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Abstract.

Lie group methods provide a valuable tool for examining invariance and
non-uniqueness associated with geophysical inverse problems. The techniques are
particularly well suited for the study of non-linear inverse problems. Using the
infinitesimal generators of the group it is possible to move within the null space in an
iterative fashion. The key computational step in determining the symmetry groups
associated with an inverse problem is the singular value decomposition (SVD) of a sparse
matrix. [ apply the methodology to the eikonal equation and examine the possible
solutions associated with a crosswell tomographic experiment. Results from a synthetic
test indicate that it is possible to vary the velocity model significantly and still fit the
reference arrival times. The approach is also applied to data from crosswell surveys
conducted before and after a CO; injection at the Lost Hills field in California. The
results highlight the fact that a fault cross-cutting the region between the wells may act
as a conduit for the flow of water and CO,.



Introduction

Geophysical inverse problems rarely have unique solutions. Typically, uniqueness
is bestowed upon an inverse problem through the introduction of specific biases, 'prior’
information, or penalty terms (Jackson 1979, Tarantola 1987, Parker 1994). Such biases
stabilize the inverse problem and provide a seemingly unique solution. However, the
solution now depends on the nature of the "prior’ information, thus trading one form of
non-uniqueness for another.

The non-uniqueness of solutions to geophysical inverse problems has been recognized
for some time. A number of methods have been developed to quantify the range of
possible solutions. Rather complete treatments exist for linear inverse problems. The
early treatment by Backus and Gilbert (1968, 1970) and others (Jackson 1972, Wiggins
1972) emphasized the non-uniqueness inherent in the majority of geophysical inverse
problems and the averaging nature of model parameter estimates. For linear problems,
non-uniqueness has been characterized by model parameter covariances (Tarantola 1987,
Parker 1994) as well as by bounds (Backus 1970, Parker 1974, Sabatier 1977, Safon
et al. 1977) or confidence intervals (Backus 1989, Stark 1992) on model parameters.
Furthermore, techniques which make use of the null-space associated with a linear
inverse problem may be used to incorporate a priori information without influencing
the fit to the data (Deal and Nolet 1996, Rowbotham and Pratt 1997).

For non-linear inverse problems the characterization of non-uniqueness is more
difficult due to the presence of local minima. Hence, it is generally not possible to
guarantee that the non-uniqueness has been completely quantified, and one must rely
on approximations and/or iterative methods. For example the methods of Backus and
Gilbert (1968, 1970), can be applied to non-linear inverse problems using an iterative
perturbation approach. Alternatively, it may be possible to transform a non-linear
inverse problem into a linear problem using either statistical or algebraic means
(Vasco 1995, 1997). Techniques from linear inverse theory may then be applied in the
transformed space in order to quantify non-uniqueness. For discrete inverse problems
several statistical sampling-based methods, such as Monte Carlo search (Press 1968) or
its extensions (Mosegaard and Tarantola 1995, Sambridge 1998), have been proposed
to examine non-uniqueness. A different approach by Vasco (1999, 2000) makes use
of techniques from computational algebra to characterize the solutions to non-linear
geophysical inverse problems.

There is a need for general and robust techniques for exploring the null space
associated with a non-linear geophysical inverse problem. In particular, it would be
useful to have the ability to move about the space of model parameters and yet stay
within the null space. It would be especially advantageous to have the ability of moving

within the null space in a direction which minimizes or maximizes some attribute of the



model such as roughness. In this paper I introduce a method for moving within the null
space that is based upon Lie groups. Lie groups are continuous groups that have proven
useful in a variety of contexts, particularly in applications to non-linear problems (Olver
1986, Bluman and Kumei 1989, Euler and Steeb 1992). The technique developed here
is very general and only requires the singular value decomposition (SVD) of a sparse
matrix. The method generalizes the approach of Deal and Nolet (1996) and Rowbotham
and Pratt (1997) for linear inverse problems.

I apply the methodology to a set of governing equations for first-arrival time
tomography. Both velocity and the travel time fields for all of the sources are treated
as unknowns. This provides insight into the nature of the non-uniqueness associated
with the inverse problem. The application to field data from the Lost Hills, California
indicates that the technique works in the presence of noise. I must emphasize that
the technique is applicable to the normal equations resulting from a least squares
formulation. Symmetry groups may also be useful in stochastic formulations of inverse
problems. In particular, Lie groups may be used to examine invariance and symmetry
associated with probability density functions. Another advantage of Lie groups is that
they may be used to treat continuous problems in the form of differential and integral
equations (Olver 1986). For example, in Vasco (1997) Lie groups are used to determine
if an inverse problem involving non-linear functionals may be transformed into a linear

inverse problem.

