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ABSTRACT 

       Based on an acoustic assumption (shear wave velocity is zero) and a dispersion 

relation, we derive an acoustic wave equation for P-waves in tilted transversely isotropic 

(TTI) media (transversely isotropic media with a tilted symmetry axis). This equation has 

fewer parameters than an elastic wave equation in TTI media and yields an accurate 

description of P-wave traveltimes and spreading-related attenuation. Our TTI acoustic 

wave equation is a fourth-order equation in time and space. We demonstrate that the 

acoustic approximation allows the presence of shear waves in the solution. The 

substantial differences in traveltime and amplitude between data created using VTI and 

TTI assumptions is illustrated in examples.  

INTRODUCTION 

       There has been overwhelming seismological, structural and mineralogical evidence 

for extensive regions of elastic inhomogeneity and anisotropy within the Earth. Ignoring 

theses properties may lead to erroneous conclusions on the physical properties of the 

medium and therefore possibly poor geological interpretations. Hence the study of elastic 

wave propagation in inhomogeneous and anisotropic media is important in both global 

and exploration seismology. 

     To model seismic wave propagation in anisotropic media, one can solve the wave 

equation with numerical methods such as finite difference, finite element and 

pseudospectral methods (Igel, et al 1995; Carcione, 1999). To simulate P-waves 

propagation in vertical transversely isotropic (VTI) and orthorhombic anisotropic media, 

Alkhalifah (1998,2003) proposed an acoustic wave equation that was obtained by simply 

setting the vertical S-wave velocity to zero in the dispersion relation. This wave equation 



reduces the computational costs because the P-wave propagation in VTI media can be 

modeled without solving the more complex anisotropic elastic wave equations. 

Alkhalifah (1998) showed that his acoustic VTI wave equation yields a kinematically 

accurate approximation of P-wave propagation.  

        The VTI assumption may not be routinely satisfied in the real world. For example, if 

the sedimentary layering is not horizontal, the symmetry axis of transverse isotropy is 

most likely tilted. In other words, a local symmetry assumption instead of a global one is 

more realistic. To study P-waves propagation in TTI media, we have modified 

Alkhalifah’s VTI acoustic equation to incorporate a non-vertical, locally variable axis of 

symmetry. This allows the anisotropy to conform to spatially-variable structure.  

        In this paper we first obtain an expression for the phase velocity in TTI media. From 

the phase velocity we derive a dispersion relation and from the dispersion relation an 

acoustic wave equation is obtained. Finally we give some numerical examples to show 

the difference between VTI and TTI wavefields. 

A TTI ACOUSTIC WAVE EQUATION 

        Consider a transversely isotropic medium with an axis of symmetry that is tilted by 

an angle, φ, from the vertical. We start with the VTI phase velocity expression (Tsvankin, 

2001): 
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Rotating the symmetry axis from vertical to a tilt angle, φ, the phase velocity for P-waves 

is then rewritten as: 
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The variables ε and δ are Thomsen parameters ( Thomsen, 1986) and are defined as: 
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In Eq.(1), the positive sign in front the radical is the quasi-P-wave and negative sign is 

the quasi-S-wave. 

     For plane wave propagation, we have: 
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where  and   are the wavenumbers in x- and z- directions, respectively. xk zk ω  is the 

temporal frequency. To model P-wave propagationin VTI media ( 0=φ ), Alkhalifah 

(1998) simply set V =0 since V  has very little influence on P-wave phase and group 

velocities (Alkhalifah, 1998,2003; Stopin, 2000).  The resulting equation obtained by 

Alkhalifah is: 

0S 0S

                  22

4
2
0

2
2

2
2
02

2
2

2

2

2)21(
zx
FVV

z
PV

x
PV

t
P

PNMOPNMO ∂∂
∂

−
∂
∂

+
∂
∂

+=
∂
∂ ηη ,                   

                   2

2

t
FP

∂
∂

= ,                                                                                             (5) 



        To incorporate tilt, we combine Eq.(2) and (4) to obtain: 
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VNMO is the NMO velocity.  

     This equation is a fourth-order partial differential equation in t , x  and . For the 

compressional-wave, we interpret the wavefield 

z

P  as pressure or as a scalar potential. 

When η=0 and V  Eq.(6) becomes the standard acoustic wave equation for 

isotropic media. When φ=0, Alkhalifah’s VTI acoustic wave equation Eq. (5) is obtained. 

Eq.(7) has two sets of complex conjugate solutions. One set will grow exponentially 

when η < 0 ( Klie, Toro, 2001; Grechka et al, 2004), hence causing serious stability 

problems. Thus this TTI wave equation can be only used when 

0PNMO V=

0≥η . Fortunately, most 

η values corresponding to anisotropies in the subsurface are likely to have positive 

values.    

