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ABSTRACT

The signal in an NMR experiment is highly sensitive to fluctuations of the environment of the sample. If, for

example, the static magnetic field B0, the amplitude and phase of radio frequency (rf) pulses, or the resonant

frequency of the detection circuit are not perfectly stable and reproducible, the magnetic moment of the

spins is altered and becomes a noisy quantity itself. This kind of noise not only depends on the presence of

a signal, it is in fact proportional to it. Since all the spins at a particular location in a sample experience the

same environment at any given time, this noise primarily affects the reproducibility of an experiment, which

is mainly of importance in the indirect dimensions of a multidimensional experiment, when intense lines are

suppressed with a phase cycle, or for difference spectroscopy techniques. Equivalently, experiments which

are known to be problematic with regard to their reproducibility, like flow experiments or experiments with

a mobile target, tend to be affected stronger by multiplicative noise. In this article it is demonstrated how

multiplicative noise can be identified and characterized using very simple, repetitive experiments. An error

estimation approach is developed to give an intuitive, yet quantitative understanding of its properties. The

consequences for multidimensional NMR experiments are outlined, implications for data analysis are shown,

and strategies for the optimization of experiments are summarized.

KEY WORDS: NMR; sensitivity; multiplicative noise; t1 noise; field–frequency lock; remote detection;

flow
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INTRODUCTION

For a quantitative sensitivity analysis in NMR, the distinction between additive and multiplicative noise

must be made. Additive noise is either generated by the detector and any subsequent devices, which is the

dominant source in high-field NMR [1, 2, 3], or induced by an external source with a significant spectral

density in the same frequency band as the signal, which is mainly of importance at low magnetic fields [4]. Its

noise power does not depend on the amplitude of the signal. Thermal white electronic noise (Johnson noise)

from the detection circuit is usually considered the main additive noise source. It is a fundamental quantity

of inductive detectors whose characterization is reasonably straightforward [5], even with lossy samples like

in medical imaging [6]. In contrast, environmental influences on the sample magnetization like instrumental

instabilities or fluctuating external electromagnetic fields as well as the reproducibility of rf pulses affect

the signal or the signal-inducing quantity [7, 8]. This type of noise is multiplicative as it grows with the

signal and is often proportional to it. Because in NMR spectra its impact is obvious primarily along the

indirect dimensions of multidimensional experiments, it is often referred to as t1 noise. For example, a small

change in pulse amplitude or phase between different traces in a two-dimensional (2D) experiment leads to

a slight variation of the signal that is proportional to the affected spin magnetization [9, 10]. This effect

goes almost unnoticed in the transiently detected direct (or t2) dimension, because it leads to a systematic

error that is identical for all affected spins. The situation changes for an interferogram that is recorded

point-by-point along an indirect dimension [11]. Fluctuations of the signal are uncorrelated for independent

points or traces and appear as white noise, leading to ridges proportional to the signal intensity along this

indirect dimension. Since such imperfections significantly reduce the reproducibility of an experiment, they

cause noise not only in the indirect dimensions of multi-dimensional experiments or in experiments with

point-by-point acquisition, but also in one-dimensional (1D) experiments with transient detection where

part of the signal is subtracted, like in NOE difference spectroscopy [12] or if a phase cycle is used to remove

certain coherences.

Sources for multiplicative noise can be manifold [7]. During free precession of transverse spin magneti-

zation, an important source is a fluctuating static magnetic field B0. The origin of such fluctuations could

be instabilities of the magnet itself, for example caused by floor vibrations or by the adjusting of the dewar
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to an altered thermal environment after a magnet refill [13]. Thermoacoustic oscillations [14] have been

suggested in this context as well. Noisy shim coils and shim power supplies could be a source of spatially

dependent B0 fluctuations. The same applies to field gradient coils if present. Furthermore B0 noise can be

induced when a noisy external magnetic field is coupled inductively with the magnet that generates the main

B0 field. This is serious for unshielded as well as for shielded magnets, where the shielding coil is in series

with the main coil. While the field outside the magnet is canceled by the shield, the field in the bore is not,

therefore it is still possible to couple noise from the outside of a magnet into the bore. Sources could be,

for example, electronic devices in the vicinity of the magnet, an elevator that induces a regular pattern but

at random times, or the opening of a door to the room with the magnet. During rf irradiation, additional

noise contributors become important [8, 15, 16] like instabilities of the rf frequency and amplitude as well

as jitter, caused by frequency synthesizers and high-power rf amplifiers. Depending on the setup and its

environment, mechanical vibrations can be another noise source of importance with manifold consequences.

They can originate from not rigidly mounted parts of the probe, which then are moved for example by air

flowing through the probe for temperature controlling, or they can stem from small vibrations of the floor.

This alters the properties of the rf circuit like its quality factor Q or the tuning and matching. A quantita-

tive discussion can be done by analyzing the change these vibrations induce in the transfer function of the

detection circuit, which requires a thorough understanding of the mechanical and the electronic properties

of the magnet and the probe [17, 18].

Temperature fluctuations of the sample or parts of the electronic circuit in the probe may be another

potential source of multiplicative noise [19]. If the temperature changes are primarily caused by the interac-

tion with electromagnetic radiation from the rf pulse, this may be considered a source of systematic errors.

But the chemical shift of some samples is strongly temperature dependent [20], so that even fluctuations of

a few milli-kelvin cause an observable effect. Note that a temperature dependent resonance frequency of the

nucleus used for field–frequency locking would have an equivalent impact on the result.

NMR and magnetic resonance imaging with flowing fluids is especially prone to multiplicative noise.

Fluctuations of the flow rate is the most apparent source, but depending on the setup, other causes could

be vibrations of the flow tubing or devices induced by the fluid, and a change of the sample impedance and

therefore the tuning and matching of the detection circuit if bubbles are present in a liquid or if the pressure
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of a gas is not stable. The impact of flow rate fluctuations depends on the experiment that is performed and

is especially severe when flow is studied on a long timescale. One such experiment is time-of-flight (TOF)

remote detection NMR [21], where the spins of a fluid are tagged in an encoding environment and detected

as the fluid leaves the porous object of interest using a second coil.

Clearly, the different multiplicative noise sources have vastly different noise spectral densities. While

thermal electronic noise is Gaussian white noise up to the highest accessible NMR frequencies, perturbations

that affect the stability of NMR spectrometers are generally not white. AC powered devices commonly show

coherent noise at harmonics of the line frequency, i.e. multiples of 50/60 Hz. The magnetic noise at low

frequencies in a laboratory environment tends to have a power spectrum that falls off with 1/f , f being

the frequency of each spectral component. Mechanical vibrations are typically at very low frequencies of a

few Hertz or even sub-Hertz. Temperature fluctuations usually have a strong drift component, potentially

mixed with the feedback characteristics of the temperature controller. And finally, the response of the

field–frequency lock depends on the specific implementation in a particular spectrometer.

There are other errors of instrumental origin, which are of more systematic nature. The most prominent is

probably radiation damping [22]. Eddy currents [23] can be important especially in experiments using pulsed

field gradients, and errors due to a limited dynamic range of an rf preamplifier or due to the digitization of

the signal can lead to line distortions or digital noise. These kinds of systematic errors will not be discussed

here. Also errors related to or amplified by radiation damping like spin noise [24] or spin turbulence [25] will

not be treated.

In this paper, it is demonstrated how the difference of the noise behavior between the transiently de-

tected direct dimension and the indirect dimension of multidimensional NMR experiments can be understood

quantitatively on the basis of a simple error estimation. A generic procedure is described and illustrated the-

oretically and experimentally on some simple model systems. The impact of a noisy environment is analyzed

first in the time domain, and then it is shown how spectra are affected after Fourier transform (FT) of the

measured interferogram. Furthermore, it is shown that the unequal behavior of noise in the direct and the

indirect dimensions have important consequences for the design and performance of multidimensional NMR

experiments. Some common causes for multiplicative noise and their effect on the signal are summarized.

These include fluctuations of B0, instabilities of the pulse phase and amplitude, mechanical vibrations, and
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inheritance of noise if the spin magnetization does not fully relax to its equilibrium value between differ-

ent repetitions of an experiment. The transient behavior of the noise often allows to identify its primary

source, which then enables to quantify the noise inducing process itself. This is shown for fluctuations of

the fluid flow rate in an experiment with remote detection. In this case it was not necessary to know an

exact expression for the fluid dispersion between encoding and detection or to apply a curve fitting to the

experimental data. It was sufficient to know the mean TOF pattern from a series of identical experiments

and the standard deviation of the signal at each point of this pattern to find the standard deviation of the

flow rate.

QUANTIFICATION OF SENSITIVITY

Additive noise depends on the detector and can be characterized without assuming anything about the

signal – it is in fact easier to characterize in the absence of any signal. Multiplicative noise is imposed

on the detected signal and therefore depends on the interaction of the signal-inducing quantity with the

environment and with the detector. To discuss multiplicative noise quantitatively, it is necessary to model

the signal such that it shows the correct dependence on environmental parameters. If the multiplicative

noise amplitude is small compared to the signal, its variance σ2
M can be approximated by a first-order Taylor

expansion of the noisy signal s′(t, x1, . . . , xm, . . . , xp) around the noiseless signal s(t). If the noise-relevant

quantities xm, each with its own variance σ2
m, are statistically independent, they add as

σM (t)2 =

p
∑

m=1

(

∂s′(t, x1, . . . , xm, . . . , xp)

∂xm

∣

∣

∣

∣

s(t)

)2

σ2
m . (1)

xm represents any parameter, like B0, or event, like an rf pulse, with an influence on the detected signal. In

a noiseless environment xm is constant, therefore it is not listed as independent parameter in the following

equations.

With inductive detection, the time-domain signal s(t) is proportional to the time derivative of the trans-

verse magnetization M+(t), which for our purposes shall be given by [26]

M+(t) =

N
∑

k=1

M+
k (t) = M0

N
∑

k=1

Ak exp (−t/T2,k − iγkB0t) , (2)

where N is the number of oscillators, M0 is the equilibrium polarization of the sample, Ak is the relative
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complex amplitude of each signal component k, T2,k is the decoherence time of each oscillator, and γk =

γ(1 − ςk) with the gyromagnetic ratio γ and the chemical shift ςk of each nucleus.

The induced signal depends on the equation of motion of the detection circuit. A model system is an

LCR circuit, which can be described as a damped harmonic oscillator where the signal is a forced oscillation

induced by the changing flux of the precessing M+(t). A rigorous treatment of multiplicative noise has to

be done in the laboratory frame with the full consideration of the equation of motion of the detector [27].

