
1Invarian
e, groups, and non-uniqueness: The dis
rete 
aseD. W. Vas
oBerkeley Laboratory, University of California, Berkeley, California
Short title: INVARIANCE, GROUPS, AND NON-UNIQUENESS



2Abstra
t.Lie group methods provide a valuable tool for examining invarian
e andnon-uniqueness asso
iated with geophysi
al inverse problems. The te
hniques areparti
ularly well suited for the study of non-linear inverse problems. Using thein�nitesimal generators of the group it is possible to move within the null spa
e in aniterative fashion. The key 
omputational step in determining the symmetry groupsasso
iated with an inverse problem is the singular value de
omposition (SVD) of a sparsematrix. I apply the methodology to the eikonal equation and examine the possiblesolutions asso
iated with a 
rosswell tomographi
 experiment. Results from a syntheti
test indi
ate that it is possible to vary the velo
ity model signi�
antly and still �t thereferen
e arrival times. The approa
h is also applied to data from 
rosswell surveys
ondu
ted before and after a CO2 inje
tion at the Lost Hills �eld in California. Theresults highlight the fa
t that a fault 
ross-
utting the region between the wells may a
tas a 
onduit for the 
ow of water and CO2.



3Introdu
tionGeophysi
al inverse problems rarely have unique solutions. Typi
ally, uniquenessis bestowed upon an inverse problem through the introdu
tion of spe
i�
 biases, 'prior'information, or penalty terms (Ja
kson 1979, Tarantola 1987, Parker 1994). Su
h biasesstabilize the inverse problem and provide a seemingly unique solution. However, thesolution now depends on the nature of the 'prior' information, thus trading one form ofnon-uniqueness for another.The non-uniqueness of solutions to geophysi
al inverse problems has been re
ognizedfor some time. A number of methods have been developed to quantify the range ofpossible solutions. Rather 
omplete treatments exist for linear inverse problems. Theearly treatment by Ba
kus and Gilbert (1968, 1970) and others (Ja
kson 1972, Wiggins1972) emphasized the non-uniqueness inherent in the majority of geophysi
al inverseproblems and the averaging nature of model parameter estimates. For linear problems,non-uniqueness has been 
hara
terized by model parameter 
ovarian
es (Tarantola 1987,Parker 1994) as well as by bounds (Ba
kus 1970, Parker 1974, Sabatier 1977, Safonet al. 1977) or 
on�den
e intervals (Ba
kus 1989, Stark 1992) on model parameters.Furthermore, te
hniques whi
h make use of the null-spa
e asso
iated with a linearinverse problem may be used to in
orporate a priori information without in
uen
ingthe �t to the data (Deal and Nolet 1996, Rowbotham and Pratt 1997).For non-linear inverse problems the 
hara
terization of non-uniqueness is morediÆ
ult due to the presen
e of lo
al minima. Hen
e, it is generally not possible toguarantee that the non-uniqueness has been 
ompletely quanti�ed, and one must relyon approximations and/or iterative methods. For example the methods of Ba
kus andGilbert (1968, 1970), 
an be applied to non-linear inverse problems using an iterativeperturbation approa
h. Alternatively, it may be possible to transform a non-linearinverse problem into a linear problem using either statisti
al or algebrai
 means(Vas
o 1995, 1997). Te
hniques from linear inverse theory may then be applied in thetransformed spa
e in order to quantify non-uniqueness. For dis
rete inverse problemsseveral statisti
al sampling-based methods, su
h as Monte Carlo sear
h (Press 1968) orits extensions (Mosegaard and Tarantola 1995, Sambridge 1998), have been proposedto examine non-uniqueness. A di�erent approa
h by Vas
o (1999, 2000) makes useof te
hniques from 
omputational algebra to 
hara
terize the solutions to non-lineargeophysi
al inverse problems.There is a need for general and robust te
hniques for exploring the null spa
easso
iated with a non-linear geophysi
al inverse problem. In parti
ular, it would beuseful to have the ability to move about the spa
e of model parameters and yet staywithin the null spa
e. It would be espe
ially advantageous to have the ability of movingwithin the null spa
e in a dire
tion whi
h minimizes or maximizes some attribute of the