     In this study, we use a high-order, explicit finite difference scheme to solve Eq.(7) and 

(8). Instead of using Taylor expansion to obtain finite difference coefficients we calculate 

the finite difference coefficients in the wavenumber domain (see Appendix A). With 

these coefficients a coarser grid can be used resulting in memory and computational time 

savings. At the top of the model one can use the free-surface boundary or absorbing 

boundary conditions. Absorbing boundary conditions are applied on the other three 

boundaries of the model (Cerjan, et al, 1985). The computational procedure is to define 



the tilt angle,η, V  and V  at each grid point then to solve Eq. (7) and (8) with the 

finite difference scheme for as many time steps as needed. 

NMO 0P

NUMERICAL EXAMPLES 

CAN SHEAR WAVES BE OBSERVED IN DATA MODELED BY THIS ‘ACOUSTIC’ TI 

WAVE EQUATION 

      The first example is a homogeneous tilted TI model with 25000 =Vp m/s, Vs  

m/s, 

15000 =

1.0=δ , 25.0=ε , 125.0=η , 1.0=γ  and a tilt angle φ=300.  Figure 1 (a) shows a 

snapshot of the normal stresses (z-component) at 0.3 s obtained with the elastic wave 

equation. Figure 1(b) is a pressure snapshot generated by our acoustic wave equation at 

0.3s. For the P wave, the acoustic and the elastic wavefields are kinematically similar.  

Dynamically, they differ considerably. Both wavefields have a secondary arrival. The 

elastic wavefield secondary arrival is an S wave. The comparable wavefront in the 

acoustic wavefields is the diamond-shaped wavefront (Figure 1). This diamond-shaped 

wavefront from the TTI acoustic wave equation is a quasi-S-wave wavefront (Grechka, et 

al 2004).  

        To numerically demonstrate that the diamond-shaped wavefront is an S-wave 

wavefront, we calculate the group velocities of the P- and S-waves by using Eq. (2) and 

compute P- and S-wave wavefronts. Figure 2 shows the wavefronts overlaid on a 

snapshot obtained by wave Eq. (6) and (7) with VNMO=Vp0=2000m/s, η=0.4 and tilt 

angle φ=0 (VTI).  They match very well. This result clearly shows that the diamond-

shaped wavefront is a S-wave wavefront. This S-wave has lower velocity than the P-

wave. As a result, high accuracy numerical methods such as high-order finite difference 

scheme (FD) or pseudo-spectral methods (PS) may be needed to insure stability at a 



selected grid spacing. Figure 3(a) and 3(b) show the snapshots at 0.14 s generated by the 

4th-order FD and PS methods, respectively. The velocity model is a homogeneous TTI 

model with Vp m/s, 25000 = m/s 2738.6=Vnmo , 125.0=η and a tilt angle φ=420. We 

used a large tilt angle, because the group velocity is lowest at 45 degrees and requires 

more numerical accuracy for a given grid spacing. With the 4th-order FD the simulation 

begins to become unstable after 700 time steps, whereas the PS solution does not exhibit 

any instability.      

           One possible approach for removing shear-waves is to make the weak anisotropy 

approximation (Appendix B).  

THE EFFECT OF TILT ON TRAVELTIMES  

          Figure 4 shows wavefield snapshots for four different tilt angles and Figure 5 

shows the common shot gathers corresponding to these different tilt angles. The model is 

homogenous with V  m/s and η=0.4. It can be seen that a tilted axis of 

symmetry has a significant effect on the traveltimes and moveouts. For example, the 

traveltime difference between zero tilt (Figure 5 (b)) and a tilt angle of 60 degrees (Figure 

5 (d)) is bigger than100 ms, which corresponds to 1.5 wavelength. Therefore a tilted axis 

of symmetry will obviously affect both the positioning and focusing of events in seismic 

migration. 