However, because in high-field NMR the detected transients and mostly even the dwell time ∆t between

adjacent data points are considerably longer than the time constant of the detection circuit, and due to the

large difference of several orders of magnitude between the spectral components of the multiplicative noise

and the NMR frequencies, which are detected with a narrow bandwidth, the detector can be described by

its steady-state solution. Its properties do not have to be taken into account when discussing noise of the

signal-inducing quantity, and fluctuations of the detector properties can be discussed as fluctuations of its

steady-state solution. This allows separation of the discussion of fluctuations of the spin magnetization and

fluctuations of the detector properties. A simplified model for the signal can be used where constants and

instrumental factors are neglected. Thus we define

sk(t) =
∂M+

k (t)

∂t
≈ −iγkB0M

+
k (t) , (3)

and

s(t) =
N
∑

k=1

sk(t) . (4)

We can describe each of the noisy signal transients as

s′(t) = s(t) + n(t) , (5)

where n(t) is the noise emf of each individual data point. It contains contributions from additive noise n+(t)

as well as multiplicative noise nM (t). The variance as a function of the evolution time t can be calculated

for NS independent experiments as

σS(t)2 =
1

Ns

Ns
∑

r=1

|s′r(t) − s(t)|2 = 〈|n(t)|2〉 . (6)

Deviations of s′(t) from s(t) can be caused not only by random noise, but also by drifts that are of systematic

origin. Sometimes such drifts cannot be identified before the experiment is finished. To suppress their
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influence, the data can be analyzed in differential form. Assuming that Ns is even, we can calculate

1

Ns

Ns/2
∑

r=1

∣

∣s′2r(t) − s′2r−1(t)
∣

∣

2
=

1

Ns

Ns/2
∑

r=1

|n2r(t)|2 + |n2r−1(t)|2 − n2r(t)n2r−1(t)
∗ − n2r−1(t)n2r(t)

∗

≈ 1

Ns

Ns
∑

r=1

|nr(t)|2 = σS(t)2 . (7)

If a drift contribution adr as a function of the experiment number r with slope ad is added to s′(t), it adds

an additional contribution of approximately a2
dN

2
s /12 to σ2 if calculated according to Eq. (6), but only a2

d/2

if σ2 is calculated according to Eq. (7).

To specify the signal-to-noise ratio (SNR), which is a dimensionless quantity used to characterize the

sensitivity of an experiment, it is necessary to distinguish between the time and the frequency domain.

Usually, as detailed in [2], the SNR is defined in the frequency domain as the ratio of the on-resonant

amplitude |S(0)| of a reference signal to twice the root mean square (rms) noise amplitude, σ̃S(∆ω). The

factor 2 will be disregarded in the following, thus

(SNR)ω =
|S(0)|
σ̃S(∆ω)

. (8)

The tilde is used to denominate σ in the frequency domain. σ̃S(∆ω) contains contributions from additive

noise, σ̃+, and multiplicative noise, σ̃M (∆ω). σ̃+ is frequency independent, while σ̃M (∆ω) depends on the

offset ∆ω from the center of the peak. In the time domain, it is for our purposes more useful to define the

SNR using the signal from each individual data point,

(SNR)t =
|s(t)|
σS(t)

. (9)

If we assume that the signal in Eq. (1) does not influence xm, then σM is proportional to M0 times the decay

function of the signal. Therefore one can define a signal-independent multiplicative SNR, ψM , which marks

an upper limit for the sensitivity of a particular data point. In the time domain,

ψM (t) =
|s(t)|
σM (t)

, (10)

and in the frequency domain,

ψ̃M (∆ω) =
|S(0)|
σM (∆ω)

. (11)

If multiplicative noise is due to several independent noise processes, each with its own ψm, they add up as

ψM =

(

∑

m

ψ−2
m

)

−1/2

. (12)
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Since during an NMR experiment the signal intensity changes, for example due to relaxation, it is sometimes

clearer to discuss multiplicative noise in terms of ψM than by a σM value. The SNR as a function of the

signal amplitude for an experiment with both additive and multiplicative noise contributions is shown in

Fig. 1. If the signal level is low, the SNR is dominated by additive noise and thus proportional to the signal.

With increasing signal, the SNR approaches its maximum specified by multiplicative noise.

The simplest experiment to characterize multiplicative noise is to do several repetitions of a free induction

decay (FID) after a single non-selective rf pulse using a sample with a large signal that has only few, well-

separated lines. The size of this data set must be large enough to give a statistically significant statement

about the noise-inducing process. Since every aspect of such an experiment can be controlled, it is important

to suppress any effects that could lead to an increased noise level or that might complicate the assignment

of the noise sources like radiation damping, dipolar demagnetizing field effects [28] of the solvent, heating of

the sample, or memory effects between subsequent repetitions.

Two different spectrometers were used for the experiments presented here. One of them was a Unity Inova

spectrometer (Varian Inc., Palo Alto CA) with an unshielded 7.05 T widebore magnet (Oxford Instruments,

Cambridge UK), which corresponds to a proton frequency of 300 MHz. The other spectrometer was an

Avance 700 (Bruker GmbH, Rheinstetten, Germany) with a shielded 16.4 T magnet (Bruker AG, Fällanden,

Switzerland), having a proton frequency of 700 MHz. Both spectrometers were equipped with two-channel

5 mm liquids probes (one proton and one broadband channel, with a separate channel for the deuterium lock)

from the respective manufacturer of the spectrometer. No experiments were done within one day after a

magnet refill with cryogenics to allow the liquids to settle and the temperature within the dewar to stabilize.

NOISE AFFECTING THE SPIN MAGNETIZATION

Free Precession in a Static Magnetic Field

In high-resolution NMR experiments transverse magnetization M+(t) is precessing with a frequency of up

to several hundred MHz, while spectral resolutions of a few Hz are obtained routinely. This requires a

detection time of a single transient on the order of a second, and fluctuations of B0 up to ten orders of

magnitude smaller than B0 itself can have a noticeable influence on the phase of M+(t). Such phase errors
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can be converted into amplitude errors for example by a pulse, which affects only one component of the

transverse magnetization, by co-adding several experiments, or by phasing the signal and retaining only its

real component.

A quantitative discussion of the error accumulating during free evolution in a noisy B0 field can be done

with either t or B0 as the independent parameter. The first part of the discussion will be done with B0 as the

independent parameter, which is more intuitive, but does not give an estimate of the noise over time scales

longer than the correlation time, τB , of the B0 noise. A more general discussion will be made about the

long-time behavior of the noise with t as the independent parameter. More formal solutions to determine the

SNR during a transient evolution of the spin magnetization due to phase noise can be found in the literature

[27, 29] by noting the similarity of this problem to the characterization of a complex oscillator with noisy

frequency.

The noise during the FID due to fluctuations of B0 can be approximated as

nB(t) = Bn
∂s(t)

∂B0
≈ −BnM0

N
∑

k=1

Akγ
2
kB0t exp

(

− t

T2,k
− iγkB0t

)

= −iBnt
N
∑

k=1

γksk(t) , (13)

where Bn is the deviation of B0 from its mean value. For now, Bn is assumed to be constant during each

repetition of the experiment. The noise is proportional to the sum of all the signals from the different lines

because each signal component sees the same B0. Note that the dominant part of the noise is phase shifted

by 90◦ compared to the signal. Therefore the real part of the signal determines the noise of the imaginary

part and vice versa, which is characteristic for a phase error – if the cosine component of a signal is at its

maximum, a small phase error Θ changes its amplitude only proportional to Θ2, while the corresponding

complex component with a sine shape is at a zero-crossing and therefore changes linearly with Θ.

If we assume that only one type of nucleus is detected at a time at high field, we can neglect variations

of γk. Then the multiplicative SNR becomes

N
∑

k=1

sk(t)

nB(t)
=

i

Bnγt
. (14)

This equation states that the sensitivity with respect to B0 noise is not only independent of the magnetization

of the analyte spins, but it is also inversely proportional to γ, i.e. low-γ nuclei contribute less to multiplicative

noise than high-γ nuclei. In combination with the lower sensitivity of inductive detectors for low-γ nuclei,
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this leads to a rapid reduction of the importance of B0 fluctuations as a source of noise with decreasing γ.

Another important aspect of Eq. (14) is its inverse dependence on t, which is correct for time periods during

which Bn is approximately constant.

Figure 2 shows the result of a noise analysis in the time domain, where the noise level is shown as a

function of the acquisition time t after a single π/2 pulse. The analysis was done according to Eq. (7) for

each point of the 1H as well as the 31P FID of phosphoric acid. Figure 2a shows σS as a function of time

for both nuclei. Especially in the case of 31P one can see that the additive noise contribution σ+ cannot

be neglected. But because σ+ can be easily identified (it is the only noise source left when the signal has

decayed) and then subtracted using σM (t)2 = σS(t)2 − σ2
+, multiplicative noise can be isolated. Figure 2b

shows ψ−1
M (t) = σM (t)/|s(t)| for 1H and 31P. The two most prominent features in this figure are the increase

of the noise relative to the signal, and the higher noise of the nucleus with the larger γ.

If we use t as the independent parameter, we can write the noise afflicted magnetization of each spin

component after a detection pulse as

M
′+
k (t) = M0Ak exp



− t

T2,k
− iγk

t
∫

0

B0 +Bn(t
′)dt′



 = M+
k (t) exp



−iγk
t
∫

0

Bn(t
′)dt′



 , (15)

and since Bn(t) is about 10 orders of magnitude smaller than B0, the signal can be approximated as

s′(t) ≈ −
N
∑

k=1

iγkB0M
′+
k (t) =

N
∑

k=1

sk(t) exp



−iγk
t
∫

0

Bn(t
′)dt′



 . (16)

Because in the homonuclear case γk differ typically only by a few ppm, each component sk(t) of the FID

gets multiplied by the same envelope

ne(t) = exp



−iγ
t
∫

0

Bn(t
′) dt′



 ≈ 1 − iγ

t
∫

0

Bn(t
′) dt′ . (17)

A description of the long-time behavior of phase noise is not straightforward. First of all, B0 noise is by no

means white. It strongly depends on the dominant sources in the environment of the spectrometer as well

as the field-frequency lock. This prohibits a generally valid discussion, as there is no fundamental physical

process involved that would allow to derive a general expression, and one has to define a model to describe

B0 noise. Let us assume that Bn has a Gaussian probability distribution, a mean value 〈Bn〉 = 0, a variance

σ2
B = 〈B2

n〉 − 〈Bn〉2 = 〈B2
n〉, and an autocorrelation function

ΓB(τ) = 〈Bn(t)Bn(t+ τ)〉 = σ2
B exp

(

−|τ |
τB

)

(18)
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with the correlation time τB . The corresponding power spectrum of the Bn noise process,

PB(ω) =
σ2
BτB

π (1 + ω2τ2
B)

, (19)

is derived using the Wiener-Khinchin theorem, which states that the autocorrelation function forms a Fourier

pair with the power spectral density. This would lead to frequency-independent noise only if τB ¿ ∆t, which

is generally not correct for B0 noise. According to Eq. (16), an integration of Bn(t) from the beginning of

an FID to time t of the acquisition of a data point,

Θ(t) =

t
∫

0

Bn(t
′) dt′ , (20)

is required to characterize the phase error Θ(t). The variance σΘ(t)2 = 〈Θ2〉 is time dependent,

σΘ(t)2 =

〈 t
∫

0

dt′
t
∫

0

dt′′Bn(t
′)Bn(t

′′)

〉

= 2

t
∫

0

dt′ (t− t′) ΓB(t′)

= 2σ2
Bτ

2
B

(

t

τB
+ exp

(

− t

τB

)

− 1

)

. (21)

If t¿ τB , this simplifies to σΘ(t)2 ≈ σ2
Bt

2, and if tÀ τB , we get σΘ(t)2 ≈ 2σ2
Bτ

2
B(t/τB − 1) ≈ 2σ2

BτBt. The

noise variance evaluates to

σM (t)2 = 〈[s′(t) − s(t)] [s′(t) − s(t)]
∗〉 = |s(t)|2 〈[exp(−iγΘ) − 1] [exp(iγΘ) − 1]〉 (22)

≈ |s(t)|2 〈γ2Θ2〉 = 2γ2σ2
Bτ

2
B

(

t

τB
+ exp

(

− t

τB

)

− 1

)

|s(t)|2 . (23)

For the approximation it was assumed that |γΘ| ¿ 1, and the expansion exp(±iγΘ) − 1 ≈ ±iγΘ was used.

