated subsurface systems can be a 

challenging task, in part because the direct in situ measurement of such quantities is 

virtually impossible. Flux perturbations are particularly strong in geologic heat pipes, 

where vapor is transported away from the heat source as condensate water flows back 

towards the heat source, thereby creating a continuous re-circulation of vapor and water 

at significant rates. The energy transported with these fluxes leaves a distinct signature in 

temperature profiles.  We propose a temperature-gradient method for deriving the flux 
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perturbation occurring in geologic heat pipes using characteristic features of temperature 

profiles. The method requires temperature profile data with sufficient resolution, 

knowledge of thermal properties, and a general idea on the geometry of the heat transfer 

conditions. Field measurements of temperature are relatively simple and generally fairly 

accurate in subsurface systems. 

 

The theoretical framework for the temperature-gradient method is presented for two 

alternative heat transfer scenarios in a porous-medium environment, one assuming radial 

transport from a line-load heat source, the other assuming linear transport from an area-

load heat source. Differences between the temperature gradients measured at both sides 

of the boiling end of a heat pipe are used to estimate the amount of energy available to 

vaporize water. For stationary heat pipes, the amount of energy is proportional to the 

liquid reflux in the heat pipe. For transient heat pipes, some fraction of the supplied 

energy is used to change the temperature and to boil the resident pore water of 

downstream regions encountered when the heat pipe moves away from the heat source.  

 

The temperature-gradient method was formulated for both quasi-steady conditions 

(stationary heat pipes) and transient heat conditions (moving heat pipes). Transient flux 

correction terms have been developed in Equations (3) and (5) that adjust the quasi-

steady fluxes for the impact of transient effects. Exercising these transient equations 

requires knowledge about the velocity of the heat pipe moving away from the heat 

source. To determine this velocity, we suggest using temperature profiles measured at 

different times. The transient equations also require some knowledge of the liquid 
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saturation at the boiling end of the heat pipe. If saturation has not been measured in a 

given field application, the transient contribution should be approximated using a range 

of reasonable saturation estimates.   

 

The proposed method was tested in comparison with various one-dimensional and two-

dimensional example cases, for which model simulations were conducted to provide 

simulated temperature and flux results. The temperature results were fed as “measured 

data” input to the temperature-gradient method. It turned out that the fluxes estimated 

from applying the temperature-gradient method to these “measured data” were in 

excellent agreement with the simulated fluxes, demonstrating that the temperature-

gradient method works in principle. The flux comparison also suggested that the transient 

contribution for moving heat pipes—i.e., the energy necessary to change the temperatures 

and to vaporize resident pore water—is often relatively small and may be safely 

neglected in many applications. In such cases, the fluxes estimated under quasi-steady 

assumptions are reasonably close to the simulated fluxes. 

 

One of the two-dimensional example cases was simulated assuming a spatially variable 

thermal conductivity field. The spatial variability introduces two sources of uncertainty 

that are typical for field applications. The first type of uncertainty stems from the fact that 

the average thermal conductivity value used for the temperature-gradient analysis may be 

different from the local thermal conductivity at the boiling end of the heat pipe. The 

second uncertainty contribution is a result of data noise in the measured gradients, which 

leads to variability in the estimated fluxes. To evaluate this second type of uncertainty, 
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we should generally derive flux estimates based on the evaluation of more than one upper 

heat pipe gradient. In our example case, both sources of uncertainty turned out to be 

reasonably small, on the order of less than 20% of the overall fluxes.   

 

Our example applications suggest that the proposed method offers a promising approach 

for quantifying liquid and gas flow processes in complex thermal-hydrological settings. 

We are currently working on field applications, such as the analysis of data from the Drift 

Scale Test at Yucca Mountain, a large-scale underground heater test with high-resolution 

temperature data in both space and time. The estimated fluxes for the Drift Scale Test 

will provide an additional piece of evidence for the calibration and validation of 

numerical simulation models used for the prediction of the future thermal-hydrological 

conditions at Yucca Mountain.  