Methodology

In this section I briefly define Lie groups and indicate how they are used to
transform a vector of model parameters. The notion of symmetry is defined, as are
the ideas of infinitesimal invariance and Lie vector fields. The final result is a set of
conditions for a Lie group to be a symmetry group of a system of equations. That is,

conditions such that a transformed model stays within the solution set.

Non-uniqueness and invariance

Consider a set of [ equations
Fix)=0, i=1,..1 (1)

where x € M C R" is a vector of unknowns, and the F(x) are smooth real-valued
functions of x. I am interested in transformations which leave the solution set of the
equations invariant. Note that this is not the same as leaving the functions themselves
invariant. Groups, in particular the Lie groups I discuss below, are a useful tool in the

study of invariance.



Invariance and groups

For the study at hand, the most relevant groups are those which ’act’ on sets of

objects, the transformation groups:

Definition A transformation group is a continuous group S and a set M C R" along
with a smooth map ¥ : S x M — M which satisfies, for s,t € S,x € M,

\I}(S,\I/(t,x)) = \I}(S't,X), (2)
and contains an identity element e such that
Ule,x) = x, (3)

and an inverse element s~!

U(s™!, U(s,x)) = x. (4)

It turns out that the group properties (2), (3), and (4), together with continuity
requirements on the multiplication and inversion operations, provide enough algebraic

structure for the study of invariance or symmetry (Gilmore 1974).

Definition A group of transformations acting on a set M C R", S is called a symmetry
group of M, if whenever x € M and s € S then U(s,x) € M.

The set M is said to be invariant with respect to the actions of the group. In cases of
interest the set M is defined by the vanishing of [ equations. Such sets are known as the

zero set or the variety of the system of equations (1).

Infinitesimal invariance and Lie vector fields

The great utility of continuous groups rests upon a form of linearization. This
type of linearization is different from one about a particular value of x. Rather, I
linearize with respect to the group element s, about the identity transformation e.
The importance of this linearization cannot be over-emphasized. It allows one to
transform complicated non-linear invariance conditions on the group to linear equations.
Furthermore, because the linearization is about the group parameters and not about
particular values of the variables, the conditions are applicable to the entire range of
solutions.

To illustrate the main ideas, I shall examine a one parameter group of

transformations

x' = U(e, x), (5)

where the scalar ¢ represents the group parameter. One can construct multi-parameter

groups from one-parameter components (Olver 1986, Bluman and Kumei 1989).



Consider a Taylors expansion of ¥(e,x) in ¢, about £ = 0,
W (e,x) = x! 4+ e(x) + - --. (6)

The partial derivative of the transformed variable with respect to a change in ¢ at ¢ =0

(at the identity transformation), is denoted by & (x):
oW (g, x) ;
— .= = . 7
CX) = )
The Taylor series expansion, given in equation (6), is equivalent to a repeated
application of a differential operator derived from £(x) (Bluman and Kumei 1989, p. 41)

_ 0P (e,x) 5,

0 )
—_ (£J
X e =57 = ¥ Mg (8)

where the summation convention, summation over repeated indices, has been employed.
Mathematically, the vector field X, is a differential operator which acts on a function
to give the rate of change of the function in the direction specified by the components
£ (x). That is, along the flow of the mapping, as parameterized by . Thus, I may write
the Taylors expansion of ¥(e,x) as

2

Ule,x) =x+eX,x + %XI,XI,X 4+

= [Z‘”ix ’“] x (9)
= kT
The infinite sum in brackets, known as a Lie series, is often denoted symbolically by
EXP(eX,) (Gilmore 1974). Equation (9) suggests that the operator X, contains all
the information concerning the transformation. Because of this, X,, known as the
infinitesimal generator or Lie vector, forms the basis for studying invariance with respect

to such transformations. In particular, the conditions for the group to leave M invariant

may be written in terms of X,.

Theorem 1 Let S be a Lie group of transformations acting on the m-dimensional set
M CR" Let F: M — R\l <m define a system of equations

Fi(x)=0, i=1,..,1 (10)
Then S s a symmetry group of the system if and only if
X, [Fi(x)] =0, ,i=1,..1 (11)
whenever F'(x) =0, ¢ = 1,...,1 for every infinitesimal generator X,, of S.

This theorem follows by applying EXP(eX,) in equation (9) to F"(x) (Bluman and
Kumei 1989). As demonstrated below, this theorem means that complicated non-linear

conditions for invariance may be replaced by a linear system of equations.