The sensitivity now becomes

ψB(t) =
|s(t)|
σM (t)

=
1

√

2γ2σ2
Bτ

2
B

(

t

τB
+ exp

(

− t

τB

)

− 1

)

. (24)

The SNR of the two aforementioned extreme cases can be evaluated to be

ψB(t) ≈ 1

γσBt
if t¿ τB (25)

ψB(t) ≈ 1√
2γσB

√
τBt

if tÀ τB . (26)

Eq. (24) shows the same short-time properties as Eq. (14), except that the phase information is lost. The

long-time behavior of the multiplicative noise is more like in the case of diffusion [30]. Note that if T2 < τB ,
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typically only the short-time relation is relevant for practical applications, because for t > T2 the signal

decayed to a level where for most samples additive noise is dominant. Equation (24) can now be used to

analyze Fig. 2b, where ψ−1
M is plotted. The slope of the two curves is proportional to 1/γ as predicted.

By fitting the data using the 1H data we obtain σB = 1.36 nT and τB = 0.19 s. The 31P data, where

multiplicative noise is relevant only for about 0.3 s, reveals σB = 1.45 nT and τB = 0.18 s. The data was

fitted with a non-linear least-square fit using the Levenberg-Marquardt method [31].

Due to the large influence of B0 fluctuations on multiplicative noise, it can be expected that the field–

frequency lock has a considerable impact on this noise source. Figure 3a shows the multiplicative noise with

different lock time constants τl. σB = 2.5 nT was obtained without lock, and σB = 0.43 nT with τl = 4.7 s.

With τl = 1.2 s the noise at the beginning of the acquisition was about the same as without lock, but

at longer t2 the noise was considerably reduced. However, this curve cannot be reproduced well anymore

by Eq. (24). It depends on the dynamics of the lock control system and the solvent used for locking [32].

Experiments with τl = 12 s and with τl = 48 s gave basically the same result as with τl = 4.7 s and are not

shown in the figure.

Figure 3b shows the importance of the quality of the lock. Experiments with different lock power settings

were recorded. The lock gain was set to its maximum value and the lock power was changed to obtain the

lock levels indicated in the figure. Care was taken that at the maximum lock power used in this series the

deuterium transition was not saturated. It can be seen that with a more stable lock the multiplicative noise

level can be reduced considerably. The results from Fig. 3a were obtained with a lock level corresponding

to the highest value in Fig. 3b. The noise levels in the two experiments are therefore comparable. Due to

the reduced deuterium concentration in the sample used for Fig. 2, no optimal lock was obtained in that

experiment, which explains the increased σB compared to the data in Fig. 3.

Coherent Fluctuations of the Static Magnetic Field

Another typical problem is Bn(t) due to a coherent noise source with fundamental frequency ωc, e.g. an AC

powered electronic device that is not well shielded. We can make the assumption that

Bn(t) = Bω cos (ωc (t+ θ)) . (27)
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The coefficient Bω is constant, and θ denotes a random shift of the noise modulation with respect to the

beginning of detection, because usually the experiments are not synchronized with the noise source. If the

same integration as in Eq. (20) is performed, we get

Θc =

t
∫

0

Bω cos (ωc (t′ + θ)) dt′ =
2Bω
ωc

cos

(

ωc

(

t

2
+ θ

))

sin

(

ωct

2

)

. (28)

Θc is weighted by 1/ωc. This is related to the well-known relation between white noise, which has a frequency-

independent power spectrum, and Brownian noise, whose power spectrum shows a 1/f 2 relation. If white

noise is integrated, the resulting noise pattern has a Brownian power spectrum. Although derived here for a

non-random modulation, this behavior characterizes also the relation of the spectrum of Θ to the spectrum

of Bn(t) for random noise sources. This is of great importance for processes like the free precession of spin

magnetization, where phase noise accumulates with time. Low-frequency noise of B0 has a much bigger

influence on the affected process than high-frequency noise. Therefore if slow noise components are present,

the influence of fast processes on the observed signal is minor, at least as long as the fast processes are not

strongly enhanced, which is sometimes the case for line frequency harmonics.

With coherent noise 〈s′(t)〉 is not equal to s(t) for all t. The ratio 〈s′(t)〉/s(t) can be calculated by

noticing that ωcθ is not small compared to unity, and for a large number of co-added identical experiments,

the full domain of ωcθ from 0 to 2π is evenly sampled. For the homonuclear case with γk ≈ γ, we get

〈s′(t)〉
s(t)

=
ωc
2π

π/ωc
∫

−π/ωc

exp

(

−i 2γBω
ωc

sin

(

ωct

2

)

cos

(

ωc

(

t

2
+ θ

)))

dθ . (29)

By using the expansion exp (ix cosϕ) =
∞
∑

u=−∞

iuJu(x) exp (iuϕ), where Ju is the Bessel function of the first

kind, we can rewrite this equation as

〈s′(t)〉
s(t)

=
ωc
2π

∞
∑

u=−∞

iuJu

(

−2γBω
ωc

sin

(

ωct

2

))

exp

(

iuωct

2

)

π/ωc
∫

−π/ωc

exp (iuωcθ) . (30)

Because u is integer, the integral evaluates to 0 for each u except u = 0, and we get

〈s′(t)〉
s(t)

= J0

(

−2γBω
ωc

sin

(

ωct

2

))

≈ 1 − γ2B2
ω

2ω2
c

(1 − cos (ωct)) . (31)

Therefore a second-order component modulated at ωc remains even with a large number of co-added ex-

periments. This phenomenon is responsible for the well-known sidebands of a liquid sample spinning in
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an inhomogeneous field [33, 34]. If the field is very inhomogeneous, the next term in the expansion of the

Bessel function might be needed as well, which leads to an additional sideband at 2ωc. If the number of

co-added experiments is not sufficiently large to get an ensemble average for each data point of s(t), the

simple integration over θ in Eq. (29) cannot be performed. But since the expansion into Bessel functions is

still possible, one would have to also consider Bessel functions with u > 0 in Eq. (30).

Related to fluctuations of the B0 field are vibrations of a sample in an inhomogeneous field. In an MAS

solid-state NMR experiment, the linewidth can often be shimmed to about 10 Hz, which leaves an average

gradient over the sample volume on the order of 1 Hz/mm, and mechanical vibrations of a few microns can

lead to an observable level of multiplicative noise.

To calculate the variance caused by a coherent noise source that is not synchronized with the experiment,

we can use Eq. (22) and replace Θ with Θc from Eq. (28). Analogous to Eqs. (29–31), we obtain

σM (t)2 = |s(t)|2 〈[exp(−iγΘc) − 1] [exp(iγΘc) − 1]〉

= 2

[

1 − J0

(

2γBω
ωc

sin

(

ωct

2

))]

|s(t)|2 ≈ γ2B2
ω

ω2
c

(1 − cos (ωct)) |s(t)|2 . (32)

Therefore, transient phase noise caused by a coherent source does not average out even if a large number of

experiments with different initial phases are co-added. An example is shown in Fig. 4b, where on top of the

increase of σS(t2) with rising t2 a modulation with ωc ≈ 16.6 Hz and Bω ≈ 0.5 nT can be observed. Note

that this modulation is indicative of coherent noise that is not synchronized with the experiment. Otherwise

it would be only noticeable as a sideband in the spectrum, but not in the transient of the noise variance.

Evolution During rf Irradiation

An on-resonant rf irradiation changes the direction of the magnetization vector Mk of spin k. The pulse

is characterized by its amplitude B1, by its phase ϕp, by its duration tp, and by its shape fs(t). For

a rectangular pulse with an excitation bandwidth much broader than the spectrum, the effect on Mk is

described by a flip angle β = −γB1tp. The problem of noisy rf pulses has been analyzed by different authors

[8, 9, 10]. In solid-state NMR experiments, where high rf power is crucial for the success of an experiment

and therefore noisier amplifiers with a high gain are used, both phase and amplitude errors are contributing

to the total noise [8], while in liquid state experiments, noise due to phase errors is usually dominant [9].
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It is possible to determine from time-domain experiments, like the ones in Fig. 2, whether the main cause

of multiplicative noise is a phase error accumulated during free precession or fluctuations of the rf pulse.

Errors induced by pulses are already present at the beginning of the free evolution period and decay with

the same time constant as the signal. Therefore it is advisable to only use the first data point along t2 to

analyze this type of noise, since afterwards phase noise accumulated during t2 gets admixed.