20000 == PV

     A more realistic velocity model, taken from a real-world offshore prospect, is shown 

in Figure 6. The parameters ε and δ are zero in the water layer and linearly increase from 

0 at the sea floor to =ε 0.25 and =δ 0.05 at the first sub-seafloor horizon. Below the 

first sub-seafloor horizon ε and δ are constant with ε=0.25 and δ=0.05. Synthetic shot 

records (Figure 7) were calculated using the 4th order optimized coefficient FD method 



applied to Eq.(5) with absorbing boundaries. In this common shot gather it is hard to see 

the S-wave because we placed the source in the water which is a isotropic medium. The 

shot records clearly shows how events are shifted both vertically and laterally when tilt 

angle is considered. The moveout difference of the reflection at 5 seconds between VTI 

and TTI is approximately 0.2s. The reflections at 5 seconds and between 3.5 and 4 

seconds (indicated by arrows) have large amplitudes in the TTI shot records, and low 

amplitudes in VTI shot record. These amplitude differences are due mainly to 

geometrical spreading as well as reflectivity. Though the acoustic equation does not 

provide accurate reflection and transmission coefficients for the elastic wave, it provides 

correct simulation of the geometrical spreading behavior of the waves, which directly 

affect the amplitudes. Such differences in travel times as well as amplitudes will 

considerably hamper VTI processing when tilt angles are ignored.        

CONCLUSIONS 

       We have formulated and implemented a new acoustic wave equation for modeling P-

wave propagation in tilted transversely isotropic media. With the acoustic wave equation 

the anisotropy conform to spatially-variable structure which allows us to model P-wave 

propagations in more realistic Earth structures. 

        Numerical examples show that this new acoustic equation yields good kinematic P-

wave approximations to the elastic wave equation. The acoustic wave equation is not 

only computationally efficiency because we can model the P-wave propagation in TTI 

media without solving the more complex anisotropic elastic wave equations, but also 

convenient for generating migration and inverse algorithms, such as those used in 

reverse-time migration. Although we have claimed an ‘acoustic‘ wave equation, S-waves 



still exists in VTI and TTI acoustic wave equation. Because the S-waves in the acoustic 

wave equation have low velocity, a highly accurate numerical method such as high-order 

FD is required in order to reduce dispersion and to avoid instability. To generate pure P-

waves in weakly anisotropic media, we derive an approximation free of S-waves.    

        One very practical conclusion in the examples is that the differences between VTI 

and TTI wavefields are a direct indication of the magnitude and traveltime of errors 

incurred if a VTI interpretation is performed when TTI is present. In other word, ignoring 

tilt angle may introduce significant errors on anisotropic parameter estimation and 

migration.  
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APPENDIX A 

Numerical Solutions of the wave equation 

     Eq. (4) and (5) can be solved numerically, such as by finite-difference or pseudo-

spectral methods (PS). In pseudo-spectral method the spatial derivatives of a function 

can calculated by the discrete Fourier transform: ),( zxg
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      In the finite difference method, the m-th derivative of the  may be approximated 

by the 2N-th order finite difference scheme: 
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where  , are the coefficients to be determined, and =0 if is an odd 

number.  
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Taking Fourier transform of Eq.(A2): 
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where 1−=i . The coefficients Nja j ...2,1,0, = , can be computed to minimize a least-

squares function: 
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where . The weight function W may be selected to emphasize a specific 

wavenumber. Solving the discrete form of Eq. (A3) via singular valued decomposition, 

we can obtain the coefficients 

xkK ∆= )(K

N...2,1,0ja j , = . For mixed derivatives, we calculate one 

direction first then do the other direction.  

 The second finite-difference approach was employed to the temporal derivatives: 
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Higher-order finite-difference approximations with the optimized coefficients (Rector, et 

al, 2002) can also be used to solve Eq. (4) and (5) directly. In order to avoid numerical  

dispersion and instability, we use the same constrains and rules used in the isotropic case. 

The spacing and  should satisfy: x∆ z∆
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and the stability condition : 
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where ϑ  is the number of  samples per minimum wavelength, and V and V are the 

minimum and maximum velocities, respectively.  

min max

γ  is a constant. In the isotropic case, 

2
1

=γ  and 
8
3

=γ for the 2nd and 4th order conventional FD scheme, respectively. 

APPENDIX B 

A TTI acoustic wave equation in weak anisotropic media 

         In weak anisotropic media, using a weak anisotropy squared approximation, Eq. (1) 

can be written as: 
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       The P-wave TTI acoustic wave equation in weak anisotropic media becomes: 
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The four snapshots with wave Eq. (B) are shown in Figure A. There is no S-wave in these 

snapshots. 

 

FIGURES 

 

Figure 1. Snapshots for elastic wavefield and TTI acoustic equation at 0.3 s. 

m/s , Vs  m/s, 25000 =Vp 15000 = 1.0=δ , 25.0=ε  , 125.0=η , 1.0=γ  and a tilt angle 

φ=300.  (a) the z-component of normal stresses. (b) compressional  wavefield. 

 

Figure 2. Wavefronts (red solid lines) at 0.375s obtained from P- and S-wave group 

velocities superimposed on snapshot calculated by acoustic wave equation (5). 

