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SUMMARY 

                 A finite-difference method for computing the first arrival traveltimes by solving the 

Eikonal equation in the celerity domain has been developed. This algorithm incorporates the 

head and diffraction wave. We also adapt a fast sweeping method, which is extremely simple to 

implement in any number of dimensions, to obtain accurate first arrival times in complex 

velocity models. The method, which is stable and computationally efficient, can handle 

instabilities due to caustics and provide head waves traveltimes. Numerical examples 

demonstrate that the celerity-domain Eikonal solver provides accurate first arrival traveltimes. 

This new method is three times accurate more than the 2nd-order fast marching method in a linear 

velocity model with the same spacing.  
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1    INTRODUCTION 

       The finite difference (FD) approximation to the Eikonal equation was introduced by Reshef  

and Kosloff (1986) and Vidale (1988,1990) for calculating traveltimes through a 2D or 3D 

velocity model. This method is much faster than tracing rays from a large number of sources to a 

large number of receivers because the traveltimes for all grid points within a model are computed 

at the same time. It may be used for 2D or 3D depth migration, tomography or velocity analysis. 

      When compared with analytic solutions, eikonal solvers exhibit some degree of traveltime 

error, which may lead to poor image focusing in migration or inaccurate velocities estimated via 

tomographic inversion. For examples, Vidale’s second-order FD scheme, first-order FD (Podvin 

and Lecomte, 1991) or Kim and Cook’s (1999) second-order FD are not exact solution even for a 

constant velocity model. More accurate FD methods such as non-Cartesian (Alkhalifah and 

Fomel, 1997; Sun and Fomel, 1998 a, b), spherical grids (Fowler, 1994), triangulated grids 

(Kimmel and Sethian, 1998; Sethian and Vladimirsky, 2000), unstructured grids (Fomel,1997), 

adaptive rectangular grid (Qian and Symes,2002) and non-linear interpolation schemes 

(Schneider et al., 1992 and Zhao,1996) reduce inaccuracies. However the cost is more 

algorithmic complexity. 

     Pica (1997) proposed a FD method that solves the Eikonal equation in the celerity domain. He 

defined a variable called celerity, which is the distance from the source divided by the traveltime 

from the source. The celerity is an average velocity, weighted by the straight-line distance from 
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the source, irrespective of the true ray path. The celerity transform takes into account the 

curvature of the isochrones approximately. Consequently, accurate traveltimes can be obtained 

on a coarse grid without distorting the wave-front curvature. The coarse grid enables efficient 

travel-time computation.  

      The celerity method proposed by Pica (1997) works as follows: 

1) the celerity is computed analytically; 

2) the spatial derivatives of the celerity are computed by FD; 

3) the celerity is extrapolated downward; 

4) the celerity back to the traveltimes.  

The downward extrapolation used in Pica’s approach cannot compute upgoing arrivals such as 

may be observed in complex velocity models.          

 In this paper, we modify Pica’s method. We combine a local traveltime computation 

scheme in the celerity domain with a global fast sweeping method in the time domain. In the 

local traveltime computation scheme, we consider not only the transmitted waves, which can be 

calculated by FD in celerity domain, but also diffracted and head waves (Podvin and Lecomte, 

1991; Afnimar and Koketsu, 2000). To take all possible wave propagations from different 

directions into account, a fast sweeping method (Zhao, 2003 and Tsai, et al, 2003) is used to 

select the ‘correct’ traveltime for each grid point.  
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 Our paper is organized as follows. We first derive the eikonal equation in the celerity 

domain. Then local schemes are given in which FD is used to solve the new Eikonal equation 

and a global sweeping scheme is used to update the traveltimes. Numerical examples 

demonstrate the accuracy and efficiency of the method.  

2    THEORY   

     Under a high frequency approximation, propagating wavefronts may be described by the 

Eikonal equation, 
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where t is the traveltime,  is the slowness, and x ,y and z represent the spatial Cartesian 

coordinates. 

S

 Celerity is defined as (Pica, 1997): 
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 where ( ) are the coordinates and t is the traveltime from the source. By change of 

variables, equation (1) can be written in the form: 
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where the subscripts attached to celerityC , the new unknown, denotes the partial derivative with 

respect to the spatial Cartesian variables, for instance, 
x
C

x ∂
C ∂

= .       

2.1    2-D calculation  

2.1.1     Local traveltime computation 

From equation (3), we can compute the travel time at any grid point in a 2-D model if we know 

travel times at two adjacent grid points. As shown in Figure 1, the travel times at A and B are 

known and C is unknown. The computation scheme must be able to compute the minimum 

traveltime for any possible emanation position between A and B including the endpoints. We use 

the first order FD to approximate the first derivative. Between A and B the traveltime at C, t  

can be obtained as follows: 

c

1) compute C  by FD : z
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2) compute C by analytically solving  equation (3): x

3) compute celerity C at C, by FD: C

                      C )( ACxAc xxCC −+=                (5) 
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4) inverse transform from celerity to time: 
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         To investigate the stability of this algorithm, suppose a transmitted wave passes AB to C. 