Within the frame of our simplified classical model, pulse errors can be accounted for by adding a random

contribution to Ak. In the case of a pulse with the rf phase in an angle φ− π/2 to the reference phase, we

get

Ak =
M0,k

M0
sin(β) exp(iqkφ) , (33)

where qk is the order of coherence of the affected transition. The pulses shall be affected by small amplitude

errors δβ and phase errors δφ. If these errors are time-dependent during the pulse, a similar treatment as

described for phase errors due to B0 fluctuations has to be applied. However, for short pulses we may assume

that these errors are constant during one pulse, and uncorrelated for different pulses. For a single pulse, the

signal amplitude becomes

A
′

k =
M0,k

M0
sin(β + δβ) exp (iqk(φ+ δφ)) , (34)

i.e. the error of the pulse amplitude affects only the signal amplitude, and the error of the pulse phase affects

only the signal phase. In general we can assume that the amplitude and the phase error are not correlated,

so they contribute independently and add in quadrature. In this simple example, we can assume without loss

of generality that φ = 0. The error of the flip angle can be caused by a fluctuating B1 field or a fluctuating

tp. So we can write σ2
β = γ2(B2

1σ
2
t + t2pσ

2
B1

). The variance of A
′

k can then be determined as

σ2
Ak

=

∣

∣

∣

∣

∂Ak
∂β

∣

∣

∣

∣

2

σ2
β +

∣

∣

∣

∣

∂Ak
∂φ

∣

∣

∣

∣

2

σ2
φ =

M2
0,k

M2
0

[

γ2 cos2(β)(B2
1σ

2
t + t2pσ

2
B1

) + sin2(β)q2kσ
2
φ

]

. (35)

The inherent sensitivity due to this error is

ψAk
=

|sk|
∣

∣

∣

∣

∂sk
∂Ak

∣

∣

∣

∣

σAk

=
|Ak|
σAk

≈ 1
√

γ2 cot2(β)
(

B2
1σ

2
t + t2pσ

2
B1

)

+ q2kσ
2
ψ

. (36)

This result shows that the relative contribution of the pulse amplitude error gets largest for small flip angles

β, because its variance scales with cos2(β), while the influence of the pulse phase error is most prominent

for pulses that are odd integer multiples of π/2 when sin2(β) = 1. This can be used to optimize pulse flip
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angles to minimize multiplicative noise [10]. Furthermore, for certain experiments it is known that basically

the same information can be obtained when different coherence transfer pathways are selected. This can be

used to reduce the noise by performing the experiment with the lower coherence transfer order [9]. However,

note that coherence transfer pathways that are canceled with a phase cycle still contribute to the total

multiplicative noise. By dephasing unwanted coherences with gradient filters, also the noise associated with

these transitions gets removed. But the B0 noise is generally higher in the presence of field gradients, which

may cause an increase of multiplicative noise on coherences that are not dephased.

In principle, the error of Ak for a single event can be different for each line k of the spectrum. However,

especially in the case of non-selective pulses and a spectrum where the lines are not spread over a too wide

chemical shift range, the error of Ak for the different lines is correlated or even identical, because the same

pulse imperfections act on each spin packet.

In Fig. 2 the contribution of rf pulse fluctuations to the multiplicative noise is approximately ψA ≈ 1000

for 1H. This value represents the maximum achievable multiplicative SNR without signal averaging as limited

by the rf pulse reproducibility. The corresponding data is magnified in the inset of Fig. 2b. ψA of 31P cannot

be determined because additive noise has a higher amplitude than multiplicative noise due to rf pulse

fluctuations even at the beginning of the FID.

Interrupted Free Evolution

An rf pulse has also the effect of interrupting the correlation of M+(t) in a noisy B0 field. As long as the

free evolution periods are longer than τB , they are approximatively independent of each other with respect

to B0 noise. If the experiments are executed on a time scale considerably shorter than τB , part of the B0

noise might be refocused at some point, depending on the pulse sequence, but this will not be studied here.

The error of different pulses are considered to be uncorrelated, although this assumption can have some

limitations for drifts that are induced for example by temperature changes [16].

Because the time scale during which phase errors due to B0 fluctuations accumulate is usually much

longer than the time scale of rf pulses, these two events can be treated independently. Furthermore a pulse

that converts one component of coherent magnetization into polarization also transfers a phase into an

amplitude error. Therefore the multiplicative noise due to different pulses and interrupted free evolution
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periods adds up according to Eq. (1). On the other hand, all the spins in a molecule experience the same

fluctuations from the noisy quantities that influence the signal, so this noise adds up linearly. If more than

one pulse is applied, the simple dependence of amplitude errors on cos(β) and phase errors on sin(β) is not

valid anymore. For a quantitative description it is then necessary to analyze each pulse sequence separately

[10]. For a qualitative upper limit estimate, we can replace cos(β) and sin(β) with 1. Relaxation terms

are not considered, because multiplicative noise relaxes with the same rate as the signal. Depending on the

applied pulse sequence, also multiple quantum coherences can occur at some point during an experiment.

This scales the precession frequency of the magnetization and therefore also the phase errors due to B0

fluctuations with the order qm of the specific coherence. If we consider only a single coherence pathway from

a single line, we get

ψM (t)2 =
|s(t)|2
σM (t)2

=
|s(t)|2

P
∑

p=1

(

∂s

∂A

)2

σ2
A +

(

∂s

∂B0

)2

σ2
B

(37)

=

[

P
∑

m=1

γ2(B2
1,mσ

2
tp,m

+ t2p,mσ
2
B1,m

) + q2mσ
2
φm

+ 2q2mγ
2σ2
Bτ

2
B

(

tm
τB

+ exp

(

− tm
τB

)

− 1

)

]−1

.

P is the total number of pulses, and tm is the evolution time after pulse m. t2 is the transient evolution

during detection1, thus |q2| = 1.

To apply the simplified classical scheme to discuss multi-pulse experiments, the noise from each free

evolution period and from each pulse must be determined for each signal component k, i.e. each coherence

pathway for each spin. Exact values of Ak,m have to be determined with a quantum mechanical treatment,

but this is out of the scope of this discussion. To fully account for multiplicative noise, a sum has to be taken

over all the coherences that finally evolve into observable magnetization, even if they are phase-cycled out.

As can be anticipated from Eq. (37), general expressions become very complicated, but with some realistic

assumptions useful conclusions regarding the sensitivity are still possible.

1For consistency with other equations, t1 is the time that is increased in the indirect dimension, and t2 the transient evolution

time; all the other events in Eq. (37) shall be ordered chronologically.
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Recycle Delay and Noisy Initial Conditions

For the interpretation of multi-dimensional NMR data, it is usually assumed that when the first pulse is

applied at the beginning of each trace, the magnetization M has always the same value. If the recycle

delay between two subsequent traces is very long such that the spin magnetization can reach its Boltzmann

equilibrium value M0, this assumption is justified very well because M0 is basically noiseless at the level

of accuracy available in an NMR experiment, provided that the temperature of the sample is stable. But

one usually cannot afford to wait “infinitely” long between subsequent repetitions. A certain fraction of

encoded magnetization survives, which appears in the spectrum as if the same pulse sequence were applied

twice, giving rise to additional coherences [35] that are not suppressed with the usual phase cycles. The

safest way to avoid such coherences is to wait for tr ≥ 5T1, where tr is the recycle delay between the last

pulse of a certain trace and the first pulse of the next trace. Then Mz(t0)/M0 > 0.99, where t0 denotes the

time immediately before the first pulse of each trace. These additional coherences can also be phase-cycled

out [36], but if Mz is affected by multiplicative noise, some of this noise is handed down to the next trace

of the experiment. This is one mechanism for a correlation of multiplicative noise between different traces.

If we assume that no additional multiplicative noise is added to longitudinal magnetization during a free

evolution, and that this noise contribution relaxes with the same T1 as the magnetization of the spins it is

imposed on, the inherited noise at the beginning of a new trace is

σz(t0) = σz(te) exp

(

− tr
T1

)

, (38)

where te describes the moment right after the last pulse of a certain trace of the experiment, and σz(te) is the

standard deviation of the noise of Mz(te). In a series of identical experiments, the longitudinal magnetization

M
(p+1)
z (t0) at the beginning of experiment number (p+ 1) can be calculated recursively as

M (p+1)
z (t0) = M0 +

(

M (p)
z (t0)α(t1) −M0

)

exp

(

− tr
T1

)

, (39)

where α(t1) = M
(p)
z (te)/M

(p)
z (t0). After an infinite number of experiments with identical t1, we get

M
(∞)
z (t0)

M0
=

1 − exp

(

− tr
T1

)

1 − α(t1) exp

(

− tr
T1

) . (40)

If we consider as a didactic example a COSY experiment [2] with two ideal non-selective π/2 pulses separated

by t1 (Fig. 5a), the transverse magnetization of an isolated spin at time t1 after the first pulse of trace p
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is M+(t1) = M
(p)
z (t0) exp (−t1/T2 + iωt1). By the second pulse, one component of M+ is stored as z

magnetization, say M
(p)
z (te) = M

(p)
z (t0) exp (−t1/T2) cos (ωt1), thus α(t1) = exp (−t1/T2) cos (ωt1). We

then can determine M
(∞)
z /M0 for different values of tr/T1 (Fig. 5b). In Fig. 5c, M

(p)
z (t0)/M0 is shown for

an increasing number of p. Let us assume that the main source of multiplicative noise is due to phase errors

accumulated during t1 and stored as longitudinal magnetization by the second pulse. According to Eq. (14),

this noise is out-of-phase with the precessing magnetization, therefore we get

σ(1)
z (te) = γσBt1 exp

(

− t1
T2

)

|sin(ωt1)|M0 (41)

after the second π/2 pulse of the first trace. If multiple traces of the same experiment are recorded, the

inherited noise from each of them adds in quadrature, and one recursively gets

σ(p+1)
z (t0) =

√

[

γσBt1 exp

(

− t1
T2

− tr
T1

)

sin(ωt1)M
(p)
z (t0)

]2

+

[

σ
(p)
z (t0) exp

(

− t1
T2

− tr
T1

)]2

(42)

at the beginning of a new trace. This step can be repeated over several generations, and assuming that all

the experiments were done with the same t1, the relation

σ(n+1)
z (t0) = γσBt1 exp

(

− t1
T2

− tr
T1

)

|sin(ωt1)|

√

√

√

√

n
∑

p=0

[

M
(p)
z (t0) exp

(

− t1
T2

− tr
T1

)n−p
]2

(43)

is obtained. For an infinite number of experiments, one gets for the inherited sensitivity

ψ(∞)
z (t0) =

M
(∞)
z (t0)

σ
(∞)
z (t0)

≈

√

exp

(

2

(

t1
T2

+
tr
T1

))

− 1

γσBt1 |sin (ωt1)|
. (44)

The approximation assumes M
(p)
z (t0) ≈ M

(∞)
z (t0), which allows to use the relation

∞
∑

p=0
exp(−x)p = (1 −

exp(−x))−1 for x > 0. If coherence evolves at order q during t1, ψ
(∞)
z (t0) scales with q−1.

In [11] a 2D experiment was presented with hyperpolarized xenon, where during each repetition only a

small fraction of the available magnetization was used. To minimize the loss of magnetization due to T1

relaxation of the xenon, a short tr was desirable. It was observed experimentally that inheritance of noise can

indeed have a considerable influence on the performance of such an experiment. However, since fluctuations

of B0 are slow, increasing tr increases the influence of very slow B0 fluctuations, even with the field–frequency

lock turned on. Figure 4 shows the influence of tr for the case where tr ≥ 5T1. In Fig. 4a a tendency can be

observed that with a longer recycle delay the multiplicative noise level is getting higher. Since all the curves
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begin at σS(t)/s(t) ≈ 0, inheritance of noise between experiments is low even for the shortest recycle delays.

