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Abstract 

The transport of chemicals or heat in fractured reservoirs is strongly affected by 

the fracture-matrix interfacial area.  In a vapor-dominated geothermal reservoir, this area 

can be estimated by inert gas tracer tests, where gas diffusion between the fracture and 

matrix causes the tracer breakthrough curve (BTC) to have a long tail determined by the 

interfacial area.  For water-saturated conditions, recent studies suggest that sorbing solute 

tracers can also generate strong tails in BTCs that may allow a determination of the 

fracture-matrix interfacial area.  To theoretically explore such a useful phenomenon, this 

paper develops an analytical solution for BTCs in slug-tracer tests in a water-saturated 

fractured reservoir.  The solution shows that increased sorption should have the same 

effect on BTCs as an increase of the diffusion coefficient.  The solution is useful for 

understanding transport mechanisms, verifying numerical codes, and for identifying 

appropriate chemicals as tracers for the characterization of fractured reservoirs. 

 

Key words: analytical solution, long tail, breakthrough curve, fractured reservoir, and 

interfacial area. 



 

Introduction 

Fluid flow and chemical transport in fractured porous media has been a research 

topic for decades.  The topic is important because many geologic formations are fractured 

to some extent, and is also difficult because fracture networks can have quite diverse 

geometry (such as the direction, aperture, and density of fracture sets, and the number of 

fracture sets), with significant impact on flow and transport processes.  Thus, it is crucial 

to obtain a clear geometric picture of a fractured reservoir for managing waste disposal, 

groundwater cleanup, or thermal-energy extraction.  For example, in the design and 

operation of hot fractured rock (HFR) reservoirs, it is very important to estimate the heat 

transfer area between the fracture network and the matrix rock.  An effective way to 

obtain this geometric information is to conduct an appropriate tracer test.  Extensive 

studies on tracer transport in fractured porous media have been conducted in the context 

of nuclear and chemical waste disposal (e.g., Moreno, et al., 1996; Polak, et al., 2003).  

Based on these studies, mathematical models have been developed for analyzing tracer 

test data.  Since naturally fractured reservoirs usually are very complex, an appropriate 

numerical code is usually needed. 

However, numerical codes must be verified against analytical solutions before 

application to practical problems.  Analytical solutions for contaminant transport in 

fractured porous media have been available since the early 1980s (Tang et al., 1981; 

Sudicky and Frind, 1982).  The former paper is for a single fracture where the matrix is 

assumed to extend to infinity away from the fracture, while the latter is for the case of a 

set of parallel fractures with uniform fracture spacing and identical solute concentration 

at the entrance of the fractures.  In both solutions the authors assumed a step change of 
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solute concentration at the fracture entrance.  Such a boundary condition may be 

appropriate for analyzing contaminant migration away from waste disposal facilities.  In 

a tracer test, however, this assumption is usually invalid; and instead we may assume a 

slug-like flux boundary condition at the fracture entrance.  More recently, Moridis (2002) 

developed semianalytical solutions for radioactive or reactive solute transport in variably 

fractured layered media.  His solutions are for more general cases and thus are relatively 

more complex.  Here we use simplifying assumptions to develop a simple solution for a 

slug tracer test in a fractured rock under single-phase water flow conditions. 

 

Theory 

 To simplify the problem, we assume that the system has a single set of identical 

plane, parallel fractures with a uniform fracture spacing, 2B [L], and a uniform fracture 

aperture, 2b [L].  We also assume that solute tracer is uniformly injected into the 

fractures at a constant pore velocity, v [L/T].  The tracer concentration applied at each 

fracture entrance is denoted by C0 [M/L3].  Taking advantage of symmetry, we can 

restrict the solution to an elementary part of the system (one-half of a fracture and one-

half of its adjacent matrix block) as shown in Figure 1.  The z-axis is in the direction of 

the fracture, while the x-axis is perpendicular to the interface, pointing away from the 

fracture (Figure 1).  The fracture is thus in the domain – b ≤ x ≤ 0 and 0 ≤ z < ∞; and the 

matrix is in the domain 0 ≤ x ≤ B and 0 ≤ z < ∞.  The solid lines in Figure 1 represent 

zero-mass-flux boundaries.  The aperture is assumed much smaller than the length of the 

fracture, and transport in the fracture is assumed one-dimensional along the fracture.  The 

diffusive mass flux across the fracture-matrix interface is treated as a sink term in the 
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mass conservation equation for the fracture.  We neglect any advective flow across the 

interface.  By this assumption, there is no advection in the matrix; and mass transport in 

the matrix is only through diffusion perpendicular to the fracture-matrix interface.  We 

ignore diffusion and adsorption inside the fracture, as well as any tracer decay.  