From Figure 1, we know that the angle, θ, between the transmitted wave and the vertical 

direction is: 
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As long as equation (10) is satisfied, we can use equations (4)-(6) to calculate transmission 

traveltimes. 

       If the slowness contrast across the interface, AC, is large, there may be a head wave arrival. 

In order to compute head wave traveltimes, we use Podvin & Lecomte’s operators (Podvin & 

Lecomte, 1991).  For a head wave, 

                                         t                                                                       (11) dxSStAC )',min(+=

where  and  are the slowness in ABCD and ACGF, respectively.   S 'S

        For a diffraction from B to C, 

                                      22 dzdxStBC ++=t                                                                         (12)       

The smallest traveltime for each of these three possible emanation positions is retained for future 

calculations by the fast sweeping method.   

2.1.2     Global computation scheme: the fast sweeping method 
 

        In the local scheme, we only consider the wave propagation from AB to C. However in 

complex velocity models, waves can propagate from any direction to C. As we can see in Fig.2 

there are 16 possible wave propagations from A1-8 to the middle point of interest: 8 transmitted 

waves, 4 diffraction and 4 head waves. To simulate these possible waves, we adapt a fast 

sweeping method proposed by Zhao (2003) and Tsai et al (2003). Let us denote traveltime at the 

grid as ),( ji ),(),(),( zjxitzxtjit ∆∆== , i NzjNx ,...,2,1,...,2,1 == , where and  are the 

spacing in x and z direction, respectively. We initially assign the traveltime at source 
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location  and very big values at other grid points ),( jsis ∞=),( jit

),( jit

(itemp

),( jitemp

or large values. The fast 

sweeping method then proceeds by updating the values in a certain order: sweeps in 

positive and negative X, and positive and negative Z directions. 
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        Let  denote the current traveltime at the grid . At 

each grid we compute the minimum traveltime, denoted by t , by Eq. (11), (12) and 

the finite difference scheme from the current value of its neighbors and 

 and then update t  to be the smaller one of t  and its current value, i.e. 

. We sweep the whole domain with alternating orderings 

repeatedly. The pseudo-code of the fast sweeping method in 2D is: 
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1) for j to Nz ; for to ; calculate t ,  ; 1=i Nx ),( jitemp )),(),,(min( jitjit tempcurrent

2) for j to Nz ; for to 1 ; calculate t ,  ; Nxi = ),( jitemp )),(),,(min( jitjit tempcurrent

3) for i to ; for to Nx 1=j Nz ; calculate t ,  ; ),( jitemp )),(),,(min( jitjit tempcurrent

4) for i to ; for Nx Nzj = to 1 ; calculate t ,  ; ),( jitemp )),(),,(min( jitjit tempcurrent

5) Go to 1) until max , where ε<− |),(),(| jitjit temp ε is a small number. 

Using this approach, traveltimes for each point in the grid is calculated several times using the 

previously calculated traveltimes at surrounding grid points until the minimum time is found. 

Different ranges of propagation angles are covered as shown in Figure 2. This guarantees that the 

first-arrival traveltime for a specific grid point is correctly calculated.  This fast sweeping 
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method has an optimal complexity of O(N) for N NzNx ×=  grid points while the complexity of 

the fast marching is of order O(NlogN) ( Zhao, 2003) and is extremely simple to implement in 

any dimension. 

2.2    3-D calculation 

  2.2.1 Local traveltime computation 

       In the 3D case, the local traveltime computation method is shown in Fig. 3. In Fig.3 (a), the 

travetime at point E is computed from A, B and D, in which C is calculated from A and D and 

from A and B. In Fig.3 (b), the travetime at point E is computed from A, B and C, in which 

is calculated from B and C and from A and B. In Fig.3(c), the travetime at point E is 

computed from A, D and C, in which C is calculated from C and D and C from A and D. The 

celerity at point E can be computed by equation (3).  

x

yC

xC yC

x y

    To consider head and diffraction waves, we compute the traveltime at point E by using the 2D 

and 1D local traveltime computation algorithm described above. In the 2D local traveltime 

computation algorithm, the travetime at point E is computed from A and B, from A and D, from 

C and D, and from B and C, respectively. In the 1D traveltime computation algorithm, we use 

equations (11) to compute the potential arrival traveltime at point E from A, D and B. The 

diffraction traveltime from point C to E can be computed by: 

                            222 dzdydxStt CE +++=                                       (13) 

 We pick the minimum value of all potential arrivals as the first travetime at point E.  
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 2.2.2 Global computation scheme: the fast sweeping method 

The fast sweeping method can be extended to 3D space rather easily. We should sweep in 

positive/negative X, positive/negative Y, positive/negative Z, six directions. At each gird, we 

keep the minimum traveltime as first arrival time. If solution has changed little since last 

iteration, stop computing; else go back to sweep.  