The experiments were recorded one right after the other, starting with the shortest recycle delay. But this

result indicates only a trend. Another experiment with a recycle delay of tr = 30 s, but otherwise identical

settings, was recorded during the night when activity in the lab is low and the temperature in the room is

known to be more stable. It showed a noise level that was almost as low as the one with tr = 1.5 s. To verify

this trend, additional experiments were done on a different spectrometer in a different room. Figure 4b was

obtained with the 700 MHz spectrometer. The same tendency was observed, but this time less pronounced.

IMPACT OF MULTIPLICATIVE NOISE ON THE SPECTRUM

If multiplicative noise is small compared to the signal so that we can write a noisy time domain transient as

s′(t) = s(t) (1 + ξM (t)) , (45)

where ξM (t) is a complex random variable with Gaussian probability distribution and zero mean, then the

noise in the frequency domain is

S′(ω) − S(ω) = S(ω) ⊗N (ω) , (46)

where S′(ω), S(ω), and N (ω) are the Fourier transforms of the noisy signal s′(t), the noiseless signal s(t),

and ξM (t), respectively. This convolution, denoted by ⊗, is the reason why multiplicative noise that appears

in the spectrum is not due to noise sources that have the same frequency as the Larmor frequency of the

spins, but it is low frequency noise within the bandwidth of the receiver.

White additive noise gives the same offset-independent SNR in the direct and the indirect dimension of

a 2D spectrum, because its correlation time is much shorter than the time scale of NMR experiments. For

multiplicative noise, the direct and the indirect dimensions of a multidimensional spectrum show different

properties. The different situations how noise acts on the spectrum are shown in Fig. 6. Additive noise adds

to the signal in both the time and the frequency domain (Fig. 6b), while according to Eq. (46), noise that

is multiplicative in the time domain corresponds to a convolution of the FT of the noise with the noiseless

spectrum in the frequency domain (Figs. 6c-f). In the direct as well as in the indirect dimension, noise

added during the time period which is increased (t1 in the indirect and t2 in the direct dimension) has to be

distinguished from noise added during all the other parts of an experiment.
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Most noise-inducing processes lead dominantly either to phase noise or to amplitude noise. In the case

of phase noise like in Eq. (17), ξM (t) is imaginary, and

N (−ω) = −N ∗(ω) . (47)

In the case of amplitude noise, ξM (t) is real, thus

N (−ω) = N ∗(ω) . (48)

These relations can often be used to identify the source of multiplicative noise. For example, the cause of

rf pulse fluctuations can be investigated by taking the first data point of an FID from a set of identical

experiments and perform an FT along the “signal averaging” dimension. If this first point is at the origin of

a cosine modulation so that its imaginary component is zero, pure phase noise of the pulse leads to a noise

spectrum that behaves according to Eq. (47), while pure amplitude noise causes the noise spectrum to follow

Eq. (48). This is demonstrated with a one-pulse FID experiment that was repeated 100 times at a proton

frequency of 700 MHz, using a sample of 1% H2O in D2O, doped with 0.1 g/l GdCl3 (4 Hz H2O/D2O sample,

dist. by Varian, Palo Alto, CA). Figure 7 shows that the fluctuations of the rf pulses are not completely

white in this case, but that there is an increased low frequency component. All the high frequency noise

complies with the relation for phase noise. Most of the low frequency noise is phase noise as well, but there

is another contribution of different origin, like a drift of the circuit tuning or of the rf amplifier gain. Note

that the bandwidth in Fig. 7 is given by the repetition rate of the experiment, and the resolution by the

inverse of the total time to record all the identical data sets.

Direct Dimension

Multiplicative noise sources that affect the spins prior to detection simply scale each line in each t2 transient

by a certain factor and can be described by the variance σ2
Ak

of Ak at the beginning of an acquisition. σAk

includes all the noise that accumulated during rf pulses and free evolutions up to that point. Assuming

that each spin is affected equally by multiplicative noise, all the lines in the spectrum get scaled by the

same factor, which neither adds frequency-dependent random noise nor influences the lineshape in the direct

dimension. But it does affect the reproducibility of an experiment, and its influence becomes visible when

certain coherences are to be suppressed in a phase cycle. This situation is shown in Fig. 6c. Every time
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one component of the precessing magnetization is transfered to polarization with an rf pulse, a phase error

is converted into an amplitude error. Therefore ξM (t) is typically dominantly real. A phase error of the

detection pulse, however, leads to a phase error in the signal.

For a certain t1, ψ̃Ak
(0) in the frequency domain is identical to ψAk

in the time domain, which is equal

to ψM (t) in Eq. (37) minus the contribution accumulated during t2. The sensitivity as a function of the

frequency offset for a single line is

ψ̃A(∆ωn) =
√

1 + ∆ω2
nτ

2
2

[

L
∑

l=1

ψ̃−2
Al

(0)

]−1/2

. (49)

τ2 is the signal lifetime along t2, ∆ωn = 0 corresponds to the center of the line after a discrete Fourier

transform, and l counts through all the statistically independent events and all the coherence pathways that

contribute to this line. For each l, a different ψAl
can be determined. Equation (49) can be used to calculate

the standard deviation in the frequency domain as

σ̃A(∆ωn) =
|S(0)|

ψ̃A(∆ωn)
=

s0

(

1 − exp

(

− T

τ2

))

T
√

τ−2
2 + ∆ω2

n ψ̃A(0)
, (50)

where T is the length of each transient data trace, and s0 = s(0) in the time domain. The noise has the

same ∆ωn dependence as the line itself, therefore no sensitivity is gained or lost for this kind of noise with

a matched filter or any other apodization.

Multiplicative noise that adds during detection behaves differently. It changes its value during data

acquisition, and a single transient signal can be summarized as

s′(t) ≈
N
∑

k=1

sk(t) exp (−iγΘ(t)) ≈
N
∑

k=1

sk(t) (1 − iγΘ(t)) . (51)

In the time domain, this states that each spin accumulates the same phase error during a particular evolution

period. If this were the only noise source in the frequency domain, N (ω) would behave according to Eq. (47).

The result is shown in Fig. 6d. In 1D experiments where the spectrum is phased and only the absorptive

part is retained, phase noise gets converted into an antisymmetric distortion of each line.

For a more quantitative discussion of multiplicative noise that adds during t2, the situation with and

without relaxation will be considered independently. Without relaxation, the time-domain signal is s(t) = s0

if we assume for now that the carrier frequency is equal to the resonant frequency of the transition. The
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on-resonant line intensity in the frequency domain is

S(0) =
1

T

T
∫

0

s(t) dt = s0 . (52)

In the direct dimension, T ¿ τB will be assumed. Then the main influence of multiplicative noise can

be approximated by the short-time approximation of Eq. (23), i.e. σM (t) ≈ |s(t)| γσBt. The SNR can be

calculated by dividing the on-resonant signal by the Fourier series of the noise. This is permitted because

the time-domain noise in the direct dimension is a continuous function whose amplitude Bn changes from

experiment to experiment, but with a stable power spectrum. If we neglect relaxation, thus |s(t)| = s0, we

get

σ̃T (∆ωn) =

∣

∣

∣

∣

∣

∣

1

T

T
∫

0

|s(t)| γσBt exp

(

−i 2πnt

T

)

dt

∣

∣

∣

∣

∣

∣

=



















γσBTs0
2

n = 0

γσBs0
∆ωn

|n| > 0 ,

(53)

with ∆ωn = 2πn/T . With S(0) given by Eq. (52), the sensitivity as a function of the off-resonance frequency

is

ψ̃T (∆ωn) =



















2

γσBT
n = 0

∆ωn
γσB

|n| > 0

(54)

The noise is inversely proportional to ∆ωn. At spectral regions that are not in the direct vicinity of any lines,

no contribution from multiplicative noise remains, and the noise is purely given by additive noise. Thus in

a 1D spectrum with transient detection usually only additive noise is noticed as the limiting contribution.

This also shows the importance to suppress low frequency fluctuations of B0.

With relaxation included, the signal shall be s(t) = s0 exp(−t/τ2), and the on-resonant line intensity is

S0 = S(0) = s0
τ2
T

(

1 − exp

(

− T

τ2

))

. (55)

The noise becomes

σ̃T (∆ωn) =

∣

∣

∣

∣

∣

∣

1

T

T
∫

0

s0 exp

(

− t

τ2

)

γσBt exp

(

− i2πnt
T

)

dt

∣

∣

∣

∣

∣

∣

=
s0γσBτ

2
2

T (1 + ω2
nτ

2
2 )

√

(

1 − exp

(

− T

τ2

)(

1 +
T

τ2

))2

+ ω2
nT

2 exp

(

−2T

τ2

)

. (56)
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If we assume that T À τ2, this simplifies to

σ̃T (∆ω) =

s0γσB

√

T−2 + ∆ω2
n exp

(

−2T

τ2

)

τ−2
2 + ∆ω2

n

≈ s0γσBτ
2
2

T (1 + ∆ω2
nτ

2
2 )
. (57)

The approximation is valid in the vicinity of ∆ωn = 0. On-resonant, the multiplicative noise limited

sensitivity is ψ̃T (0) = [γσBτ2]
−1 and thus proportional to the inverse of τ2, which is in contrast to the

additive noise limited sensitivity. The sensitivity close to resonance is

ψ̃T (∆ωn) =
1 + ∆ω2

nτ
2
2

γσBτ2
, (58)

again assuming that T À τ2. This kind of noise has a different dependence on ωn than the signal. On-

resonant, the sensitivity can be optimized by reducing τ2, while off-resonant a longer τ2 is advantageous.

Note that because the noise is proportional to the signal, it does not matter sensitivity-wise if τ2 is the

decoherence time T2 of the sample, or if it is the time constant of an apodization function. It is the

combined effect of relaxation and apodization that matters. If Eq. (57) is combined with the multiplicative

noise that accumulated prior to detection, given by Eq. (50), we get

σ̃M (∆ωn) =
√

σ2
A(∆ωn) + σ2

T (∆ωn) =
s0τ2

T
√

1 + ∆ω2
nτ

2
2

√

1

ψ̃A(0)2
+

γ2σ2
Bτ

2
2

1 + ∆ω2
nτ

2
2

. (59)

The above equations were derived assuming no signal averaging. If NS identical experiments are co-added

or a phase cycle with NS steps is applied, the on-resonant sensitivity becomes

ψ̃M (0) =

√

NS
γ2σ2

Bτ
2
2 + ψA(0)−2

. (60)

This equation defines the sensitivity of one data point along t1, which is needed later to discuss the sensitivity

along the indirect dimension of a 2D spectrum.