Application
Travel-time tomography
Governing Equations

In this section I consider the non-uniqueness associated with travel-time tomography.
I will illustrate the Lie group approach in a crosswell tomographic setting, as shown in
Figure 1. A seismic source is moved, in succession, to five positions in left-most borehole
[denoted by stars]. At each position the source is activated and the resulting seismic
wavefield is recorded by 14 receivers in the borehole on the right [denoted by filled
squares].

The starting point is the eikonal equation describing the evolution of the travel
time (Aki and Richards 2002, page 87). In all that follows I shall denote the travel time
field associated with source [ by u'(r), a function of position r in the Earth. For a source

[ the following constraints apply
Vul(r) - Vul(r) — o(r) =0 (12)
u(rp) =T mi=1,.., M, (13)

where the variable o(r) represents the reciprocal of the square of the velocity or the
square of the slowness, which is also a function of position, m; denotes the receiver
number, and r,,, is the position of receiver number m;. For source [ there are a total of
M; receivers, a number which will generally vary for each source. Note that one should
also include the source point as a zero travel time constraint, a boundary condition for
the eikonal equation. Thus, the source point introduces another constraint of the form
(13).

I must emphasize that, in addition to the unknown slowness distribution between
the boreholes, the travel time fields between the wells (Figure 2) are also unknown.
Usually, the travel time field associated with each source is considered to be a function
of the slowness field. However, strictly speaking, both the travel time and slowness
fields are unknowns in the inverse problem. The unknown slowness and each travel time
field are constrained by the eikonal equation (12) and the arrival times measured at the
receivers (13). It is true that, given the slowness field I can use the eikonal equation
(12) to compute the travel time variation between the boreholes. But, it is equally true
that, given the travel time distribution between the wells I can use the eikonal equation
to find the slowness. Figure 3 illustrates the fact that, by computing the gradient of the
travel time field, calculating its magnitude, and taking the square root, I can determine
the slowness variation. In what follows I include the travel time fields as explicit
unknowns in the inverse problem. While this necessitates additional computation, it
provides important insight into the nature of the non-uniqueness associated with the

inverse problem.



The Discrete Problem

In this paper I shall consider the discrete inverse problem, described by a finite
number of parameters. Before I derive the symmetry group generators I first write
equations (12) and (13) as a discrete system of equations. The nl-th constraint

associated with the eikonal equation (12) is given by
0, = Au, - Au, —0, =0 (14)

where n = 1,..., N signifies one of the N grid points, A, is a finite difference
approximation to the gradient, and [ = 1, ..., L, for L sources. For receiver number m;

and source [, the data and source boundary constraints are
Q' =g, =T, =0 (15)

with m; = 1,..., M; + 1. Note that, as each additional source is introduced, one gains
N constraints from the eikonal equation and M; constraints from the travel time
observations at the receivers. There may also be a number, say N,, of boundary
constraints on the slowness. For example, well logs might be used to fix the velocity

near the borehole wall. The total number of equations, V., is given by the sum

L
Neg=N-L+> M+ L+ N, (16)

=1

However, because an additional travel time field u! is associated with each new source, 1
also add N new variables to the set of unknowns. Thus, the total number of unknowns
is
N,=N-(L+1) (17)
and the inverse problem is formally over-determined when % M; + L + Ny, exceeds N.
The variables for the tomographic inverse problem, the components of x, are the
square of the slowness in each grid block ¢, and the travel time for each source in each

grid block, u,’. Thus, I may write the vector of model parameters x as a composite

vector (o, ul,...,ul). The Lie vector X, is written in the partitioned form X,
0 0
Xou = " M 18

where [ have invoked the convention of summing over repeated indices.

Estimating group parameters using the SVD

I wish to characterize the transformation group which will allow me to vary the

model parameters and still satisfy the constraint equations. In what follows I will not



explicitly include the boundary conditions on o,. As stated in Theorem 1, the condition
for X, to generate the symmetry group for the inverse problem is that Xmu@nl and
Xmuﬂmll vanish. Applying X, , to the eikonal constraint 0, given by (14), results in a

linear equation in &, and p,
20" - Anby' — i = 0 (19)

forn=1,...,Nand [ =1,..., L. Similarly, applying X, , to the data constraint lel,
equation (15), results in

' =0 (20)
where m; = 1, ..., M;.

[ can rewrite the two sets of equations (19) and (20) as a single matrix-vector

equation
PY=0 (21)
where I have defined the vector of coefficients Y = (i, é, . ,EL) and the matrix P
[—I D; ... 0 O]
o T, ... 0
P—| : N (22)
—1I ... 0 D,
0 0 ...0 T;]

In the matrix P, the sub-matrices T; contain the coefficients corresponding to the data
constraints (20). Similarly, the sub-matrices D; contains coefficients corresponding to
the first term in equation (19), and I is the identity matrix.

