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Abstract.

We discuss aspects of open and hidden charm production in hadron-nucleus

collisions at RHIC and LHC energies. We first discuss the extraction of the total charm

cross section in lower energy collisions and how it compares to next-to-leading order

quantum chromodynamics calculations. We then describe calculations of the transverse

momentum distributions and their agreement with the shape of the measured STAR

transverse momentum distributions. We next explain how shadowing and moderate

nuclear absorption can explain the PHENIX J/ψ dAu/pp ratios.

1. Open charm production at RHIC

Open charm measurements date back to the late 1970s when D and D mesons were first

detected, completing the picture of the fourth quark begun when the J/ψ was detected

in pBe and e+e− interactions. The charm quark was postulated to have a mass between

1.2 and 1.8 GeV, within the regime of perturbative quantum chromodynamics (pQCD).

Because of its relatively large mass, it is possible to calculate a total cc cross section,

not the case for lighter flavors such as strangeness. Charm hadrons are usually detected

two ways. The reconstruction of decays to charged hadrons such as D0 → K−π+ (3.8%)

and D+ → K−π+π+ (9.1%) gives the full momentum of the initial D meson, yielding

the best direct measurement. Charm can also be detected indirectly via semi-leptonic

decays to leptons such as D → Klνl although the momentum of the parent D meson

remains unknown. Early measurements of prompt leptons in beam dump experiments

assumed that the density of the dump was high enough to absorb semi-leptonic decays

of non-charm hadrons, leaving only the charm component. At modern colliders, it is

not possible to use beam dumps to measure charm from leptons but, at sufficiently high

pT , electrons from charm emerge from hadronic cocktails [1, 2].

Although D mesons are usually used to determine the total cc cross section, other

charm hadrons also exist. The excited D states, D∗s, decay primarily to charged and
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neutral D mesons. The charm-strange meson, the Ds, decays to charged hadrons and

simultaneously to leptons. The lowest lying charm baryon is the Λ+
c which decays

primarily to Λ(uds) but also decays to pK−π+ and to the lepton channel. The heavier

ground state charm baryons and their excited states (Σc and higher) decay through the

Λc channel. The charm-strange baryons are assumed to be a negligible contribution to

the total cross section. A selection of charm hadrons, their masses, decay lengths and

branching ratios to leptons and charged hadrons are given in Table 1.

C Mass (GeV) cτ (µm) B(C → lX) (%) B(C → Hadrons) (%)

D+(cd) 1.869 315 17.2 K−π+π+ (9.1)

D−(cd) 1.869 315 17.2 K+π−π− (9.1)

D0(cu) 1.864 123.4 6.87 K−π+ (3.8)

D0(cu) 1.864 123.4 6.87 K+π− (3.8)

D∗± 2.010 D0π± (67.7), D±π0 (30.7)

D∗0 2.007 D0π0 (61.9)

D+
s (cs) 1.969 147 8 K+K−π+ (4.4), π+π+π− (1.0)

D−

s (cs) 1.969 147 8 K+K−π− (4.4), π+π−π− (1.0)

Λ+
c (udc) 2.285 59.9 4.5 ΛX (35), pK−π+ (2.8)

Σ++
c (uuc) 2.452 Λ+

c π
+ (100)

Σ+
c (udc) 2.451 Λ+

c π
0 (100)

Σ0
c(ddc) 2.452 Λ+

c π
− (100)

Ξ+
c (usc) 2.466 132 Σ+K−π+ (1.18)

Ξ0
c(dsc) 2.472 29 Ξ−π+ (seen)

Table 1. Ground state charm hadrons with their masses, decay lengths (when given)

and branching ratios to leptons (when applicable) and some prominent charged hadron

decays.