The sensitivity of a 1H spectrum at 300 MHz in the direct dimension is shown in Fig. 8. The sample was

a solution of 1 M NaCl dissolved in H2O:D2O (1:1) that also contained a small amount of isopropyl alcohol

(EMD Chemicals Inc., Gibbstown NJ). On-resonant the noise is highest, and phase noise as described by

Eq. (57) is dominant. Noise due to pulse imperfections, given by Eq. (50), becomes more important off-

resonant. Additive noise finally becomes dominant far off-resonant. An additional feature of this noise

spectrum are the lines from coherent noise sources at |∆ω|/2π = 60 Hz and multiples thereof. Additionally
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there is a distinct sideband at |∆ω|/2π = 75 Hz of unknown origin. Furthermore, emphasized by an arrow

in the figure, the multiplicative noise from the five strongest lines of the isopropyl alcohol septet is visible.

These lines are much more prominent in the noise spectrum than in the real spectrum. The deviation of

the experimental from the calculated noise in Fig. 8 is primarily because of a non-exponential decay of the

signal due to imperfect shimming.

The same experimental data as for Fig. 7 was used to analyze the noise in the direct dimension. The data

was Fourier transformed along the direct dimension only (Fig. 9a). The absolute value of a data point in

both wings of a line with equal distance to its center is shown in Fig. 9b. The signal is stable around a mean

value, and the noise is antisymmetric with respect to the center of the line, which complies with Eq. (47)

and is as expected for phase fluctuations. That the noise is correlated is shown in Fig. 9c, where the absolute

value of two adjacent points in the spectrum is shown. Figure 9d shows the effect of reducing τ2 by changing

the apodization function. As predicted the on-resonant sensitivity gets improved by shorter τ2, while the

off-resonant sensitivity decreases. Because the initial relaxation pattern is not perfectly exponential, the

unfiltered shape of the sensitivity does not match Eq. (56). The shorter τ2 was made by apodization, the

better the experimental result agreed with the theoretical.

Indirect Dimension

Along the indirect dimension, the B0 noise of subsequent traces is ideally uncorrelated. Therefore multiplica-

tive noise along the indirect dimension is white and spreads over the whole bandwidth of the F1 dimension.

Any correlation of multiplicative noise would be either due to a short recycle delay and inheritance of noise,

or due to noise processes with a correlation time slower than the repetition time of the experiment. But

still all the different spin packets experience the same B0 and are affected in the same way by rf pulse

fluctuations, at least as long as the spectrum is excited evenly with non-selective pulses. Thus also along

the indirect dimension each line gets convoluted with the same noise pattern. Because each of these noise

spectra is shifted by the offset of the line with respect to each other, the total multiplicative noise scales in

quadrature with the intensity of each line.

For a quantitative estimate, let us look at the sensitivity of one trace along the indirect dimension that is

on-resonant with a line in the direct dimension. Like in the direct dimension, noise that accumulates during
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t1 has to be treated separately from noise that is accumulated prior or after t1. The signal shall have the

same form as described by Eqs. (2) and (3), except that γk must be substituted by qkγk. Because the noise

is uncorrelated along t1, it gets evenly redistributed by the FT, and the sensitivity is identical for each value

of the offset frequency ∆ω1. The average noise variance at each point along F1 in the absence of relaxation

along t1 can be calculated from Eq. (60) as

σ̃
(1)
A0

=

√

√

√

√

s̃20
NSK2

1

K1
∑

k=1

[

γ2σ2
Bτ

2
2 + ψ̃A′(0)−2

]

=
s̃0√
NSK1

√

γ2σ2
Bτ

2
2 + ψ̃A′(0)−2 (61)

for the noise accumulating prior and after t1, and

σ̃
(1)
T0

=

√

√

√

√

s̃20
NSK2

1

K1
∑

k=1

q2γ2σ2
B∆t21k

2 ≈ s̃0qγσB∆t1

√

K1

3NS
(62)

for the noise accumulating during t1. K1 is the number of data points along t1, ∆t1 is the distance between

them, and s̃0 = s0τ2/T . ψ̃A′(0) is given by Eq. 49, except that the noise accumulated during the t1 evolution

is excluded. It was assumed that tmax
1 = K1∆t1 ¿ τB . We can calculate the sensitivity in the absence of

relaxation as

ψ̃
(1)
M0

≈
√

NSK1

γ2σ2
Bτ

2
2 + ψ̃A′(0)−2 + q2γ2σ2

B(tmax
1 )2/3

. (63)

If we consider relaxation along t1, the noise accumulating prior and after t1 is

σ̃
(1)
A = σ̃

(1)
A0

√

√

√

√

∞
∑
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|Se(ωk)|2 = σ̃
(1)
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(
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1
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))

√

√

√

√

∞
∑
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(
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1
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+ (2πk)2
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−1
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(1)
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(

1 − exp

(
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max
1

τ1

))

√

√

√

√

√

τ1 coth

(

tmax
1

2τ1

)

2tmax
1

, (64)

assuming that the bandwidth of the spectrum is considerably broader than the linewidth. τ1 is the signal

lifetime along t1, and Se(ωk) = S(ωk)/s̃0 is the normalized lineshape function along F1. The normalized

on-resonant signal along F1 is Se(0) = (1 − exp(−tmax
1 /τ1))(τ1/t

max
1 ).

Figure 6e shows an example of multiplicative noise along the indirect dimension if noise is dominant that

does not accumulate during t1. The sensitivity in this case is

ψ̃
(1)
A =

s̃0
τ1
tmax
1

(

1 − exp

(

− t
max
1

τ1

))

σ̃
(1)
A

≈
√
NSK1

√

γ2σ2
Bτ

2
2 + ψ̃A′(0)−2

(

1 +
1

24

(

tmax
1

τ1

)2
) . (65)
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The approximation is valid for tmax
1 < 2τ1, which is reasonable in the indirect dimension where sensitivity

and total experiment time considerations usually do not allow to record data points until the signal has fully

decayed. According to Eq. (65), changing τ1 with an apodization function has no big effect on the sensitivity

due to non-transient multiplicative noise as long as τ1 > tmax
1 . However, if τ1 < tmax

1 /2 the sensitivity drops

considerably.

Noise that adds during t1 accounts for

σ̃
(1)
T =

√

√

√

√

s̃20
NSK2

1

K1
∑

k=1

q2γ2σ2
B∆t21k

2 exp

(

−2∆t1k

τ1

)

≈ s̃0qγσBτ1

2
√
NSK1

√

τ1
tmax
1

− exp

(

−2tmax
1

τ1

)(

τ1
tmax
1

+
1

2

(

1 +
tmax
1

τ1

))

. (66)

In this case, the shorter τ1 in an apodization function, the better the sensitivity becomes. Figure 6f shows

the situation with noise adding during the t1 evolution as the main multiplicative noise source.

If we have N lines along F1 which do not overlap, the noise scales with

σ̃
(1)
M =

√

√

√

√

N
∑

n=1

[

σ̃
(1)
A,n

]2

+
[

σ̃
(1)
T,n

]2

. (67)

For the case of identical τ1 of all lines along t1, we get an SNR for line k that is proportional to

ψ̃
(1)
M,k ∝ s̃0,k

√

N
∑

n=1
s̃20,n

(68)

This result shows that noise along F1 due to a large diagonal peak can suppress weak cross-peaks even if

their amplitude is above the level of the additive noise, which is especially severe at the spectral position of

a solvent peak.

UNSTABLE RF CIRCUIT

Mechanical vibrations of the rf circuit or temperature changes can induce a variation of the phase of the

signal with respect to the reference phase [15, 16]. These phase changes are caused by a fluctuation of

capacitances, inductances, and possibly resistances that define the circuit. They can be analyzed using the

transfer function H(ω) of the resonant circuit. Alternatively, this problem could also be discussed with the
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impedance as the relevant quantity. An analytical description is possible, but it is usually demanding for any

circuit of practical relevance. The effect of vibrations largely depends on which part of the electronic circuit

is mainly affected, and the existence of stray capacitances and inductances or problems with the grounding

can complicate the situation further.

In a very simplified model we can consider a serial resonant circuit consisting of a coil with inductance

L, a capacitance C, and a resistance R (Fig. 10a). The resonance condition is ω0 = 1/
√
LC, and the quality

factor is Q = ω0L/R =
√

L/C/R, where usually Q À 1. The vibrations mainly affect L and C, giving rise

to the variances σ2
L and σ2

C , respectively. The noise will be described by the variance σ2
H of |H(ω)| and σ2

α of

the phase α(ω) of H(ω). An additional simplification is to consider only stationary oscillations if we assume

the ringing to be very short compared to the length of the overall excitation or signal. For detection, this

assumption is fulfilled very well, because the first point cannot be recorded anyway until the ringing caused

by the rf irradiation has decayed, and ∆t is typically considerably longer than the time constant τd = 2Q/ω0

of the resonant circuit. For the rf irradiation itself, the rise and fall time of the pulse can only be neglected

if the pulse is several times longer than τd.

If we consider the case of detection where the excitation of the circuit is due to the precession of M+ inside

the coil and the signal is detected as the voltage across the capacitor, and we represent the stationary part

of a forced oscillation in a complex notation with wo(t) = Wo(ω) exp(iωt), the amplitude of the stationary

oscillation Wo relative to the amplitude of the excitation We is

H(ω) =
Wo

We
=

1

1 −
(

ω

ω0

)2

+ i
ω

Qω0

≈ 1

2
∆ω

ω
+

i

Q

, (69)

where ω is the frequency of the precessing magnetization and ∆ω = ω0 − ω. The resonance frequency

ω0 of the circuit is characterized by a vanishing imaginary part of the impedance. To obtain physically

interpretable correlations, it can be useful to split the analysis into two steps, first a calculation of how H(ω)

is affected by a fluctuation of the resonance frequency ω0 of the circuit, and then how ω0 is affected by a

fluctuation of L and C. Furthermore, amplitude and phase errors of H(ω) are of importance independently

of each other [16], thus it is useful to discuss them separately. Eq. (69) becomes particularly simple if ω = ω0.
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If we assume ω to be noiseless and ω0 to be noisy, we get
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∂ω0

= −ω
2

ω3
0

2

(
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)2
)

− 1
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)2

+
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Q2ω2
0





3/2
≈ − 1

ω

4
∆ω

ω
− 1

Q2

[

(

2
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1
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, (70)

∂α

∂ω0
=

ω(ω2
0 − ω2) − 2ωω2

0

Q (ω2
0 − ω2)

2
+
ω2ω2

0

Q

≈ − 1

ω

1

2Q

(

∆ω

ω

)2

+
1

2Q

. (71)

For the approximation, we used ω2
0 − ω2 ≈ 2∆ωω. Note the very high sensitivity on ∆ω. So even if we

assume that 〈ω0〉 = ω, we still need to consider ∆ω in these equations, otherwise their validity range is too

limited. Furthermore, 〈|H(ω)|〉 depends on ∆ω, and therefore in a noisy environment on σ2
ω, the variance

of ω0. For this example, let us assume that L is the dominant noisy quantity in the resonant circuit. From