I will treat the situation when there are fewer constraints than unknowns, that is,
the quantity S°%, M; + L + N, is less than N. Thus, the system of equations is formally
under-determined and has an infinite number of solutions. Equivalently, the matrix (22)
is rectangular and has fewer rows than columns. In this case there will be a non-trivial
null-space which characterizes the non-uniqueness. The singular value decomposition
(SVD) (Noble and Daniel 1977) is perhaps the most reliable technique for calculating
the vectors in the null-space and extracting its dimension. The SVD is a representation

of the matrix P as the product of three matrices
P =UAV” (23)
where U is an V., x N, matrix with orthogonal columns, VT isan N, x N, orthogonal

matrix, and A is an N, x N, diagonal matrix, which is of the form

Al 0 ... 0

0 A
A=|. 7 a (24)

0 oA 00
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The scalars A; are ordered such that Ay < Ay < ... < A,_; < A,. The integer p denotes
the actual dimension of the problem, which may be less then N, due to degeneracy.
The integer N, — p characterizes the dimension of the null-space. That is, values of A;
which are near zero indicate vectors which are effectively in the null-space and should
be treated as such.

In Figure 4 I have plotted the singular values associated with the crosswell
illustration. For this example the region between the boreholes is sub-divided into a 13
(horizontal) by 25 (vertical) grid, a total of 325 grid-blocks. The unknown parameters
are the slowness values for each grid block and the travel time values for each source at
each node of the grid. Thus, I have a total of 1950 model parameters in this test case.
The model parameters are constrained by 1781 equations which are provided by the
eikonal equation for each source, the travel time constraints, and boundary constraints at
the wells. Hence, there is a 169 dimensional null-space, representing the non-uniqueness
inherent in the inverse problem. The null-space vectors are associated with the zero
singular values in Figure 4. As additional sources are added the dimension of the
null-space will decrease. However, if the source and receiver positions are similar to a
previous source-receiver geometry, the additional constraints are essentially redundant.
In that case, a nearly zero singular value occurs, signifying an almost singular system of
equations.

Selected singular vectors v;, which are column vectors of the matrix V, are plotted
graphically in Figures 5, 6, and 7. Figure 5 displays the vectors associated with the 1st,
6th, and 25th largest singular values (A1, Ag, and Az5). The components of the vector
v, associated with the first source (uy) and the squared slowness (&) are plotted in the
locations of the corresponding grid-blocks. The grey scale plots in Figures 5 and 6 show
the amplitude of the components. The patterns represent those combinations of the
components of 51 and i which are well constrained by the system of linear equations
(21). The combinations are averages of the components which lie between the source
location and the various receivers. In Figure 6, [ have plotted the components associated
with the first, third, and fifth shot points. The vectors v; in Figure 6 correspond to the
largest singular value. Note how the pattern of averaging shifts as the source location is
changed.

The components of v; associated with the 1st, 50th, and 100th null vectors are
plotted in Figure 7. That is, these three vectors lie in the null space, signified by A\; = 0.
Hence, these combinations of components of gand fi not constrained by equation (21)
and may vary arbitrarily. The averaging appears to include particular cells in the
interior of the crosswell region and a significant number of cells near the upper edge of
the region. The upper edge of the region between the wells in not constrained by seismic
energy, as is evident from the source-receiver distribution in Figure 1. As shown next, it

is the vectors v; associated with zero singular values which define permissible movement
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within the model space.

Movement within the null-space

In this sub-section I will let x; denote the ¢th model parameter and I shall not
distinguish between slowness and travel time field variables. Based upon the SVD I can

write X, in the partitioned form
X, =X, +X,° (25)

where X, is computed using the generalized inverse (Aki and Richards, 2002) and X"

is a vector in the null-space. That is, a vector of the form

Ny Ny ) a

X0 = E a; Y vil—
J

al']‘

i=p+1 7=1

(26)

where a; is an arbitrary multipiler, and v;* is the jth component of the ith column vector
of V. Because the right-hand-side of (21) is zero, X,? is also zero. This is clear because
X7 is simply the generalized inverse, a matrix, multiplied by the right-hand-side of (21)
which is the zero vector.