Extracting the total charm cross section is a non-trivial task. To go from a

finite number of measured D mesons in a particular decay channel to the total cc

cross section one must: divide by the branching ratio; correct for the luminosity,

σD = ND/Lt; extrapolate to full phase space from the finite detector acceptance; divide

by two to get the pair cross section from the single Ds; and multiply by a correction

factor [8] to account for the unmeasured charm hadrons. There are assumptions all

along the way. The most important is the extrapolation to full phase space. Before

QCD calculations were available, the data were extrapolated assuming a power law

for the xF distribution, related to the longitudinal momentum of the charm hadron by

xF = pz/(
√
S/2) = 2mT sinh y/

√
S. The canonical parameterization is (1−xF )c where c

was either fit to data over a finite xF range or simply assumed. These parameterizations

could lead to large overestimates of the total cross section when 0 < c < 2 was assumed,

especially when data were taken only near xF = 0. Lepton measurements were more

conservative but were typically at more forward xF .
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1.1. Total cc cross section

There has been a great deal of improvement over the last 10-15 years. Next-to-

leading order (NLO) calculations are used in the phase space extrapolation, resulting in

considerably less ambiguity in the shape of the xF distributions, dσ/dxF . The transverse

momentum distributions are more difficult, as we will discuss later. To calculate the

total cross section to NLO, scaling functions [3] proportional to logs of µ2/m2 are useful

where µ is the scale of the hard process. The hadronic cross section in pp collisions can

be written as

σpp(S,m
2) =

∑

i,j=q,q,g

∫
dx1 dx2 f

p
i (x1, µ

2
F ) f pj (x2, µ

2
F ) σ̂ij(s,m

2, µ2
F , µ

2
R) (1)

where x1 and x2 are the fractional momenta carried by the colliding partons and f pi are

the proton parton densities. The partonic cross sections are

σ̂ij(s,m, µ
2
F , µ

2
R) =

α2
s(µ

2
R)

m2

{
f

(0,0)
ij (ρ)

+ 4παs(µ
2
R)

[
f

(1,0)
ij (ρ) + f

(1,1)
ij (ρ) ln

(
µ2
F

m2

)]
+ O(α2

s)

}
.(2)

with s the squared partonic center of mass energy, ρ = 4m2/s and f
(k,l)
ij are the scaling

functions given to NLO in Ref. [3]. It is most consistent to assume that the factorization

scale, µF , and the renormalization scale, µR, are equal, µ = µF = µR. There is no

dependence on the kinematic variables. Some NNLO calculations are available near

threshold, s = x1x2S ∼ 1.3 (4m2), applicable only for
√
S ≤ 20 − 25 GeV [4, 5].

The NLO corrections to the leading order (LO) cross sections are relatively large,

K(1) = σNLO/σLO ∼ 2 − 3, depending on µ, m and the parton densities [6]. The NNLO

corrections are about as large to next-to-next-to-leading logarithm [4] but decrease to

less than K(1) when subleading logs are included [5]. This K factor is large because, in

the range 1.2 < m < 1.8 GeV, m < µ < 2m with a 5-flavor QCD scale, Λ5, of 0.153 GeV

for the GRV98 HO and 0.22 GeV for the MRST parton densities, 0.21 < αs(c) < 0.4,

nearly a factor of two variation. (The larger value corresponds to the smallest m and

µ values with the larger Λ5.) The situation improves for bottom where αs is smaller,

0.16 < αs(b) < 0.28, and is quite good for top, 0.092 < αs(t) < 0.12. Instead of

presenting a wide range of possible cross sections and emphasizing the uncertainties,

the approach taken in Ref. [7] has been to “fit” m and µ for a particular parton density

and extrapolate to higher energies. The results are compared to some of the total cross

section data [8] on the left-hand side of Fig. 1. The data tend to favor lower values of

m, 1.2− 1.3 GeV. The two curves cross each other because the MRST calculation with

µ = 2m increases faster at large
√
S and smaller x due to the stronger QCD evolution

of the parton densities at the higher scale. Although the fixed target results are in

good agreement with the calculations, the PHENIX point [9] at 130 GeV, from Au+Au

electron measurements, and the STAR point [10], from a combination of electron and

reconstructed D measurements, are generally above the calculations. The STAR point

is about a factor of four over the calculated cross section. The higher energy pp data
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from UA1 [11] and CDF [12] are in better agreement with the calculations. (At these

energies, the pp and pp cross sections differ by less than 1% for
√
S ≥ 630 GeV.)