Reversible sorption in the matrix is accounted for by a retardation factor.  Based on these 

assumptions, we use the following governing equations simplified from Sudicky and 

Frind (1982): 
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where CR and CR’ (both dimensionless) are the relative solute concentrations in the 

fracture and the matrix, respectively, which are defined by: 

00 /'';/ CCCCCC RR ==      (1c) 

Here C [M/L3] and C’ [M/L3] represent the chemical concentrations in the fracture and 

matrix, respectively. 

In (1a) and (1b), t [T] is time, q [M/L2/T] the diffusive mass flux across the 

fracture-matrix interface, φ the intrinsic porosity of the fracture, D’ [L2/T] and R’ the 

diffusion coefficient and retardation factor of the matrix, respectively.  Both CR and q are 

functions of z and t, i.e. CR (z, t) and q (z, t).  The relative concentration in the matrix, 

CR’, depends on the migration distance in the fracture, z, as a parameter through the 

interface boundary conditions; in (1b) it is an explicit function of x and t only. 

 The following formulae are provided for estimating some parameters: 

*' DD τ=       (2a) 
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'/1' φρbmKR +=      (2b) 

where τ  is the tortuosity of the matrix; D* [L2/T] is the chemical molecular diffusion 

coefficient in water, typically of order 10-9 m2/s; and Km [L3/M] is the matrix distribution 

coefficient (Freeze and Cherry, 1979).  In (2b) ρb [M/L3] and φ’ are the bulk mass density 

and the porosity of the matrix, respectively. 

 We assume an initially solute-free condition, i.e., the chemical concentrations in 

the fracture and matrix are both zero at the beginning: 

0)0,(')0,( == xCzC RR       (3) 

 Setting t = 0 at the start time of tracer injection, and assuming an injection period 

ti [T], the boundary conditions for the fracture are: 

)(0),0();0(1),0( iRiR tttCtttC >=<<=   (4a) 

0),( =∞ tCR       (4b) 

One boundary condition for the matrix is: 
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At the fracture-matrix interface, we must have: 
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Sudicky and Frind (1982) gave a general solution for the above problem under a 

constant boundary concentration that is different from (4a).  Although the superposition 

principle does not make much physical sense for a concentration boundary condition, the 

principle is mathematically valid for this case.  Here we present an independent 
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derivation process in the Appendix for obtaining more confidence.  The analytical 

solution for this problem is: 
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where ε [T-1/2] is the integration variable, εR is given by (A19a) that can be simply written 

as: 
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and εA is given by 
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The three parameters, tT, tF, and tM are defined by (A17a) through (A17c), respectively; 

xn1, and xn2 in (7b) are defined by (A23).  The two functions, g1 and g2, and a special 

time, ts, are defined as follows: 
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Since our practical interest is the variation of tracer concentrations in the fracture, we will 

only evaluate solution (7a) in the following. 
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The integrand in (7a) is oscillatory, and care is needed to obtain accurate results. 

We use the method of Gaussian quadrature, and integrate (7a) by parts in the following 

steps.  Step 1, perform a substitution of variable using εMt=u  (note that u is 

dimensionless); step 2, refine the integration of (7a) in the interval 0 ≤ u ≤ 6 using a 

uniform step of 0.1; step 3, for u > 6, separately calculate the u coordinates corresponding 

to the zeros of the two sine functions in (8b), assuming g1(u) = 1; step 4, split the 

integrand into two parts, each part containing a factor of a sine function in (8b); step 5, 

for u ≥ 6, integrate each part interval by interval using the calculated u-coordinate 

corresponding to zeros of the sine function; and step 6, add all results of integration. 