The Lie vector X, may be used to move through the null-space. Specifically, I can
use equation (9) to transform the current model x to a new model. It will be assumed
that ¢ is small so that terms of order ¢ and greater may be neglected. I will denote the

new model by a prime, thus

x' = x+ X, % (27)
to order £. Applying X,° to x gives

o Moo N 9x
Xls X = Z CLZ'ZU]‘Z%. (28)
J

i=p+1 7=1
Because P
Tk .
05, 29
where 6, is the Kroniker delta function which is 1 when k = j and 0 when k # j, I may
write equation (27) as
Ny,
X'=x+4¢e > av'. (30)
i=p+1
Equation (30) allows one to move to a new model x’ while remaining within the
solution set. By varying the coefficients a; I can generate various models which satisty
the constraints. The issue now is to find models which are of particular interest. For

example, to move toward models which satisfy the data but are smoother than the
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current model, or models which are closer to a preferred structure, In this section and
the next, I will consider the latter case, denoting the preferred model parameter vector
by II. The goal is to move towards II while remaining within the solution set. To this
end, I define a functional R(a), which provides a measure of the distance between x’
and II

R(a) = (x —IN)7 - (x' — II) (31)

which is a function of the coefficients a; in equation (30). Geometrically, the direction
in which one should move in order to minimize R(a) is the projection of VR(a) onto
the null-space. That is, the projection of x — IT onto the basis vectors v' in equation
(30). Thus, @; = n-v' where n = (x — II)/|x — II] is the unit vector in the direction of

x — II. In terms of n, equation (30) becomes

Ny
x'=x+¢e 3 (n-vi)vi. (32)
i=p+1

The procedure for moving towards the model Il involves the repeated updating of x, as
given in equation (32). For each update, the vectors v; are recomputed based upon an
SVD of the matrix P, given in equation (22). The matrix P must be recalculated at
each iteration due to the change in the model following an update. Note that when the
vectors defining the null-space motion, v;, are orthogonal to n the updates cease to be
significant. Geometrically, the 'tangent plane’ to the null-space is perpendicular to the
vector VR(a).

I illustrate the technique with an application to the crosswell problem described
above (Figure 1). In this case I wish to find a model which satisfies the data yet is
closest to a homogeneous model. The homogeneous model has a constant slowness
of 0.61 s/km. Starting with the model in Figure 1 I compute the group parameters
based upon the SVD of P, as in equation (23). The model is then updated according
to equation (32) where II is the constant slowness model. The method is iterative, at
each stage a new model x’ is derived using equation (32) with ¢ = 0.1. The value of the
function R(a), given by equation (31), as a function of the number of iterations is shown
in Figure 8. Note that, after about ten iterations, the decrease in R(a) levels off as v,
becomes orthogonal to VR(a) and the coefficients in the summation (32) approach zero.
The value of R(a) is reduced to less than 30% of its original value in sixteen iterations.

In Figure 9 four models are displayed, corresponding to various stages of the
iterative algorithm. The range in models is rather remarkable. As expected, the overall
amplitude variation from the background slowness of 0.61 s/km decreases with the
number of iterations. Similarly, the spatial variation in slowness becomes generally
smoother as the iterations proceed. However, some small amplitude heterogeneity which

varies rapidly in space is super-imposed on a smoothly varying background in the 16th
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iteration. It is interesting that the high amplitude, low-slowness region, located around
a depth of 7.2 m, migrates downward and out of the model. At the 4th iteration it lies
at a depth of 8 m and by the 8th iteration it is found at a depth of 9 m. In the final
model the low-slowness zone is no longer present.

Data misfit at four steps of the algorithm are shown in Figure 10. The misfit is
associated with the models in Figure 9. In general there is a slight degradation at
the iterations proceed. This is due to numerical noise associated with each iteration.
First, only zero singular values were used in the sum (30). Very small amplitude
singular values were neglected. Second, as is evident in equation (9), the movement in
the null-space is actually given as an infinite sum in ¢. Thus, the linearized step of
equation (30) is an approximation which introduces some errors in x’. Thus, arrival
times predicted by x" will contain corresponding errors. Such errors can be reduced by

taking smaller iterations or by adopting a predictor-corrector scheme.

Time-lapse seismic tomography at the Lost Hills field

[ apply the Lie group approach to a pair of crosswell seismic surveys at the Lost Hills
oil field in southern California. The surveys were part of an experiment to determine if
integrated time-lapse electromagnetic (EM) and seismic methods can be used to image
saturation and pressure changes due to enhanced oil recovery (Hoversten et al. 2003).
The Lost Hills reservoir is composed of diatomite, a rock with unusually high porosity
(45-70%) and low permeability (< 1 millidarcy). Production in the Lost Hills field was
enhanced by hydrofracturing in the 1970s and water flooding in the 1990s. Despite these
efforts , and a well spacing of only 1.25 acres, only 5% percent of the oil in place had
been recovered (Gritto et al. 2004). Recently CO; injection was undertaken in order to
improve the amount of recovered oil. Initial pilot tests were successful, improving the
recovery to 56-65% of the oil in place. Even with this dramatic improvement in recovery
there are production problems due to the difficulty in predicting where the CO, will
migrate. Due to the expense of the CO; it is important to minimize its loss during
enhanced recovery.