   

Appendix A:  Governing Equations 
 
The temperature-gradient method is based on the formulation of basic mass and energy 

conservation equations for the radial-symmetric finite volume depicted in Figure 2.  The 

finite volume is defined at the boiling end of the heat pipe, with radius r1 just within the 

inner conduction zone and radius r2 just within the heat pipe region.  Temperature and 

liquid saturation are given by T1 and SL,1 at radius r1 and T2 and SL,2 at radius r2, 

respectively. According to Figure 2, the inner conduction zone is completely dry in 

porous media so that SL1 can be set to zero. The temperature gradients are ∇  and 1T 2T∇ . 

The unknown mass flow rate of water in the heat pipe is QL,2 at radius r2. There is no 

liquid flow at the inner radius r1 (QL,1 = 0). 
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The basic mass conservation equation for two-phase flow of liquid and gas in radial 

geometry is given as  

  

 
( ) ( )

02 =
∂
+∂

+
∂
+∂

r
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t
SS

r GLGGLL ρρ
φπ ,      (A1) 

 
where the first term represents the change in the stored mass in liquid and gas phases, and 

the second term represents the liquid and gas flux into and out of the control volume. 

Only the water component is considered in Equation (A1), as the mass fraction of air can 

be neglected in both liquid and gas phases. The basic energy conservation equation in 

radial geometry is 
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Here, the first two terms denote the stored energy in solid, liquid, and gas phases. The 

third term is the convective transport of energy, which consists of liquid and gas phase 

contributions. The last term is the conductive transport of heat. We approximate the 

differential terms in Equations (A1) and (A2) using first-order derivatives and apply the 

resulting conservation equations to the finite volume in Figure 2. Per definition, the liquid 

and gas phase saturations sum to unity. It can be easily shown, then, that a change in 

liquid saturation corresponds to the opposite change in gas saturation, so that 

. While there is a significant decrease in the temperature gradients within the 

finite volume, the changes in absolute temperature are fairly small. As a result, we can 

neglect the temperature-dependence of liquid and gas thermodynamic properties (density, 

specific enthalpy, internal energy), and may consider ρ

LG SS ∆−=∆

L, ρG uL, uG, hL, and hG to be 
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independent of time t and radius r. Furthermore, we assume a uniform thermal 

conductivity λ and introduce the temperature gradient rTT ∆∆=∇ / . The mass 

conservation equation becomes 

0

r
QhQ GGLL

∆
∆+∆

0≈

1L, 1L =,
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The energy conservation equation is  
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Let us first analyze the case of a stationary heat pipe. As the time derivative is zero, 

Equation (A3) reduces to GL QQ ∆−=∆ , stating that the net liquid and gas fluxes have 

identical magnitude, but opposite direction. This relationship is used to eliminate GQ∆  

from Equation (A4). With minor rearrangements, Equation (A4) becomes 
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which can be easily solved for LQ∆ . With 2LL QQQ , −=∆  and Q , the mass 

flow rate of water at radius r

0

2 for stationary heat pipes is given as (see Equation (1)) 
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Superscript S denotes that the flow rate  is estimated for quasi-steady heat pipes. S
2LQ ,
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For transient heat pipes, the finite volume defined at the boiling end moves in an outward 

direction with velocity , which can be measured in the field. It is convenient to 

substitute all first-order time-derivatives of variable t with first-order space-derivatives of 

variable r, using . After performing this substitution in both mass and energy 

conservation equations, Equation (A3) is solved for the gas flow rate: 

v&

vr /t &∆=∆
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S
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∆
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ρρ
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and the result is inserted into Equation (A4) to eliminate the unknown  GQ∆
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At this point, Equation (A8) contains only derivatives in space, not in time. As mentioned 

before, we may neglect the temperature-dependence of liquid and gas thermodynamic 

properties within the finite volume. Since liquid water is approximately incompressible, 

we can also replace internal energy uL with specific enthalpy hL. Further rearrangements 

give  
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The first velocity-dependent term in Equation (A9) accounts for the energy required for 

changing the temperature in the solid phase as the finite volume moves outward with 

velocity . The second term comprises the energy needed for boiling of resident pore v&
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water in the moving finite volume. The third term, related to energy changes associated 

with volumetric changes, can be eliminated, since it is several orders of magnitude 

smaller than the first two terms. This is because the gas density Gρ  in the third term is 

much smaller than the solid- and liquid-phase densities occurring in the other terms. 