4model su
h as roughness. In this paper I introdu
e a method for moving within the nullspa
e that is based upon Lie groups. Lie groups are 
ontinuous groups that have provenuseful in a variety of 
ontexts, parti
ularly in appli
ations to non-linear problems (Olver1986, Bluman and Kumei 1989, Euler and Steeb 1992). The te
hnique developed hereis very general and only requires the singular value de
omposition (SVD) of a sparsematrix. The method generalizes the approa
h of Deal and Nolet (1996) and Rowbothamand Pratt (1997) for linear inverse problems.I apply the methodology to a set of governing equations for �rst-arrival timetomography. Both velo
ity and the travel time �elds for all of the sour
es are treatedas unknowns. This provides insight into the nature of the non-uniqueness asso
iatedwith the inverse problem. The appli
ation to �eld data from the Lost Hills, Californiaindi
ates that the te
hnique works in the presen
e of noise. I must emphasize thatthe te
hnique is appli
able to the normal equations resulting from a least squaresformulation. Symmetry groups may also be useful in sto
hasti
 formulations of inverseproblems. In parti
ular, Lie groups may be used to examine invarian
e and symmetryasso
iated with probability density fun
tions. Another advantage of Lie groups is thatthey may be used to treat 
ontinuous problems in the form of di�erential and integralequations (Olver 1986). For example, in Vas
o (1997) Lie groups are used to determineif an inverse problem involving non-linear fun
tionals may be transformed into a linearinverse problem.MethodologyIn this se
tion I brie
y de�ne Lie groups and indi
ate how they are used totransform a ve
tor of model parameters. The notion of symmetry is de�ned, as arethe ideas of in�nitesimal invarian
e and Lie ve
tor �elds. The �nal result is a set of
onditions for a Lie group to be a symmetry group of a system of equations. That is,
onditions su
h that a transformed model stays within the solution set.Non-uniqueness and invarian
eConsider a set of l equationsF i(x) = 0; i = 1; :::; l (1)where x 2 M � Rn is a ve
tor of unknowns, and the F i(x) are smooth real-valuedfun
tions of x. I am interested in transformations whi
h leave the solution set of theequations invariant. Note that this is not the same as leaving the fun
tions themselvesinvariant. Groups, in parti
ular the Lie groups I dis
uss below, are a useful tool in thestudy of invarian
e.



5Invarian
e and groupsFor the study at hand, the most relevant groups are those whi
h 'a
t' on sets ofobje
ts, the transformation groups:De�nition A transformation group is a 
ontinuous group S and a set M � Rn alongwith a smooth map 	 : S �M !M whi
h satis�es, for s; t 2 S;x 2M ,	(s;	(t;x)) = 	(s � t;x); (2)and 
ontains an identity element e su
h that	(e;x) = x; (3)and an inverse element s�1 	(s�1;	(s;x)) = x: (4)It turns out that the group properties (2), (3), and (4), together with 
ontinuityrequirements on the multipli
ation and inversion operations, provide enough algebrai
stru
ture for the study of invarian
e or symmetry (Gilmore 1974).De�nition A group of transformations a
ting on a set M � Rn, S is 
alled a symmetrygroup of M , if whenever x 2M and s 2 S then 	(s;x) 2M .The set M is said to be invariant with respe
t to the a
tions of the group. In 
ases ofinterest the set M is de�ned by the vanishing of l equations. Su
h sets are known as thezero set or the variety of the system of equations (1).In�nitesimal invarian
e and Lie ve
tor �eldsThe great utility of 
ontinuous groups rests upon a form of linearization. Thistype of linearization is di�erent from one about a parti
ular value of x. Rather, Ilinearize with respe
t to the group element s, about the identity transformation e.The importan
e of this linearization 
annot be over-emphasized. It allows one totransform 
ompli
ated non-linear invarian
e 
onditions on the group to linear equations.Furthermore, be
ause the linearization is about the group parameters and not aboutparti
ular values of the variables, the 
onditions are appli
able to the entire range ofsolutions.To illustrate the main ideas, I shall examine a one parameter group oftransformations x0 = 	(";x); (5)where the s
alar " represents the group parameter. One 
an 
onstru
t multi-parametergroups from one-parameter 
omponents (Olver 1986, Bluman and Kumei 1989).