Figure 1. The NLO total cc cross sections as a function of
√
S (left-hand side) and

charm quark pT distribution at
√
S = 200 GeV in the range |y| ≤ 1 (right-hand side)

in pp interactions. The curves are MRST HO (solid) with m = 1.2 GeV and µ2 = 4m2

and GRV98 HO (dashed) with m = 1.3 GeV and µ2 = m2.

1.2. Open charm transverse momentum distributions

Now we turn to the transverse momentum, pT , distributions. In this case, the quark

mass is no longer the only scale and pT -dependent logs also appear. Thus, to interpolate

between the high pT scale of pT and the low pT scale of m, a scale proportional to mT ,

the transverse mass, is the natural choice. The charm quark pT distributions are not

strongly dependent on quark mass for pT ≥ 3 GeV, as may be expected, where the

difference in rate is ≈ 20% between m = 1.2 and 1.8 GeV. The difference in the total

cross sections is almost all at pT ≤ 3 GeV. Changing the scale changes the slope of the

pT distributions. The distributions are harder for µ = m than µ = 2m. The average pT ,

〈pT 〉, increases with m and is larger for µ = m.

More modeling is involved for D mesons in the treatment of fragmenta-

tion/hadronization and momentum broadening. If factorization holds in the final state

(universal fragmentation functions) as well as in the initial state (universal parton dis-

tributions) then the fragmentation functions extracted in e+e− should also be applicable

to pp and dA. However, this assumption does not work well for charm. The Peterson

function, generally used in hadroproduction codes, reduces the charm hadron momen-

tum by 30% relative to the charm quark. As shown in Huang’s talk [13], the Peterson

function agrees reasonably well with the e+e− data. (However, it does not include any

scale evolution. In low
√
S collisions, the momentum reduction due to fragmentation

can be compensated by intrinsic transverse momentum, kT , broadening. However, such
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broadening cannot compensate the xF distributions, only marginally affected by kT
smearing. We have previously shown that the D meson xF distributions are consistent

with no momentum loss during charm quark hadronization [14].) The exclusive NLO

QQ code of Ref. [15] includes fragmentation and broadening. This program adds the kT
kick in the final, rather than the initial state. The initial kT of the partons could have

alternatively been given to the entire final-state system, as is essentially done if applied

in the initial state, instead of to the QQ pair. The Gaussian function gp(kT ),

gp(kT ) =
1

π〈k2
T 〉p

exp(−k2
T /〈k2

T 〉p) (3)

multiplies the parton distribution functions, assuming the x and kT dependencies

completely factorize. If true, it does not matter whether the kT dependence appears in

the initial or final state. There is no difference if the calculation is LO but at NLO an

additional light parton appears in the final state. The difference in the two methods is

rather small if k2
T ≤ 2 GeV2 [8]. The value 〈k2

T 〉p = 1 GeV2 was used in Ref. [8].

The effects of fragmentation and intrinsic kT broadening of 〈k2
T 〉 = 1 GeV2

compensate each other at
√
S = 20 GeV to give a D meson pT distribution very similar

to that of the charm quark [13]. However, at RHIC energies, the situation is quite

different. Due to the higher 〈pT 〉 at larger
√
S, the effect of broadening is relatively small

and cannot compensate for the momentum loss induced by fragmentation. Interestingly

enough, the STAR D and D∗ pT distribution agrees rather well with the calculated NLO

charm quark distribution, as shown in van Leeuwen’s talk [16]. On the right-hand side

of Fig. 1, we show the corresponding pT distributions at
√
S = 200 GeV for the two sets

of parameters in the total cross section curves on the left-hand side. The differences