In order to examine the effectiveness of integrated geophysical monitoring,
investigators from Berkeley Laboratory and Chevron Petroleum Company conducted
pairs of seismic and EM crosswell surveys before and after the injection of CO,. The
surveys were conducted in order to image saturation and pressure changes due to the
injection of the CO;. The overall geometry of the experiments is displayed in Figure 11.
The crosswell surveys were conducted in the observation wells OB-C1 and OB-C2. The
two observation wells are located within a five-spot injection pattern, approximately
6 m from injection well 11-8WR (Figure 11) (Gritto 2004). The injection well was
hydraulically fractured and initially water flooded from 1995 to the start of CO,
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injection in August of 2000. The CO; injection rate gradually increased from 3.5 to 12.0
million m? per day. The pressure varied between 5.5 and 6.2 MPa during the injection
(Gritto 2004).

Initially, I followed a conventional approach and constructed velocity models based
upon inversions of the arrival time data. The area between the observation wells was
sub-divided into a 9 (horizontal) by 38 (vertical) grid of cells, in order to represent
velocity heterogeneity. Five sources, and thus five travel time fields, are part of the
arrival time inversion. For each source, the unknown parameters are constrained by
observations from between 10 and 25 receivers, for a total of 95 arrival times. The
source-receiver configuration varied between the two surveys, resulting in different ray
coverage (Figure 12). The observed arrival times for the two surveys are shown in
Figure 13, along with arrival times predicted using a uniform initial slowness model
(0.58 s/km). While the post-injection results roughly follow the predicted linear trend
of a uniform model, the observed pre-injection times increasingly deviate, as a function
of offset, from the predictions.

Using a quasi-Newton iterative technique (Gill et. al. 1981) to minimize the misfit
to the observed travel times, I estimated both pre- and post-injection velocity variations
from the background (Figure 14). In order to regularize the inverse problem, both
roughness and model norm penalties were included in the formulation (Parker 1994).
The pre-injection inversion contains a high-velocity linear feature extending from the
center of the right-hand-side of the crosswell region to the upper-left edge. This feature
coincides with a mapped fault which traverses the crosswell region (Hoversten et al.
2003, Gritto et al. 2004). The generally higher velocity in the fault may be due to water
displacing oil, a consequence of five years of water flooding. Velocities are generally
lower in the lower-most half of the area between the wells. The post-injection velocity
model contains a prominent low-velocity anomaly at the center-right portion of the
crosswell plane.

The difference tomogram is obtained by subtracting the pre-injection velocity model
from the post-injection result. The resulting velocity changes, shown in Figure 15, are
dominated by the large velocity decrease in the post-injection inversion result. The
velocity decrease coincides with the location of an injection interval in well 11-8WR,
some six meters out of the crosswell plane. The injection interval is indicated by the
large filled square in Figure 15. It is thought that a nearly vertical fracture extends
from the injector to the crosswell plane.

The difference tomogram (Figure 150 indicates that a velocity decrease of over
10% is associated with the injection of CO,. However, due to equipment changes the
geometry of the two experiments, in particular the source-receiver locations and hence
the ray coverage, changed significantly (Figure 12). Thus, some portion of the velocity

change between the boreholes may be due to differences in survey geometry and not
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simply due to changes in fluid saturation and pressure. It would be useful to estimate
those changes that are required in order to match the post-injection arrival time data.

In order to determine velocity changes that are required to match the observations, I
employ the methodology described above. Specifically, I begin with the model produced
by an inversion of the post-injection travel time data (Figure 14b). Then, I find the
model which fits the data equally well but is as close as possible to the pre-injection
velocity model (Figure 14a). Thus, I employ the updating scheme of equation (32) where
IT is the pre-injection slowness model (Figure 14a). A value of 0.025 is used for ¢ in
equation (32). In 15 iterations the squared model norm R(a) in equation (31) is reduced
from 500.5 to 353.9, as shown in Figure 16. By the final iteration there is relatively little
change in R(a), as n - v; tends to zero. The change in velocities are shown in Figure
17 for iterations 5, 10 and 15. The large amplitude, low-velocity feature in the initial
post-injection result (Figure 14b) disappears. The lower-most region is characterized
by lower velocities while generally higher velocities are found in the central and upper
portion of the crosswell region. The low-velocity anomaly, which is notable in the fifth
iteration, appears to spread downward and decrease in amplitude as the iterations
proceed.