6Consider a Taylors expansion of 	(";x) in ", about " = 0,	j(";x) = xj + "�j(x) + � � �: (6)The partial derivative of the transformed variable with respe
t to a 
hange in " at " = 0(at the identity transformation), is denoted by �j(x):�	j(";x)�" j"=0 = �j(x): (7)The Taylor series expansion, given in equation (6), is equivalent to a repeatedappli
ation of a di�erential operator derived from �(x) (Bluman and Kumei 1989, p. 41)Xx = �	j(";x)�" j"=0 ��xj = �j(x) ��xj (8)where the summation 
onvention, summation over repeated indi
es, has been employed.Mathemati
ally, the ve
tor �eld Xx is a di�erential operator whi
h a
ts on a fun
tionto give the rate of 
hange of the fun
tion in the dire
tion spe
i�ed by the 
omponents�j(x). That is, along the 
ow of the mapping, as parameterized by ". Thus, I may writethe Taylors expansion of 	(";x) as	(";x) = x+ "Xxx+ "22 XxXxx+ � � �= "Xk=01 "kk!Xxk#x (9)The in�nite sum in bra
kets, known as a Lie series, is often denoted symboli
ally byEXP("Xx) (Gilmore 1974). Equation (9) suggests that the operator Xx 
ontains allthe information 
on
erning the transformation. Be
ause of this, Xx, known as thein�nitesimal generator or Lie ve
tor, forms the basis for studying invarian
e with respe
tto su
h transformations. In parti
ular, the 
onditions for the group to leaveM invariantmay be written in terms of Xx.Theorem 1 Let S be a Lie group of transformations a
ting on the m-dimensional setM � Rn. Let F : M ! Rl; l � m de�ne a system of equationsF i(x) = 0; i = 1; :::; l: (10)Then S is a symmetry group of the system if and only ifXx[F i(x)℄ = 0; ; i = 1; :::; l (11)whenever F i(x) = 0; i = 1; :::; l for every in�nitesimal generator Xx of S.This theorem follows by applying EXP("Xx) in equation (9) to F i(x) (Bluman andKumei 1989). As demonstrated below, this theorem means that 
ompli
ated non-linear
onditions for invarian
e may be repla
ed by a linear system of equations.



7Appli
ationTravel-time tomographyGoverning EquationsIn this se
tion I 
onsider the non-uniqueness asso
iated with travel-time tomography.I will illustrate the Lie group approa
h in a 
rosswell tomographi
 setting, as shown inFigure 1. A seismi
 sour
e is moved, in su