ω0 = 1/
√
LC we get

∂ω0

∂L
= − 1

2
√
L3C

= −ω0

2L
, (72)

and substituting ∂ω0 with ∆ω and ∂L with ∆L, we get approximately

∆ω

ω0
≈ −∆L

2L
. (73)

In order to substitute ∆L with σL, we have to take into account that a fluctuation of ω0 leads always to

a reduction of |H(ω)| close to its maximum because |H(ω)| is symmetric, and we have to scale the ∆ω

dependent term by approximately 0.5 in the numerator of Eq. (70). Using these relations, we finally obtain

σH =

∣

∣

∣

∣

∂|H|
∂L

∣

∣

∣

∣

σL ≈

σL
L

+
1

Q2

2L

(

(σL
L

)2

+
1

Q2

)3/2
σL ≈ Q3∆L

2L2
σL , (74)

σα =

∣

∣

∣

∣

∂α

∂L

∣

∣

∣

∣

σL ≈ Q

L

[

1 +

(

QσL
L

)2
] σL . (75)

The second approximation in Eq. (74) is only valid for very small σL. Furthermore, in these equations we

assumed that Q is independent of σL, which gives valid results because in first order 〈Q〉 is independent of

σL and Q does not depend on ω. If the circuit would be extended to allow for impedance matching, this

simplification would not be valid anymore.
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Although the situation of a serial LCR circuit is highly artificial for NMR probe circuits, the study of

real circuits can be done in a similar way by modeling a circuit and comparing a numerical or analytical

noise analysis to measured data. This can help identifying the primary source of vibrational noise in a

probe, which can be used to design a setup with a reduced sensitivity to vibrations. For example, the strong

Q-dependence of Eq. (74) suggests that stability problems which cannot be fixed easily, like with mobile

samples as in medical imaging of in flow experiments, overcoupling of the resonant circuit may reduce noise

considerably.

FLOW FLUCTUATIONS WITH REMOTE DETECTION

Remote detection NMR inherently employs a flowing fluid that transports information about an encoding

environment to a separate detector. The encoding step modifies the longitudinal magnetization of nuclear

spins contained in the fluid, and during detection this magnetization is read out as the fluid flows through

the detector. To resolve the flow pattern of the encoded fluid to the detector as a function of time, tTOF,

after the encoding step, the detection volume must be smaller than the encoding volume. Detection is then

done by applying a train of π/2 pulses with a fixed interpulse delay, ∆tTOF, starting right after the end of

the encoding sequence [21]. For each of the detection pulses, the signal amplitude corresponds to one point

in the TOF curve. The signal is at a maximum, S0, if only unencoded fluid is in the detection volume,

and the signal reduction from this maximum value is proportional to the number of encoded spins that are

detected. The signal is further reduced if not all of the fluid in the detection volume is replaced between

subsequent detection pulses. In an experiment where the encoding steps consists of a uniform excitation of

the spin magnetization with a hard pulse of flip angle βe, the signal can be modeled by

S(tTOF) = S0
Qv
Vd

tTOF
∫

tTOF−∆tTOF

1 − (1 − cos(βe))PS(t)dt (76)

≈ S0
∆tTOFQv

Vd

(

1 − (1 − cos(βe))PS

(

tTOF − ∆tTOF

2

))

, (77)

where PS(t) is the fraction of encoded spins that reach the detector at time t, Qv is the volumetric flow

rate of the fluid, and Vd is the detection volume. The approximation is valid if ∆tTOF is small enough that

PS(t) can be assumed to be linear between two detection pulses. This equation assumes that no spins pass
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the detection volume without being read out. Since in general the velocity of the fluid molecules cannot be

considered as being uniform in the detection volume, this requires that ∆tTOF is shorter than theoretically

required to replace all the fluid in the detection volume, i.e. ∆tTOFQv/Vd < 1.

The quantity that is most likely to fluctuate in such a flow system is Qv. If we assume that these

fluctuations are small enough not to affect the flow properties of the fluid, they primarily cause PS(t) to be

stretched or compressed, while otherwise keeping its functional form. If we further suppose that Qv changes

slowly on the time scale of one detected transient and is therefore constant during one TOF transient, we

can assume that the measured signal can be described by scaling the boundaries of the integral in Eq. (76)

by a factor ρQ = Qv/〈Qv〉. Then one obtains

S(tTOF) = S0
〈Qv〉
Vd

ρQtTOF
∫

ρQ(tTOF−∆tTOF)

1 − (1 − cos(βe))PS(t)dt (78)

≈ S0
ρQ∆tTOF〈Qv〉

Vd

(

1 − (1 − cos(βe))PS
(

ρQt̃TOF

))

, (79)

where t̃TOF = tTOF − ∆tTOF/2. The differential signal change as a function of Qv, which is needed for the

error estimation, is

∂S(tTOF)

∂ρQ
=

S(tTOF)

ρQ
− S0

ρQ∆tTOF〈Qv〉
Vd

t̃TOF(1 − cos(βe))
∂PS

(

ρQt̃TOF

)

∂(ρQt̃TOF)
. (80)

By using

∂S(tTOF)

∂tTOF
= −S0

ρ2
Q∆tTOF〈Qv〉

Vd
(1 − cos(βe))

∂PS
(

ρQt̃TOF

)

∂(ρQt̃TOF)
, (81)

we can estimate the multiplicative noise standard deviation from the standard deviation σQv
of the flow rate

as

σM (tTOF) =
∂〈S(tTOF)〉

∂Qv
σQv

=

[

〈S(tTOF)〉 + t̃TOF
∂〈S(tTOF)〉
∂tTOF

]

σQv

〈Qv〉
. (82)

This equation states that we do not need to know the exact functional form of PS(tTOF) to connect σM (tTOF)

and σQv
. It is sufficient to know the mean value of the signal and its first derivative with respect to tTOF,

which can be determined numerically from an experimental data set. Note that σQv
/〈Qv〉 is simply the

dimensionless relative flow rate standard deviation

A remote flow experiment as described above was performed on the 7.05 T magnet using a home-built

probe with two saddle coils. The encoding volume was about 10 cm3, and the detection volume was 0.7 cm3.
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Hyperpolarized 129Xe in a gas mixture containing Xe:N2:He=1:10:89 was used as the target nucleus. During

encoding the spin magnetization was inverted with a hard on-resonant π pulse, and detection was done with

a series of 40 π/2 pulses, spaced by 15 ms [37]. The FID after each of these pulses was multiplied with

an exponentially decaying apodization function with a time constant of 0.5 ms. The additive noise level

was σ+/S
′

0 = 0.009, where S
′

0 = S0∆tTOF〈Qv〉/Vd is the signal amplitude when only unencoded gas was

detected. Multiplicative noise due to B0 fluctuations during each FID could not be detected due to the short

detection time, and multiplicative noise caused by fluctuations of the pulse amplitude and phase was below

the additive noise level.

The signal and its standard deviation of a gas flow experiment with remote detection is shown in Fig. 11.

The fitted curve using Eq. (82) was obtained with σQv
/〈Qv〉 = 0.036. This result shows that a stable flow

is of utmost importance with remote detection, especially if the TOF is resolved. The longer the distance

between the encoding and the detection volume, the bigger the error that accumulates.

DISCUSSION AND CONCLUSIONS

Instrumental and experimental imperfections lead to noise of the spin magnetization of a sample that changes

the relative value of the signal. This multiplicative noise increases during the course of an experiment from

the moment the spin magnetization is excited out of its equilibrium state. The spectrum of multiplicative

noise shows the same features as the spectrum of the signal, because each copy of the noise spectrum is offset

by the same frequency as the lines themselves.

The phase of transverse magnetization is highly sensitive to very small fluctuations of B0, which can have

a significant impact not only with resistive [38], but also with superconducting magnets. These fluctuations

can be spatially inhomogeneous, but are spectrally homogeneous, as every spin in a molecule experiences the

same B0 field. Especially susceptible are nuclei with a high γ, because the higher the precession frequency,

the bigger the phase error that accumulates. Also multiple quantum experiments and experiments where the

signal builds up over a long time during detection [11, 39] are more sensitive. A field–frequency lock, which

corrects for drifts and very slow fluctuations of the resonance frequency, can be used to successfully reduce

this phase noise as long as it is spatially homogeneous. Spatially inhomogeneous noise, which is created for
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example by shim and gradient coils and their power supplies, is particularly severe because it cannot be

corrected by a lock.

The power spectrum of B0 noise depends on the spectrometer and its environment as well as the response

of the field–frequency lock. It is not possible to give a generally valid expression for this noise contribution.

Since the phase error that adds during free precession depends on the time integral of the B0 noise, the power

spectrum of the added noise scales with 1/f 2 compared to the source noise power spectrum, therefore low-

frequency noise contributes stronger to the measured signal than high-frequency noise. One simple model

to describe B0 noise, which takes advantage of this reduced influence of high-frequency noise, is to use an

exponentially decaying autocorrelation function and a correlation time τB for the source noise. If τB is long

compared to the echo time, it may be possible to at least partly refocus the effect of B0 noise in an echo

experiment.

Along the indirect dimensions in a multidimensional NMR experiment, multiplicative noise is basically

white, and its impact is more obvious than in the direct dimension, where the noise spectrum has a width on

the order or below the line width of the NMR signal and does not affect off-resonant spectral components. A

common exception are sidebands due to line frequency harmonics. Because the width of the multiplicative

noise spectral density is considerably smaller than the typical bandwidth of an NMR spectrum, oversampling

in the direct dimension does not influence the sensitivity. In the indirect dimensions, oversampling has an

equivalent effect as signal averaging, but certain types of artifacts like undesired signals along F1 that

normally would be aliased can simply be rejected [40].

If multiplicative noise is sensitivity limiting, increasing the signal by using a more concentrated sample

does not improve the SNR. But it can be beneficial to increase the concentration of the nucleus used for field–

frequency locking to get a more stable lock. In 2D experiments where the desired information is contained

redundantly in symmetric locations with respect to the diagonal peaks, spectra can be symmetrized by

comparing the signal intensities in each pair of symmetry-related locations and inserting the smaller of the

two values into both locations [41]. This is especially successful if one of the two correlated peaks is covered

by a stronger peak. Then the two cross-peaks are affected unequally by multiplicative noise, and only the

weakly affected of the two is retained.

To avoid inheritance of noise between subsequent repetitions of an experiment, the recycle delay must be
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long enough to allow relaxation of the magnetization sufficiently close to its equilibrium value. But increasing

the length of the recycle delay more than necessary typically enlarges the multiplicative noise level due to

an increased responsiveness to very low frequency changes of the noise-inducing process.