The difference tomogram is computed by subtracting the pre-injection result (Figure
14a) from the final post-injection model, the 15th iteration in Figure 17. The resulting
velocity change is shown in Figure 18. Overall, the large-scale pattern of velocity change
is roughly similar to the difference tomogram in Figure 15. In particular, significant
velocity decrease is associated with the projection of the upper-most injection port
(indicated by the largest filled square in Figures 15 and 18). Furthermore, some velocity
decrease is found along what appears to be an intersecting fault in the upper-most
portion of the two tomograms. However, there are two significant differences in the
amplitude and the detailed spatial distribution of velocity change. First, the velocity
decrease around the CO; injection interval has a significantly lower amplitude and is
skewed to the right in the new difference tomogram. Second, the low velocity anomaly
associated with the dipping fault is more significant in the new model. Note that both
models fit the observations equally well (Figure 19).

Discussion and Conclusions

Faced with a non-linear inverse problem it is common practice to simply find a
single solution which fits the data in some sense. The next step is to find the model
parameter covariances associated with a linearization of the inverse problem. Neither
quantity provides an appreciation of the true variability which is possible in the solutions
satisfying the non-linear inverse problem. As shown in this paper, for under-determined

inverse problems, it is possible for model parameters to change substantially and still
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fit the observations. To date, there has been little discussion concerning the possible
variation in non-linear inverse problems that has not involved some type of linearization.
In Vasco (1998) a homotopy approach is used to examine the variation due to changes
in the weight given to regularization penalty terms in the inversion. In this algorithm
the solution is continuously deformed as the regularization weight is varied. The
method is useful in constructing trade-off curves for the non-linear inverse problem and
determining the regularization penalty weight. In Mosegaard and Tarantola (1995) a
sampling algorithm is used to generate a large collection of models according to the
posterior probability distribution. This collection of models may be used to explore the
range of possible solutions. However, the posterior distribution does depend on which «
priori information is used in solving the inverse problem.

In the present paper the fit to the data is maintained while the solution is modified
in order to minimize or maximize some aspect of the model. This approach is quite
general and may be used to minimize model roughness, to minimize the difference
between the solution and a prior model, as well as to find bounds on model parameters.
While T have applied the method directly to the constraint equations defined by the
forward problem, it is possible to work with the normal equations of a least squares
formulation. Furthermore, Lie group methods can be applied to the general continuous
problems involving differential and integral equations (Olver 1986). As such, it is
possible to treat continuous inverse problems directly, without resorting discretization at
the outset, as in Vasco (1997). Finally, though the focus of this paper has been on the
deterministic approach to inverse problems, Lie group methods should also prove useful
in stochastic treatments. For example, group methods could be used to characterize the
invariance or symmetry associated with a given probability density function.

The application to the eikonal equation and crosswell tomography illustrates the
Lie group approach. In the formulation both the travel times fields associated with
each source and the slowness field are treated as unknowns. There are advantages
and disadvantages associated with such a treatment. There is greater flexibility and
insight when one treats the travel time fields as additional unknowns. For example, it is
possible to impose spatial roughness penalties directly on the travel time fields rather
than on the slowness distribution. This makes physical sense because one would not
expect that the slowness must vary smoothly between a source and receiver. There may
be discontinuities due to layering and faults. However, the travel time field must vary
continuously in the sub-surface. Thus, it is more appropriate to require the travel time
variables to vary smoothly and let the slowness contain discontinuities. In addition, for
some inverse problems, such as waveform inversion one may have constraints on the
energy in the wavefield. For example, for an artificial source, the wavefield energy cannot
exceed the input energy. Therefore, one can bound the energy in the field variables,

further constraining the inverse problem. There is additional insight when one includes
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both slowness and travel time fields as unknown parameters. For example, it is easy to
understand the level of non-uniqueness by counting the total number of equations (16)
and the total number of unknowns (17). The primary drawback of including the field

variables, such as the travel time fields, is computational. By including a completely

new set of variables with each source, the number of unknowns increases rapidly with
problem size (number of grid blocks).

The utility of the approach is demonstrated by an application to a pair of crosswell
seismic surveys conducted at Lost Hills, California. The application to actual field
data illustrates that the algorithm is practical and works in the presence of noise. The
application to pre- and post-injection crosswell observations suggests there must be a
decrease in seismic velocity in the inter-well region due to CO; injection. That is, it is
not possible to fit the post-injection observations without some decrease in velocity near
the primary injection interval. Furthermore, there is a suggestion that the intersecting
fault may act as a conduit for the migration of CO; in the subsurface. However, the
magnitude of the velocity change along the fault can vary substantially and while

remaining compatible with the data.
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Figure 1. Reference slowness model used to generate travel times for a synthetic test.
The five sources are denoted by stars at the left side of the model. The fourteen receivers
are denoted by filled squares and are found on the right-hand-side of the model. The

grey-scale represents the slowness variation in the crosswell region.
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Figure 2. Three travel time fields associated with sources 1, 3, and 5. The contours
and grey-scale display the travel time fields for the three sources and the model shown

in Figure 1.
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Figure 3. (Left) Unit vectors in the direction of the gradient of the travel time field
associated with source 3. (Right) The square root of the magnitude of the gradient
vectors.