Also, internal energy u  and specific enthalpy h  have approximately equal magnitude.    G G

T∆

LS 1L =,

∆

( )
G

1

h
r r2πφ +
∇

S
2L,

Q+

 

The next step is to approximate the spatial variable r in Equation (A9) using the average 

radius of the finite volume (i.e, ( ) 2rr 21 /r += ). We also replace  and  with the 

respective temperature and saturation differences between both ends of the finite volume 

(∆  and , with 

LS∆

12 TTT −= 1LS , S2LS , −=∆ 0 ). Finally, as done before with the 

quasi-steady solution, we use  instead of 2LQ , LQ  and solve Equation (A9) for the 

unknown mass flow rate of water in transient heat pipes: 
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Superscript T denotes that the flow rate  is for transient heat pipes. The first term in 

Equation (A10) is identical to the quasi-steady mass flow rate  defined in Equation 

(A6). The second term accounts for the storage contribution to be considered in transient 

heat pipes. We may refer to this storage contribution as the transient flow rate correction 

, such that  

T
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corr
2LQ ,  comprises contributions for temperature-related energy changes (Term 1) and 

saturation-related energy changes (Term 2) as follows: 
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Notation 
 
 A Area, m2 

 C Specific heat capacity, J/(kg-K) 

 D0 Binary diffusion coefficient, m2/s 

 h Specific enthalpy, J/kg 

 k Permeability, m2 

 kr Relative permeability 

 m Parameter in van Genuchten characteristic curves 

 P Pressure, Pa 

 Pc Capillary pressure, Pa 

 Q Mass flow rate, kg/(s-m) for radial geometry, kg/(s-m2) for linear geometry 

 q Flux, m/s   

 r Radial distance, m 

 S Saturation  

 SLr Residual liquid saturation   

 T Temperature, oC 

 t Time, s 

  Boiling front velocity, m/s v&

 u Internal energy, J/kg 

 1/α Parameter in van Genuchten characteristic curves, Pa 

 φ Porosity 

 θ temperature exponent in binary diffusion equation 

 λ Thermal conductivity, W/(m-K) 

- 40 - 



 τ Tortuosity 

 ρ Density, kg/m3 

 

Subscripts 

 G Gas phase 

 L Liquid phase 

 S Solid phase 

 1,2 Relating to inner and outer boundary of finite volume 

 

Superscripts 

 S Quasi-steady 

 T Transient 

 corr Correction for transient storage terms 
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Figure 1.   Results for the radial-symmetric heat pipe system (without gravity) studied in 
Doughty et al. (1992), showing profiles at 4 years for (a) temperature, liquid 
saturation, and air mass fraction, as well as (b) gas and liquid flux. For comparison, 
additional temperature profiles are depicted at 2 years and 8 years. 
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Figure 2.   Definition of finite volume for temperature-gradient method 
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Figure 3.   Temperature-gradient method for the radial-symmetric heat pipe system (without 

gravity) studied in Doughty and Pruess (1992) and Pruess et al. (1999), giving 
results at 4 years. Plot shows simulated temperature at nodal points, average 
gradient between two nodal points, and choice of finite volume. 
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Figure 4.  Flux estimates from temperature-gradient method for radial-symmetric heat pipe 

system in comparison with simulated fluxes. Squares give estimated fluxes using the 
quasi-steady heat pipe solution. Diamonds give estimated fluxes assuming transient 
heat pipes. Small triangles show transient solution fluxes for four additional 
upstream temperature gradients. Dashed line connects simulated flux values.     
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(b)
 
Figure 6.   Results for two-dimensional gravity-driven system (base case) at 4 years showing 