ession, to �ve positions in left-most borehole[denoted by stars℄. At ea
h position the sour
e is a
tivated and the resulting seismi
wave�eld is re
orded by 14 re
eivers in the borehole on the right [denoted by �lledsquares℄.The starting point is the eikonal equation des
ribing the evolution of the traveltime (Aki and Ri
hards 2002, page 87). In all that follows I shall denote the travel time�eld asso
iated with sour
e l by ul(r), a fun
tion of position r in the Earth. For a sour
el the following 
onstraints applyrul(r) � rul(r)� �(r) = 0 (12)ul(rml) = T lml ml = 1; :::;Ml (13)where the variable �(r) represents the re
ipro
al of the square of the velo
ity or thesquare of the slowness, whi
h is also a fun
tion of position, ml denotes the re
eivernumber, and rml is the position of re
eiver number ml. For sour
e l there are a total ofMl re
eivers, a number whi
h will generally vary for ea
h sour
e. Note that one shouldalso in
lude the sour
e point as a zero travel time 
onstraint, a boundary 
ondition forthe eikonal equation. Thus, the sour
e point introdu
es another 
onstraint of the form(13).I must emphasize that, in addition to the unknown slowness distribution betweenthe boreholes, the travel time �elds between the wells (Figure 2) are also unknown.Usually, the travel time �eld asso
iated with ea
h sour
e is 
onsidered to be a fun
tionof the slowness �eld. However, stri
tly speaking, both the travel time and slowness�elds are unknowns in the inverse problem. The unknown slowness and ea
h travel time�eld are 
onstrained by the eikonal equation (12) and the arrival times measured at there
eivers (13). It is true that, given the slowness �eld I 
an use the eikonal equation(12) to 
ompute the travel time variation between the boreholes. But, it is equally truethat, given the travel time distribution between the wells I 
an use the eikonal equationto �nd the slowness. Figure 3 illustrates the fa
t that, by 
omputing the gradient of thetravel time �eld, 
al
ulating its magnitude, and taking the square root, I 
an determinethe slowness variation. In what follows I in
lude the travel time �elds as expli
itunknowns in the inverse problem. While this ne
essitates additional 
omputation, itprovides important insight into the nature of the non-uniqueness asso
iated with theinverse problem.



8The Dis
rete ProblemIn this paper I shall 
onsider the dis
rete inverse problem, des
ribed by a �nitenumber of parameters. Before I derive the symmetry group generators I �rst writeequations (12) and (13) as a dis
rete system of equations. The nl-th 
onstraintasso
iated with the eikonal equation (12) is given by�nl = �nunl ��nunl � �n = 0 (14)where n = 1; :::; N signi�es one of the N grid points, �n is a �nite di�eren
eapproximation to the gradient, and l = 1; :::; L, for L sour
es. For re
eiver number mland sour
e l, the data and sour
e boundary 
onstraints are
ml l = uml l � Tml l = 0 (15)with ml = 1; :::;Ml + 1. Note that, as ea
h additional sour
e is introdu
ed, one gainsN 
onstraints from the eikonal equation and Ml 
onstraints from the travel timeobservations at the re
eivers. There may also be a number, say Nb, of boundary
onstraints on the slowness. For example, well logs might be used to �x the velo
itynear the borehole wall. The total number of equations, Neq is given by the sumNeq = N � L+ LXl=1Ml + L+Nb: (16)However, be
ause an additional travel time �eld ul is asso
iated with ea
h new sour
e, Ialso add N new variables to the set of unknowns. Thus, the total number of unknownsis Nu = N � (L + 1) (17)and the inverse problem is formally over-determined when PLl=1Ml +L+Nb ex
eeds N .The variables for the tomographi
 inverse problem, the 
omponents of x, are thesquare of the slowness in ea
h grid blo
k �n and the travel time for ea
h sour
e in ea
hgrid blo
k, unl. Thus, I may write the ve
tor of model parameters x as a 
ompositeve
tor (�;u1; :::;uL). The Lie ve
tor Xx is written in the partitioned form X�;uX�;u = �n ���n + �nl ��unl (18)where I have invoked the 
onvention of summing over repeated indi
es.Estimating group parameters using the SVDI wish to 
hara
terize the transformation group whi
h will allow me to vary themodel parameters and still satisfy the 
onstraint equations. In what follows I will not