Since the integrand decrease exponentially for large u, we only calculated the 

integrals of 19 additional intervals for u ≥ 6.  We found that the result is sufficiently 

accurate for most times except when CR becomes very small (e.g. less than 10-6) at the 

BTC tail. 

 

Results 

 There are four characteristic times that determine the relative concentration, CR.  

Among them, the injection period, ti is a known parameter; tT, tF, and tM are three 

parameters representing the properties of the fractured formation.  According to (A17a), 

tT is the tracer transit (or travel) time to the observation point.  Therefore, (7a) indicates 

that the tracer concentration at a specified calculation point will remain at its initial value 

(zero) before the transit time has elapsed.  This is because, by assumption, tracer 

transport in the fracture is through advection only.  At a given point, the shape of the 

BTC is thus affected by two other characteristic times, tF and tM.  According to (A17b) 
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and (A17c), tF and tM can be thought of as two characteristic times for crossing the 

interface and the matrix block, respectively. 

 

The Role of tM 

By definition (A17c), tM is the product of B squared and the ratio R’/D’, both 

factors originating from (1b), the governing equation for the matrix.  Thus tM affects the 

tracer concentration distribution in the matrix, but does not affect the tracer 

concentrations in the fracture in most practical applications.  Physically, tM represents a 

time to reach the interior no-flow boundary of the matrix through diffusion; the longer the 

time, the later the boundary effect will come into play.  Mathematically, tM affects the 

concentration in fracture only through the two functions, g1(u) and g2(u) that are 

essentially a constant of unity for u > 6 (see Figure 2).  In other words, tM affects the 

solution only in the interval 0 < ε < ε0 where  

'
'6/60 R

D
B

tM ==ε      (10) 

For a matrix block size of meters or larger, since R’ ≥ 1 and D’ is usually less than 10-9 

m2/s, the resulting value of ε0 is on the order of or less than 10-4 s-1/2.  The integral in (7a) 

usually has negligible contribution in the interval 0 to 10-4.  We used the input parameters 

in Table 1 to calculate the BTCs at two different locations (two different values of tT).  At 

each location, we calculate the BTCs for three different values of fracture spacing (2B), 

keeping all other parameters fixed.  Figures 3a and 3b show the comparisons of the 

calculated BTCs at a near location (tT = 0.5 ti) and a far location (tT = 10 ti), respectively.  

Both figures indicate that the effect of B (or tM) is insignificant.  At the near location (tT = 

0.5 ti, figure 3a), a smaller B does cause a slight increase in concentration due to the 
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boundary effect.  However, the transit time for a practical observation point is usually 

much larger than the injection period, ti, which will not show such a difference.  In 

figures 3a and 3b, the smallest B value is 5 cm.  Although further decrease of B can cause 

larger differences in the BTC, very small B values are not of interest in practical 

applications.  We should also remember the assumption of B >> b in deriving the 

solution. 

 

The Role of tF 

In practice, the only parameter, apart from the tracer transit time tT, which affects 

a fracture BTC is tF.  According to (A17b), tF depends on the matrix diffusion coefficient 

(D’) and the retardation factor (R’) only through the product D’R’.  This is a remarkable 

result in view of the fact that in the governing equation (1b) D’ and R’ appear only as the 

ratio D’/R’.  The implication is that the impact of the matrix retardation factor on tracer 

concentrations in the fracture is the same as that of matrix diffusion coefficient.  As far as 

solute concentrations in the fracture are concerned, reversible sorption in the matrix acts 

to effectively enhance matrix diffusion.  This equivalence of matrix retardation factor to 

diffusion coefficient is demonstrated in Figure 4, where the BTCs at tT = 50 ti are 

calculated using three different pairs of D’ and R’ with a constant product (10-10 m2/s).  In 

Figure 4, the three calculated BTCs are identical because we maintained tF a constant 

(108 s).  Any reduction of tF value implies a faster passage for tracer to enter the matrix, 

and thus causes a decrease of tracer concentration in the fracture during tracer injection 

but an increase of tracer concentration in the fracture after tracer injection. 
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In figure 5, we used constant values for ti (104 s), tT (106 s), and tM (109 s) but 

varied tF (109 s, 108 s, and 107 s).  The decrease of the BTC peak and the increase of the 

BTC tail for decreasing tF are both significant.  For relatively large tF (e.g., 109 s, or even 

108 s), the BTC peak appears approximately at the time t = tT + ti.  However, as tF is 

decreased to 107 s, the BTC peak appears at a time that is significantly larger than tT + ti 

(Figure 5). 