 

3        EXAMPLES 

      All examples shown below are done on a laptop with a single processor 1.2 GHz Pentium III. 

First, to examine the accuracy of the new algorithm, we calculated the travel times in a 3D 

homogenous velocity model (2500 m/s) and compare these with analytic traveltimes. For a 100m 

grid spacing and a 1,000,000 m3 model, the maximum relative error is less than 0.0001. The 

computation time was 12s.   

      We also compared the method with the 2nd-order fast marching method (FMM) and Vidale’s 

algorithm using two 2D velocity models: one homogenous model with a constant velocity 

000 m/s and the other is a velocity model with a linear vertical gradient (Rawlinson and 

Sambridge, 2004). In the first model, the source is located at depth 40,000 m. There are 21 

receivers on the surface with intervals 5000 m. Figure 4 shows wave fronts while Figure 5 shows 

the errors between the numerical and analytically computed traveltimes with spacing 1000m both 

in x and z directions. We found that the maximum travel time difference between the 2D FD and 

exact solution is 0.01 ms and the maximum relative error between the 2D FD and exact solution 

6=V
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is 9.95×10  %.  While the maximum traveltime difference between the 25− nd order fast marching 

method (FMM) and the analytic solutions is approximately 36 ms for the same model with the 

same spacing 1000 m (Rawlinson and Sambridge, 2004). Vidale’s algorithm with the same grid 

spacing has a maximum relative error between the numerical and exact solution 0.18%. Figure 6 

shows the traveltime differences between the numerical and exact solution at the 21 receivers. 

We can see that the maximum error is –0.002 ms. The maximum traveltime difference between 

the 2nd order fast marching method (FMM) with the spacing 125 m for the same model and the 

analytic solutions at these receivers is as large as 5 ms. Therefore the accuracy of our method for 

homogenous models is much higher than that of the FMM and Vidale’s methods. The error of 

our method in this constant velocity model is mainly due to round-off error.      

     The second example is a linear increase in velocity with depth (Rawlinson and Sambridge, 

2004): 

                            V  (m/s) zzx 1.04000),( +=

The model is 100 km × 40 km. The source is located at (0,0). There are 21 receivers along 

surface with intervals 5 km. Figure 7 a) shows the wavefronts obtained by the Eikonal solver 

with the spacing .  The relative error between the Eikonal and the theoretical 

solution are shown in Figure 7 b) and the maximum relative error is 0.479%. To compare the 

new method with the fast marching method (Rawlinson and Sambridge, 2004) we plot the 

difference between numerical and analytic solutions at the 21 receivers on the surface using our 

FD Eikonal solver with four different grid spacings: 1000, 500, 250 and 125 m in Figure 8. For 

mzx 125=∆=∆
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the 1000 m spacing the maximum error is 16 ms with our algorithm while that in Rawlinson and 

Sambridge’s (2004) algorithm is as large as 60 ms. The error of our algorithm is reduced to 1.5 

ms for a spacing 125 m but the error of the 2nd-order FMM is still larger than 6 ms.  

 Figure 9 shows the rms error between numerical and analytic solutions as a function of grid 

spacing and a plot of CPU time against total grid points N for the linear velocity model. The time 

shown is elapsed (wall clock) time on a 1.2 GHz Pentium III. It can be seen from Figure 9 that 

the accuracy of the new method increases linearly as grid spacing decreases and the CPU time 

increases linearly as total grid points increases.  

 Figure 10 is a salt dome model. This model has been widely used to test migration 

algorithm such as Kirchoff and wave equation migration methods. The model is 13.5 km ×3.68 

km. The grid spacing we used for the Eikonal solver was 20 m in X and Y. The results are shown 

in Figure 8. For this 605 ×184 cells model, calculation took 0.4 s with 4 sweeps.   

      

4      CONCLUSIONS 

      We have developed a FD Eikonal equation with a fast sweeping method in the celerity 

domain to compute the first arrival time in arbitrarily complex media. We have shown that the 

new Eikonal solver in the celerity domain produces traveltimes with high accuracy. This Eikonal 

solver produces almost exact results in homogenous models. Our method accounts for 

transmission, diffraction and head waves and their propagation direction. It can overcome 

numerical instability of some FD methods in complex velocity models. Numerical results show 

 13



that the new method is more accurate than the 2nd order fast marching method. It is shown that 4 

iterations are adequate for the 2D case. This algorithm has applications in migration and seismic 

tomographic imaging. Numerical examples also show that the accuracy of this method increases 

linearly with decreasing grid spacing, make selection of a desired accuracy level predictable.  
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FIGURES 
 

Figure 1.  The update procedure of  FD for tC . The travel times at A and B are known. (d) is 

diffraction wave from B to C (Eq. (12)), (t) transmission wave (Eq.(6)) and (h) is head wave 

along AC(Eq.(11)).  