For experiments with a flowing fluid, fluctuations of the flow rate are an additional source of signal

irreproducibilities. In remote experiments without TOF detection, flow errors can be somewhat reduced by

increasing the detection volume above the volume of the encoded fluid such that all the encoded fluid is

detected in a single step. If an experiment with TOF detection is done that requires more than one encoding

step, the quality of the encoded information is degraded by a low flow stability. If the fluctuations of tTOF

increase above ∆tTOF, a reliable correlation between the encoded information and tTOF is only possible if

at the same time the fluid dispersion increases accordingly. Adjusting ∆tTOF using a moving average would

then be a legitimate technique to increase the sensitivity at the expense of a reduced temporal resolution.

A possible workaround for multiplicative noise caused by mechanical instabilities of the rf circuits or

problems with their grounding is to reduce the quality factor of the detection circuit by overcoupling [42],

which causes a less steep transfer function of the circuit, but also reduces the signal. This approach can also

be useful when two different fluids are mixed during an experiment [43].

During data analysis, one possibility to minimize multiplicative noise is to find an optimized filter function,

which has to take into account the relative weight of the different noise contributions. Such an optimization

could be done by reducing the spectral resolution in the direct dimension. However, if the resolution is

reduced below the value given by a matched filter [2], this optimization competes with a decrease of the

additive noise limited sensitivity. In the indirect dimension, non-transient multiplicative noise gets increased

by a reduction of the time constant τ1, while noise that accumulates during each t1 evolution period gets

reduced by a shorter τ1. Therefore along t1 it is usually preferred to reduce the resolution by keeping tmax
1

as short as possible [44]. A general expression for the overall effect of reducing tmax
1 depends on the pulse

sequence and its timing, especially the ratio between tmax
1 and the total length of the pulse sequence.

Because each spin of a particular nucleus experiences the same environmental noise, reference decon-

volution along the direct dimension of a spectrum works particularly well to remove multiplicative noise

[45, 46, 47]. Note that if such a reference deconvolution is implemented properly, which requires a well-

resolved reference signal, multiplicative noise can be reduced by up to two orders of magnitude [46]. With
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an optimized apodization as mentioned in the last paragraph, this improvement is considerably smaller and

requires additionally to compromise on the resolution.

If some intrinsic knowledge about the data allows to reduce multiplicative noise during data processing,

for example if it is known for a certain experiment that the noise behaves primarily according to either

Eq. (47) or Eq. (48), it is advisable not to perform phase cycles during the acquisition, but to record and

process every trace separately and do the phase cycling afterwards. This also allows, if necessary, to do a

phase correction or a reference deconvolution on each recorded transient signal individually.

Apart from instrumental improvements and data analysis, there are also some possibilities and tools

to reduce multiplicative noise on the level of the experiment design. In general, any method to remove

unwanted signal components instead of subtracting them out improves the sensitivity. Instead of phase

cycles, field gradients can be used as coherence pathway filters [9, 10]. This removes the noise accumulated

on the dephased coherences, while a phase cycle retains multiplicative noise. Another possible technique is

to use selective pulses [11]. Because multiplicative noise is proportional to the signal, weak signals can be

buried in the noise of strong signals. If the strong signals can be selectively suppressed, the weak signals

might be recovered.

The list of possible sources for multiplicative noise covered in this article is by no means complete. It

depends on the experiment as well as on the spectrometer and its environment. In any case, knowing the

dominant noise source is crucial, and a very important first step is to repetitively perform some simple

experiments, where each is sensitive to a particular form of multiplicative noise. Repeating the same experi-

ment with different probes, spectrometers, transmitter or receiver channels, samples, nuclei, or experimental

parameters can help to distinguish between ordinary and defective behavior. And by knowing the origin and

impact of multiplicative noise, it may be possible to eliminate its source, or at least to design techniques

that are specific to a certain problem.
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Figure Captions

Fig. 1

Signal-to-noise ratio as a function of the signal in an experiment where both additive and multiplicative

noise are significant. Note that in a spectrum obtained by transient detection of an FID and subsequent

Fourier transform, this SNR characterizes the reproducibility of the signal in a series of experiments, not the

ratio of the signal to the off-resonant noise.

Fig. 2

Time dependence of noise. 1H and 31P data was measured using a mixture of H3PO4 (85 %):D2O (4:1).

A series of 2000 identical FID’s was recorded on the 300 MHz spectrometer. The recycle delay was set to

5T1 for both nuclei, and the field–frequency lock time constant was set to the default value of 48 s. (dashed

lines) Data of 1H. (solid lines) Data of 31P. (a) σS without any corrections. (b) Standard deviation σM of

multiplicative noise only, divided by the signal intensity. After about 0.3 s, the multiplicative noise of the

31P data becomes negligible. The inset shows the 1H data points close to the beginning of the acquisition.

The gray line is a calculated noise curve considering Bn as the only noise source.

Fig. 3

Influence of the field–frequency lock on the noise. A series of 128 identical 1H FID’s was recorded at 300 MHz.

σM was determined separately for each point in t2 using Eq. (7). (a) Variation of the lock time constant

τl. A sample of 1% H2O in D2O, doped with 0.1 g/l GdCl3 was used. The lock power was adjusted so that

the lock level was slightly below its maximum. (b) Variation of the lock power. τl = 48 s. A mixture of

H3PO4:D2O (1:1) was used. The labels indicate the lock level.

Fig. 4

Influence of the recycle delay on the noise. A series of 128 identical 1H FID’s was recorded. σS was determined

using Eq. (7). A sample of pentane, doped with chromium diacetylacetonate to reduce T1 to approximately

0.3 s, was used. (a) Variation of the recycle delay without lock, recorded at 300 MHz. (b) Variation of the
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recycle delay with and without lock, recorded at 700 MHz. The lock parameters were adjusted using the

automatic lock function of the spectrometer.

Fig. 5

Dependence of Mz(t0) on the timing of a two-pulse sequence. (a) Pulse sequence used for the model calcula-

tion. A spoiler gradient pulse at the end of the detection period is used to randomize any remaining transverse

magnetization. (b) Steady-state Mz(t0) after an infinite number of identical experiments as a function of t1.

Three curves are shown for different values of the recycle delay tr, corresponding to tr/T1 = 1, 2.2, and 5.

T2 was set to 1 s, and ω/2π = 20 Hz. (c) Mz(t0) as a function of the number p of identical experiments that

were performed. For the first point, the system was assumed to be in equilibrium, i.e. M
(1)
z (t0) = M0. The

two curves correspond to the first minimum in Fig. 5b at t1 = 25 ms and to the maximum at t1 = 50 ms for

tr/T1 = 2.2.

Fig. 6

Influence of different noise sources on the signal. The left column shows the real part of the time-domain

noise, the right column the real part of the frequency domain contribution. (a) Noiseless signal. Using this

signal, different noise contributions were calculated, and the difference to this ideal signal is shown below

for the various noise sources. (b) Additive noise. The noise is white and independent of the signal in the

time as well as in the frequency domain. (c) Multiplicative noise that adds prior to detection in the direct

dimension. This leads only to a scaling and/or a phase shift of the signal. (d) Multiplicative noise adding

transiently during detection. Initially the signal rises due to an increase of the phase error, and it is finally

damped by relaxation. The noise hardly affects any off-resonant spectral components. In a properly phased

spectrum the real part of the noise is antisymmetric with respect to the signal. (e) Multiplicative noise along

the t1 dimension from rf pulses and free evolutions that are unchanged along the indirect dimension. It is

assumed here that this noise contribution is primarily amplitude noise, thus N (−ω) = N ∗(ω), and the real

part of the spectrum shows a symmetric behavior around the center of the line. However, this assumption

is only justified if t2 is very short. (f) Multiplicative noise adding in the indirect dimension during t1. It is

increasing with t1 before it is damped by relaxation. But subsequent data points are uncorrelated, therefore
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white noise is added in the frequency domain. Even though it is phase noise that accumulates, rf pulses

applied after the t1 evolution convert it into amplitude noise. The phase noise contribution is mainly from

the t2 evolution.

Fig. 7

Multiplicative noise at the beginning of an FID. A sample of 1% H2O in D2O, doped with 0.1 g/l GdCl3 was

used. 128 identical experiments were performed at 700 MHz, and the data set composed of the first point of

each transient trace was Fourier transformed. The abscissa shows the absolute value of the experiment rate.

In black are the positive, in gray the negative frequency components. (a) Real part of the noise spectrum.

(b) Imaginary part of the noise spectrum.

Fig. 8

SNR of a H2O:D2O (1:1) sample, recorded at 300 MHz. The gray line shows the calculated curve with

τ2 = 0.2 s, σB = 0.47 nT, ψA(0) = 320, and an additive noise limited sensitivity of ψ+ = 30000. The noise

sidebands of the main signal are caused by coherent noise sources and are primarily at overtones of 60 Hz.

The arrow marks noise lines caused by a small fraction of isopropyl alcohol that was added to the sample.

Fig. 9

Multiplicative noise in the frequency domain, recorded at 700 MHz. A sample of 1% H2O in D2O, doped

with 0.1 g/l GdCl3 was used. (a) Spectrum of the sample. No zero filling or apodization was used to process

the data. (b,c) Absolute value of certain data points in 100 repetitions of the same experiment. (b) The

position of the data point corresponds to the positions of the tilted arrows in 9a, respectively. The respective

frequencies are equidistant to the center of the line. (c) The two curves correspond to two adjacent data

points in the base of the line, corresponding to the vertical arrow in 9a. The scale is expanded 10 times

compared to 9b. (d) SNR for different τ2 as a function of the frequency offset ∆ω. (solid) Unaltered data set,

no filter. (dashed) Multiply the time domain data with an exponential decay with τ = 50 ms. (dash-dotted)

τ = 20 ms. (dotted) τ = 10 ms.
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Fig. 10

Serial LCR circuit. (a) Schematic representation. (b) Magnitude of the transfer function with Q = 150. (c)

Phase of the transfer function. The higher Q, the smaller is the bandwidth of the resonant circuit, and the

faster α changes around ω0. This explains the strong dependence of σH and σα on Q.

Fig. 11

Multiplicative noise in a remote flow experiment. The time-of-flight of gas between two different locations

was measured by first inverting the spin magnetization of hyperpolarized 129Xe in the encoding volume with

a hard π pulse, and then using a second, smaller coil to measure the magnetization of the gas as it was

leaving the encoding volume. (a) TOF curve, showing the signal as a function of the time between the

inverting encoding pulse and the detection pulses. (b) Standard deviation of the noise, relative to S
′

0. The

experimental data points (◦) were obtained from a set of 100 identical experiments, and the line is a fit using

Eq. (82) with σQv
/〈Qv〉 = 0.036 and an additive noise contribution of σ+/S

′

0 = 0.009.
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Figure 3:
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Figure 4:
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Figure 5:
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Figure 8:
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Figure 9:
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Figure 11:
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