 

Verification 

 TOUGH2 (Pruess, et al., 1999) is a numerical code for multiphase, multi-

component flow, transport, and heat transfer problems.  This code has been verified 

against many analytical solutions.  Here we demonstrate the verification of TOUGH2 

against the analytical solution (7a), using the problem parameters given in Table 2.  A 

comparison with the analytical solution is given in Figure 6, showing excellent agreement 

for three different retardation factors.  Note that TOUGH2 uses “mass fraction” instead of 

relative concentration.  The results of the analytical solution were converted to mass 

fraction for the comparison. 

 

Application 

 Although analytical solutions are usually too idealized for direct applications to 

field cases, here we offer some guidelines for the potential application to a simplified 

field condition.  The main purpose of application is to inversely estimate the average 

fracture spacing, 2B, and from that the fracture-matrix interfacial (heat or chemical 

transfer) area per unit volume. 
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 The injection period, ti, is known; and the breakthrough time (the tracer transit 

time), tT, is observed in the tracer test.  A BTC can be calculated by applying the known ti 

and tT, and an assumed tF and tM (e.g., 109 s) to (7a).  Varying tF, we obtain a set of BTCs.  

We then estimate tF by fitting the observation data to the calculated BTCs.  After tF is 

estimated, we can calculate B by rewriting the definition formula, (A17b) into: 
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where φf is the fracture continuum (average) porosity defined by: 
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 For a given fracture porosity, variation of fracture spacing results in different 

BTC tails.  Figure 7 shows the effect of fracture spacing by using φ’/φf = 10, D’R’ = 10-9 

m2/s, and fixed values for ti, tT, and tM.  We see that smaller fracture spacing causes larger 

fracture concentration in the BTC tail. 

 The fracture porosity φf can be estimated by means of the injection flux rate (qi) 

and the pore velocity (v) by: 

ztqvq Tiif // ⋅==φ      (13) 

 The matrix porosity φ’ can be estimated by laboratory tests on rock samples.  The 

matrix tortuosity τ can be determined by laboratory tests or estimated using the 

Millington (1959) model: 

( ) 3/1'φτ =      (14) 
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Substituting this tortuosity and the known tracer molecular diffusion coefficient D* into 

(2a) we obtain D’, the diffusion coefficient in the matrix.  The bulk mass density, ρb, can 

be estimated by: 

( )'1 φρρ −= sb      (15) 

where ρs is the rock grain density (approximately 2650 kg/m3).  The distribution 

coefficient of tracer in the matrix (Km) can be determined by laboratory tests.  Therefore, 

we can calculate the retardation factor, R’, using (2b).  Finally we use (11) and obtain: 

''' RDtB F
fφ
φ

=      (16) 

 The fracture-matrix interfacial area available for chemical or heat transfer per unit 

volume of the system is then A/V = 1/(B + b) ≅ 1/B. 

 

Conclusion 

 A simplified analytical solution for solute tracer migration in fractured reservoirs 

reveals some important facts.  In most practical cases, the tracer concentration in the 

fracture is dependent on three characteristic times: the injection period ti, the tracer transit 

time tT, and the crossing-interface time tF.  The independence of the solution on another 

characteristic time tM and the definition of tF theoretically validate a new finding, namely, 

the retardation factor arising from reversible matrix sorption and the diffusion coefficient 

of the matrix have the same effect on tracer concentrations in the fracture.  Although the 

diffusion coefficient is practically restricted, a wide range of retardation factors is 

practically available by using different chemical species as solute tracers.  This 

equivalent effect thus provides the basis for using reversibly sorbing chemicals as tracers 