 

Figure 2.  Sixteen potential arrivals are calculated which cover all possible ray paths. The one 

with the minimum travel time is selected as the first arrival. The black dots denote points timed 

already and the hollow circle will be timed from the traveltimes at the black dots. 
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Figure 3. The arrival time at point E is computed from (a) A, B and D, (b) A, B and C, and (c) A, 

D and C. The traveltimes at point A, B , C and D are known and at point E unknown. 

 

Figure 4.  Wavefronts(at 2 s intervals) in a constant medium of 6000m/s( unit is second). 

Receivers are denoted by triangles. 

 

Figure 5. Traveltime errors between numerical and analytical solutions for a constant velocity 

medium: a) traveltime error and b) percent error. 

 

Figure 6. The traveltime difference between numerical and analytical solution at the 21 receivers 

shown in Figure 4. 

 

Figure 7. a) Traveltime contours (in seconds); b) relative error (in %) between eikonal solver and 

analytic solution in a linear velocity gradient medium (vertical gradient of 0.1 s-1 with a velocity 

of 4000 m/s at the surface). The spacing is 125 m in both X- and Z-directions. 

 

Figure 8. The traveltime differences ( t∆ ) between numerical and analytic solutions at the surface 

Z= 0 with four different spacings: 1000 (red solid line), 500(red dashed line), 250(blue dashed 
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line) and 125m (blue solid line). The velocity model is a uniform velocity gradient medium 

(vertical gradient of 0.1 s-1 with a velocity of 4000 m/s at the surface). 

 

Figure 9. The left panel:  rms error between numerical and analytic solutions against grid 

spacing; The right panel: elapsed CPU times vs. the number of grid points N for a linear 

increasing velocity model with vertical gradient of 0.1 s-1 and a velocity of 4000 m/s at the 

surface. 

 

Figure 10. FD traveltime contours (in seconds) superimposed on a saltdome velocity model. The 

traveltimes can be used in prestack Kirchoff migration. 
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Figure 1.  The update procedure of FD for tC . The travel times at A and B are known. (d) is 

diffraction wave from B to C (Eq. (12)), (t) transmission wave (Eq.(6)) and (h) is head wave 

along AC(Eq.(11)).  
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       Figure 2.  Sixteen potential arrivals are calculated which cover all possible ray paths. The 

one with the minimum travel time is selected as the first arrival. The black dots denote points 

timed already and the hollow circle will be timed from the traveltimes at the black dots. 
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Figure 3. The arrival time at point E is computed from (a) A, B and D, (b) A, B and C, and (c) A, 

D and C. The traveltimes at point A, B , C and D are known and at point E unknown.  
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     Figure 4.  Wavefronts(at 2 s intervals) in a constant medium of 6000m/s( unit is second). 

Receivers are denoted by triangles.   
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                                                            Figure 5. a) 
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                      Figure 5. b)  

 

Figure 5. Traveltime errors between numerical and analytical solutions for a constant velocity 

medium: a) traveltime error and b) percent error.  
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Figure 6. The traveltime difference between numerical and analytical solution at the 21 receivers 

shown in Figure 4.  
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Figure 4. a)  
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Figure 7. b)   

Figure 7. a) Traveltime contours (in seconds); b) relative error (in %) between eikonal solver and 

analytic solution in a linear velocity gradient medium (vertical gradient of 0.1 s-1 with a velocity 

of 4000 m/s at the surface). The spacing is 125 m in both X- and Z-directions. 
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Figure 8. The traveltime differences ( t∆ ) between numerical and analytic solutions at the surface 

Z= 0 with four different spacings: 1000 (red solid line), 500(red dashed line), 250(blue dashed 

line) and 125m (blue solid line). The velocity model is a uniform velocity gradient medium 

(vertical gradient of 0.1 s-1 with a velocity of 4000 m/s at the surface).     
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Figure 9. The left panel:  rms error between numerical and analytic solutions against grid 

spacing; The right panel: elapsed CPU times vs. the number of grid points N for a linear 

increasing velocity model with vertical gradient of 0.1 s-1 and a velocity of 4000 m/s at the 

surface.    
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Figure 10. FD traveltime contours (in seconds) superimposed on a saltdome velocity model. The 

traveltimes can be used in prestack Kirchoff migration. 
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