2.0

Depth (m)

9.5

\\\\\\\\\\

N
\
\
\
\
§
\

e —

03 Distance (m)

3.8

25

VSY Distance(m) 7%

- .
0.58 Gradient Magnitude (m) 0.63



Figure 4. Singular values associated with a singular value decomposition (SVD) of the

matrix P in equation (23).

Singular Value Amplitude

5.00

4.00

3.00

2.00

1.00

0.00

0. 390. 780. 1170. 1560. 1950,
I ndex

26



27

Figure 5. Three singular vectors corresponding to the SVD of the matrix P. The
components of the 1st, 6th, and 25th singular vectors corresponding to the arrival time
field of source 1, u', and the square of the slowness o. The magnitude of the vector
components are plotted in the cells to which they correspond. The grey-scale denotes

the magnitude of each component.
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Figure 6. Grey-scale plot of selected components of the singular vector associated with
the largest singular value. The components correspond to the 1st, 3rd, and 5th sources,

ul, u?, and u®, respectively.
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Figure 7. Three null vectors corresponding to the SVD of the matrix P. The components
of the 1st, 50th, and 100th null vectors corresponding to the arrival time field of source
1, u!, and the square of the slowness o. The grey-scale denotes the value, plotted in the

cell that corresponds to the particular vector component.
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Figure 8. A plot of the function R(a) = (x’ —II)T - (x’ —II) as a function of the number

of iterations, where II is associated with a uniform background value of 0.61 s/km.
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Figure 9. The slowness distribution after 0, 4, 8, and 16 updates. The updates, given ac-
cording to equation (32), are designed to minimize the function R(a) defined by equation

(31).
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Figure 10. Calculated travel times plotted against reference travel times after 0, 4, 8,
and 16 updates. For a perfect match to the synthetic values the points would lie on the

solid diagonal line.
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Figure 11. Layout of the monitoring experiment at the Lost Hills oil field. The two
fiber-glass cased observation wells (OB-C1 and OB-C2) are denoted by filled squares.
The injection well 11-8WR is denoted by an open circle.
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Figure 12. Ray coverage for the pre- and post-injection crosswell seismic surveys. The

grey-scale depicts the ray density, the number of rays per cell, in the interwell region.
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Figure 13. Plot of travel times as a function of source and receiver offset. The open
circles are the observed travel times and the filled squares are the travel times calculated

using a uniform velocity model (1.72 km/s).
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Figure 14. Velocity variations which resulted from an inversion of pre- and post-injection
arrival time data. The heterogeneity is plotted as deviations from a uniform background
velocity of 1.72 km/s.
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Figure 15. A difference tomogram representing velocity changes which occurred during
the injection of CO;. The difference tomogram is formed by simply subtracting the pre-
injection velocities from the post-injection velocities. Three injection points, signifying
the locations of injection intervals in well 11-8WR, in Figure 11, are indicated by the filled
squares. The well 11-8WR is approximately six meters out of the plane containing the

observation wells. The size of each square is proportional to the volume of injected CO;.
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Figure 16. A plot of the variation of R(a) = (x' — II)T - (x’ — IT) as a function of the
number of iterations. The model II corresponds to the pre-injection velocity variation
shown in Figure 14a. In essence, I am trying to make the post-injection velocity model
resemble the pre-injection velocity model. Stated another way, I am trying to make the

difference tomogram as small as possible while satisfying the observations.
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Figure 17. Post-injection velocity deviations from a uniform background value 0f 1.72
km/s. The velocity deviations correspond to the 5th, 10th, and 15th iterations of the Lie
group algorithm. The updates are given by equation (32), as discussed in the text.
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Figure 18. The difference tomogram obtained by subtracting the pre-injection model
shown in Figure 14a from the post-injection model which resulted from the Lie group

algorithm. The final post-injection model is the 15th iteration, shown in Figure 17.
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Figure 19. The initial and final travel time matches for the Lost Hills post-injection
inversion. The travel times calculated using the initial (Figure 14b) and final (Figure 17)

post-injection models of the iterative algorithm.
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