V=Vp0=2000m/s. The source is in the model center, η =0.4 and φ=0.    

 

Figure 3. Snapshot generated with the 4th-order FD at 0.14 s. The velocity model is a 

homogeneous TTI model with 25000 =Vp m/s, m/s 2738.6=Vnmo , 125.0=η  

and a tilt angle φ=420.  

 



Figure 4. Snapshot generated with pseudo-spectral method at 0.14 s. The velocity model 

is the same as that in Figure 3. No dispersion can be seen in this result.    

 

Figure 5. Snapshots for TTI acoustic wave equation. V=Vp0=2000m/s. The source is in 

the model center. (a)η =0.  Isotropic media. (b)η =0.4 and φ=0. VTI model. (c) η =0.4 

and φ=300, (d)  η =0.4 and φ=600.  

  

Figure 6. Common shot gathers in Fig.2 models. The source is in the model 

center and receivers are on the top boundary. (a) isotropic, (b) VTI, 

(c) TTI, φ=300,  (d)TTI,  φ=600. The traveltime differences between VTI and TTI are 

only attributed to tilt angles. 

 

Figure 7. From top to bottom: vertical velocity, tilt angle.  

 

Figure 8. VTI seismogram (top) and TTI seismogram (bottom). The arrows point to some 

of differences in energy and arrival times between VTI and TTI. The differences of 

traveltime and amplitude between VTI and TTI are only attributed to tilt angles.  

 

             

Figure A. Snapshots generated by equation (A) at 0.3 s with  tilt angle 0 , 300 ,600 and 

900, respectively. The S-wave does not exist in wave equation (B). 

 

 



 

 

Figure 1. Snapshots for (a) the z-component of normal stresses elastic wavefield and (b) 

compressional wavefield TTI acoustic equation at 0.3 s. 25000 =Vp m/s , Vs  

m/s, 

15000 =

1.0=δ , 25.0=ε  , 125.0=η , 1.0=γ  and a tilt angle φ=300.   



 

Figure 2. Wavefronts (red solid lines) at 0.375s obtained from P- and S-wave group 

velocities superimposed on snapshot calculated by acoustic wave equation (5). 

V=Vp0=2000m/s. The source is in the model center, η =0.4 and φ=0.    

 



 

                                                           Figure 3. (a)  

 

 

 

 



 

                                                                   Figure 3(b)  

 

Figure 3. Snapshot generated with (a) the 4th-order FD and (b) pseudo-spectral method at 

0.14 s. The velocity model is a homogeneous TTI model with 25000 =Vp m/s, 

,m/s 2738.6=Vnmo 125.0=η and a tilt angle φ=420.  



        

  Figure 4. Snapshots for the TTI acoustic wave equation. V=Vp0=2000m/s. The source 

is in the model center. (a)η =0.  Isotropic media. (b)η =0.4 and φ=0. VTI model. (c) η 

=0.4 and φ=300, (d)  η =0.4 and φ=600. 

 



 

Figure 5. Common shot gathers corresponding to the model shown in Fig.2 models. The 

source is in the model center and receivers are on the top boundary. (a) isotropic, (b) VTI; 

(c) TTI, φ=300;  (d)TTI,  φ=600. The traveltime differences between VTI and TTI are 

only attributed to tilt angles. 

 

 

 

 

 



      

 

          Figure 6. From top to bottom: vertical velocity, tilt angle.  

 



 

 

 

 



Figure 7. VTI seismogram (top) and TTI seismogram (bottom). The arrows point to some 

of differences in energy and arrival times between VTI and TTI. The differences of 

traveltime and amplitude between VTI and TTI are only attributed to tilt angles.  

 

                      

 

   

Figure A. Snapshots generated by equation (B) at 0.3 s with tilt angle 0, 300,600 and 900, 

respectively. The S-wave does not exist in wave equation (B). 


	FINITE DIFFERENCE MODELING OF WAVE PROPAGATION IN ACOUSTIC TILTED TI MEDIA
	G. Michael Hoversten
	ABSTRACT
	INTRODUCTION
	A TTI ACOUSTIC WAVE EQUATION
	NUMERICAL EXAMPLES
	
	CAN SHEAR WAVES BE OBSERVED IN DATA MODELED BY TH
	THE EFFECT OF TILT ON TRAVELTIMES


	CONCLUSIONS
	ACKNOWLEGMENTS
	REFERENCES

	APPENDIX A
	Numerical Solutions of the wave equation

	APPENDIX B
	A TTI acoustic wave equation in weak anisotropic media