to test a fractured reservoir.  The verification of a numerical code, TOUGH2, against the 
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analytical solution demonstrates excellent agreement.  The analytical solution can also be 

useful as a screening tool for selecting solutes with appropriate sorption properties, and 

analyzing field data under simplified conditions.  Such analysis can inversely estimate the 

two important parameters: the average fracture porosity and fracture spacing, from which 

the all-important fracture-matrix interfacial area per unit reservoir volume may be 

obtained. 
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Appendix A 

To solve (1a) and (1b) against the initial and boundary conditions, we use the 

following definitions of the Laplace transforms: 
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where s is the variable of the Laplace transform.  Applying the Laplace transforms to the 

governing equations and boundary conditions, and using the initial condition, we obtain: 
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Equation (A3a) is the Laplace transform (Erdelyi, 1954) of the boundary condition 

described by (4a).  The general solution for (A2b) is: 

)0(' 11
21 Bxececw xaxa ≤≤+= −     (A6) 

where c1 and c2 are two integral constants that are independent of x, and a1 is defined by: 
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To satisfy (A4) we must have: 
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which simplifies (A6) into 
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 Using (A9) in (A5b), we obtain: 
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Substituting (A10) into (A9) and then using (A5a), we obtain: 
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The result in (A11a) reduces (A2a) into: 
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 The general solution for (A12) is: 
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Apparently, (A13) satisfies the boundary condition, (A3b).  Applying (A3a) to (A13) we 

obtain: 

( )stie
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The solutions for concentrations in the fracture and matrix in the Laplace domain are 

thus: 
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 To invert (A15a) we first rewrite it into: 
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where  
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 In fact, tT is the tracer transit (or travel) time from the fracture entrance to the 

point of calculation.  Using the inversion evaluated by Skopp and Warrick (1974) we 

have (Sudicky and Frind, 1982): 
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In deriving (A18) we also used the following theorem (Wylie and Barrett, 1982, p. 428): 
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where u(t – a) is the unit step function.  Erdelyi (1954) gave the inversion for the other 

factor in (A16) as: 
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Finally, applying the convolution theorem we obtain the solution for the 

concentration in the fracture as indicated in (7a).  The solution for the matrix is slightly 

more complex.  For the sake of completeness, we invert (15b) using the inversion for 

(15a) and the convolution theorem.  To do this, we first rewrite the factor in (15b) by 

substituting in (A7) and conducting a series expansion: 
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where 

( ) ( ) '/'22;'/'2 21 DRxBBnxDRxBnx nn +−=−=    (A23) 

We used the following formula in deriving (A23): 
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Using the inversion formula (Erdelyi 1954): 
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we obtain: 
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Applying the convolution theorem we obtain the solution for the concentration in the 

matrix as indicated in (7b). 

 
 

18



 

Table1. Base parameters used in Figures 3a, 3b and 4. 

b (m) ti (s) v (m/s) D’ (m2/s) φ φ’ R’ 

0.005 28800 0.001 10-10 1.0 0.05 1.0 

 

 
 
 
 
Table 2.  Specifications of TOUGH2 fracture-matrix problem. 
  
Reservoir properties  

Average (continuum) fracture permeability 43.2x10
-15

 m
2
 

Matrix permeability 1.9x10
-18

 m
2
 

Fracture porosity 1 % 
Matrix porosity 3 % 
Fracture spacing 1 m 
Solute diffusivity 10

-9
 m

2
/s 

Matrix tortuosity  0.1 
Injection Pore velocity 1 m/hr 
  Tracer concentration 87.9 ppm 
  Tracer injection period 8 hr 
  Matrix retardation factor 1, 10, 100 
Initial conditions  

  Pressure 60.0 bar 
  Temperature 240 oC 
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Figure 1. Schematic section of an elementary part of 
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Figure 2. The functions, g 1(u ) and g 2(u ).
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Figure 3a. Breakthrough curves for three different B  values at t T  = 0.5 t i .
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Figure 3b. Breakthrough curves for three different B  values at t T  = 10 t i .
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Figure 5. The effect of t F  on breakthrough curves.
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