(a) temperature and saturation profiles, as well as (b) liquid flux profiles. Selected 
profiles are vertical above and below the heater at x = 0 m, and horizontal in 
positive x-direction at z = 0 m. For better comparison, profiles are given as a 
function of radial distance rather than coordinate. Flux convention as follows: 
Positive fluxes moving outward, away from heat source. Negative fluxes back 
towards heat source. 
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Figure 7.   Flux estimates from temperature-gradient method for two-dimensional gravity-driven 

system (base case) in comparison with simulated fluxes. Hollow symbols give 
estimated fluxes using the quasi-steady heat pipe solution. Solid symbols give 
estimated fluxes assuming transient heat pipes. Dashed lines connect simulated flux 
values.      
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Figure 8.   Flux estimates from temperature-gradient method for two-dimensional gravity-driven 

system (sensitivity case with stronger heat source and larger porosity) in comp
with simulated fluxes. Hollow symbols give estimated fluxes using the quasi-ste
heat-pipe solution. Solid symbols give estimated fluxes assuming transient heat pipes
Dashed line

arison 
ady 

. 
s connect simulated flux values.
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Figure 9a.  Results for two-dimensional gravity-driven system at 4 years in borehole vertically 
upward. Upper plot shows distribution of thermal conductivity. Lower plot shows 
simulated temperature at nodal points (given in radial distance from drift center), 
average gradient between two sensors, and choice of finite volume for temperature-
gradient method. Solid lines are for heterogeneous sensitivity case. Dashed lines 
show base case results for comparison.  
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Figure 9c. Results for two-dimensional gravity-driven system at 4 years for horizontal borehole. 

 

Upper plot shows distribution of thermal conductivity. Lower plot shows simulated 
temperature at nodal points (given in radial distance from drift center), average 
gradient between two sensors, and choice of finite volume for temperature-gradient
method. Solid lines are for heterogeneous sensitivity case. Dashed lines show base 
case results for comparison.  
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Figure 10.   Flux estimates from temperature-gradient method for two-dimensional gravity-driven 

system (heterogeneous sensitivity case) in comparison with simulated fluxes. Solid 
symbols give estimated fluxes assuming transient heat pipes. Error bars indicate 
range of five individual flux estimates. Dashed lines connect simulated flux values. 
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Table 1.   Parameters for test problems evaluated in Sections 3 and 4 
 

 
Parameter    Value 
 
 
Initial Conditions 
 
 Pressure P 1 bar 
 Temperature T 18oC 
 Saturation SL 0.8 for Section 3, 0.6 for Section 4 
 
Material Properties of Porous Medium 
 
 Permeability k 2 × 10-14 m2 
 Porosity φ 0.10 (0.4 in sensitivity case) 
 Grain density ρS 2550 kg/m3 
 Grain heat capacity CS 800 J/kg/K 
 Thermal conductivity λ 2 W/m/K 
 Tortuosity τ 0.25 
 Binary diffusion coefficient D0 2.6 × 10-5 m2/s   
 Temperature exponent θ 1.8 
 

haracteristic Curves of Porous Medium C

 Capillary pressure, Pc   ( )[ ] m1m1 1S1
−−

−−
/*/α  

 Permeability liquid, krL  ( ) ( ) Relative ( ) 2mm121 S11S 



 −−

/*/*  

 Relative Permeability gas, krG  rLk1−  

 Van Genuchten parameter   *S ( ) ( )LrLrL S1SS −− /  
 Residual liquid saturation SLr  9.6 × 10-4 
 Van Genuchten parameter 1/α  0.125 bar 
 Van Genuchten parameter m  0.45 
 Maximum capillary pressure Pmax  5000 bar 
 
Thermodynamic Properties of Water and Vapor (at P = 1 bar and T = 99.6oC) 
 
 Density of water ρL  958 kg/m3 
 Specific heat of vaporization hG - hL 2.26 × 106 J/kg 
 
 
Note: The governing equations of the two-phase flow and transport processes simulated in the 

considered test example are described in Doughty and Pruess (1992). The characteristic curves 
utilize the functional forms introduced by van Genuchten (1980), with a slight modification 
regarding the maximum possible capillary pressure (Doughty and Pruess, 1992). The chosen 
binary diffusion properties (i.e., tortuosity, diffusion coefficient, temperature exponent) are 
identical to Problem No. 2 in Pruess et al. (1999), which differ slightly from those in Doughty and 
Pruess (1992).  
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