in the slopes are due to the different scales while the normalization difference is due

to the choice of charm mass and the parton densities — the MRST densities generally

give a larger cross section due to their larger αs. However, the curves need to be scaled

up by a factor of four to agree with the STAR normalization [16], as may be expected

from the total cross section results. The shape of the charm quark pT distribution at√
S = 1.96 TeV also agrees quite well with the CDF data from the Tevatron [12]. Given

the large discrepancy between the pQCD result and the STAR cross section, it might be

surprising that the normalization is also in good agreement with the sum of the charged

and neutral D data scaled to include Ds and Λc production. No total cross section is

available because only charm hadrons with pT > 5 GeV have been measured so far.

Other model calculations of charm production at collider energies are available.

The FONLL calculation [17] resums logs at pT � m, resulting in a softer charm quark

distribution. Using a harder fragmentation function, fit from e+e− data, agreement with

the CDF data is obtained. It also underestimates the low pT STAR data since the total

cross section is similar to that of NLO pQCD [18]. A calculation with unintegrated

gluon distributions and kT -dependent matrix elements, assuming saturation behavior at

low x, has also been made [19]. However, the x values of the STAR data are not really

very low. At RHIC, from kinematics x ∼ 0.01 at y = 1 and pT = 0, the highest rapidity

measured by STAR by kinematics alone. In reality, the actual 〈x〉 may be higher when



6

weighted by the parton densities. At higher pT , x is larger still, suggesting that the

applicability of small x physics for charm at RHIC is rather dubious.

Finally, we would like to discuss reasons why fragmentation does not seem to

factorize for charm, as expected. Factorization breaking has been suggested from studies

of the xF distributions of e.g. D+ and D− production, particularly in π−A interactions

where the D− is leading relative to the D+ since the D− shares a valence quark with the

π− while the D+ does not. Several mechanisms such as intrinsic charm [14] and string

drag have been proposed, both of which involve charm quark coalescence with spectators.

Such comoving partons are naturally produced in a hard scattering. Although it is not

intuitive to expect coalescence to work at high pT , it seems to do so for charm.

2. Nuclear dependence of J/ψ production at RHIC and LHC

We now turn to J/ψ production in d+Au interactions at RHIC. Previously, we calculated

the effect of shadowing alone on the J/ψ dA/pp ratio as a function of rapidity and impact

parameter [20]. The large cc total cross section also has implications for the J/ψ yield

if J/ψ’s arise from cc recombination in a QGP. Such a total cross section would suggest

significant secondary J/ψ production at RHIC, leading to enhancement rather than

suppression in central collisions. There is no evidence for a strong regeneration effect in

the PHENIX Au+Au data so far, see Thews’ talk [21].

Shadowing, the modification of the parton densities in the nucleus with respect

to the free nucleon, is parameterized as FA
i (x, µ2,~b, z) = Si(A, x, µ2,~b, z)f pi (x, µ

2) in

Eq. (1). We did not discuss the effect of shadowing on the charm pT distributions because

the effect at midrapidity is small and, on the logarithmic scale of the pT distributions,

negligible. The J/ψ is another story due to the PHENIX muon capability at forward

and backward rapidity. As shown in Pereira’s talk [2], although the PHENIX J/ψ data

are consistent with shadowing alone, the data are also consistent with nuclear shadowing

plus a small absorption cross section of 1 − 3 mb, smaller than that currently obtained

in SPS measurements [22]. We have calculated J/ψ production in the color evaporation

model (CEM) using the same mass and scale as in cc production but cutting off the

invariant mass of the pair at 4m2
D. The calculations of the dA/pp ratios are done at LO

to simplify the calculations. As shown in Fig. 2, the LO and NLO ratios are equivalent.

We have now also implemented nucleon absorption in the calculation, showing the effect

of several absorption and production mechanisms.

To implement nuclear absorption on J/ψ production in pA collisions, the pN

production cross section is weighted by the survival probability, Sabs, so that [23]

σpA = σpN

∫
d2b

∫
∞

−∞

dz ρA(b, z)Sabs(b, z) (4)

where b is the impact parameter and z is the longitudinal production point. If Sabs = 1,

σpA = AσpN . For Sabs 6= 1, σpA = AασpN . We define Sabs as

Sabs(b, z) = exp
{
−

∫
∞

z
dz′ρA(b, z′)σabs(z

′ − z)
}
. (5)
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Figure 2. The J/ψ pAu/pp ratio at 200 GeV. We compare the NLO (solid histogram,

MRST HO) and LO (solid curve, MRST LO) results using m = µ/2 = 1.2 GeV with

the EKS98 parameterization.

The nucleon absorption cross section, σabs, depends on where the state is produced

and how far it travels through nuclear matter. The effective A dependence is obtained

from Eqs. (4) and (5) by integrating over z′, z, and b. The contribution to the full

A dependence in α(xF ) from absorption alone is only constant if σabs is constant and

independent of the production mechanism [23]. The observed J/ψ yield includes feed

down from χcJ and ψ′ decays, giving

Sabs
J/ψ(b, z) = 0.58Sabs

J/ψ,dir(b, z) + 0.3Sabs
χcJ

(b, z) + 0.12Sabs
ψ′ (b, z) . (6)

In color singlet production, the final state absorption cross section depends on the size

of the cc pair as it traverses the nucleus, allowing absorption to be effective only while

the cross section is growing toward its asymptotic size inside the target. On the other

hand, if the cc is only produced as a color octet, hadronization will occur only after the

pair has traversed the target except at very backward rapidity. We have considered a

constant octet cross section, as well as one that reverts to a color singlet at backward

rapidities. For singlets, Sabs
J/ψ, dir 6= Sabs

χcJ
6= Sabs

ψ′ but, with octets, one assumes that

Sabs
J/ψ, dir = Sabs

χcJ
= Sabs

ψ′ . As can be seen in Fig. 3, the difference between the constant

and growing octet assumptions is quite small at large
√
S with only a small singlet

effect at y < −2 and −5 at RHIC and the LHC respectively. Singlet absorption is

also important only at similar rapidities and is otherwise not different from shadowing

alone. Finally, we have also considered a combination of octet and singlet absorption

in the context of the NRQCD model, see Ref. [23] for more details. The combination

of nonperturbative singlet and octet parameters changes the shape of the shadowing

ratio slightly. The results are shown integrated over impact parameter for the EKS98

shadowing parameterization since it gives good agreement with the trend of the PHENIX

data.

We will not discuss the spatial dependence of shadowing and absorption in any

detail here. The spatial dependence of shadowing alone was discussed in Ref. [20]. When
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Figure 3. The J/ψ dA/pp ratio with EKS98 at 200 GeV (left) and 6.2 TeV (right) as a

function of rapidity for (a) constant octet, (b) growing octet, (c) singlet, all calculated

in the CEM and (d) NRQCD. For (a)-(c), the curves are no absorption (solid), σabs = 1

(dashed), 3 (dot-dashed) and 5 mb (dotted). For (d), we show no absorption (solid),

1 mb octet/1 mb singlet (dashed), 3 mb octet/3 mb singlet (dot-dashed), and 5 mb

octet/3 mb singlet (dotted).

absorption is included, the trend of the impact parameter dependence is in agreement

with the PHENIX data at y > 0 (the north muon arm) but is too weak to describe the

strong dependence at y < 0 (the south muon arm), see Pereira’s talk [2].

3. Conclusions

In summary, the RHIC d+Au data on open charm and J/ψ are beginning to come

into their own. While the QCD calculations agree well with the shape of the STAR pT
distributions, they underestimate the reported total cross section. In contrast, the J/ψ

cross section is in relatively good agreement with QCD predictions [2] and the agreement

of the minimum bias data with calculations including shadowing and nucleon absorption

is quite good. Work is ongoing to better understand the impact parameter dependence.
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