9expli
itly in
lude the boundary 
onditions on �n. As stated in Theorem 1, the 
onditionfor X�;u to generate the symmetry group for the inverse problem is that X�;u�nl andX�;u
ml l vanish. Applying X�;u to the eikonal 
onstraint �nl, given by (14), results in alinear equation in �nl and �n 2�nunl ��n�nl � �n = 0 (19)for n = 1; :::; N and l = 1; :::; L. Similarly, applying X�;u to the data 
onstraint 
ml l,equation (15), results in �ml l = 0 (20)where ml = 1; :::;Ml.I 
an rewrite the two sets of equations (19) and (20) as a single matrix-ve
torequation P� = 0 (21)where I have de�ned the ve
tor of 
oeÆ
ients � = (~�; ~�1; : : : ; ~�L) and the matrix PP = 266666664�I D1 : : : 0 00 T1 : : : 0... . . . ...�I : : : 0 DL0 0 : : : 0 TL 377777775 : (22)In the matrix P, the sub-matri
es Tl 
ontain the 
oeÆ
ients 
orresponding to the data
onstraints (20). Similarly, the sub-matri
es Dl 
ontains 
oeÆ
ients 
orresponding tothe �rst term in equation (19), and I is the identity matrix.I will treat the situation when there are fewer 
onstraints than unknowns, that is,the quantity PLl=1Ml +L+Nb is less than N . Thus, the system of equations is formallyunder-determined and has an in�nite number of solutions. Equivalently, the matrix (22)is re
tangular and has fewer rows than 
olumns. In this 
ase there will be a non-trivialnull-spa
e whi
h 
hara
terizes the non-uniqueness. The singular value de
omposition(SVD) (Noble and Daniel 1977) is perhaps the most reliable te
hnique for 
al
ulatingthe ve
tors in the null-spa
e and extra
ting its dimension. The SVD is a representationof the matrix P as the produ
t of three matri
esP = U�VT (23)where U is an Neq �Neq matrix with orthogonal 
olumns, VT is an Nu �Nu orthogonalmatrix, and � is an Neq �Nu diagonal matrix, whi
h is of the form� = 266664�1 : : : 0 : : : 00 �2... . . . ...0 : : : �p 0 : : : 0 377775 : (24)



10The s
alars �i are ordered su
h that �1 � �2 � ::: � �p�1 � �p. The integer p denotesthe a
tual dimension of the problem, whi
h may be less then Neq due to degenera
y.The integer Nu � p 
hara
terizes the dimension of the null-spa
e. That is, values of �iwhi
h are near zero indi
ate ve
tors whi
h are e�e
tively in the null-spa
e and shouldbe treated as su
h.In Figure 4 I have plotted the singular values asso
iated with the 
rosswellillustration. For this example the region between the boreholes is sub-divided into a 13(horizontal) by 25 (verti
al) grid, a total of 325 grid-blo
ks. The unknown parametersare the slowness values for ea
h grid blo
k and the travel time values for ea
h sour
e atea
h node of the grid. Thus, I have a total of 1950 model parameters in this test 
ase.The model parameters are 
onstrained by 1781 equations whi
h are provided by theeikonal equation for ea
h sour
e, the travel time 
onstraints, and boundary 
onstraints atthe wells. Hen
e, there is a 169 dimensional null-spa
e, representing the non-uniquenessinherent in the inverse problem. The null-spa
e ve
tors are asso
iated with the zerosingular values in Figure 4. As additional sour
es are added the dimension of thenull-spa
e will de
rease. However, if the sour
e and re
eiver positions are similar to aprevious sour
e-re
eiver geometry, the additional 
onstraints are essentially redundant.In that 
ase, a nearly zero singular value o

urs, signifying an almost singular system ofequations.Sele
ted singular ve
tors vi, whi
h are 
olumn ve
tors of the matrix V, are plottedgraphi
ally in Figures 5, 6, and 7. Figure 5 displays the ve
tors asso
iated with the 1st,6th, and 25th largest singular values (�1, �6, and �25). The 
omponents of the ve
torvi asso
iated with the �rst sour
e (u1) and the squared slowness (~�) are plotted in thelo
ations of the 
orresponding grid-blo
ks. The grey s
ale plots in Figures 5 and 6 showthe amplitude of the 
omponents. The patterns represent those 
ombinations of the
omponents of ~�1 and ~� whi
h are well 
onstrained by the system of linear equations(21). The 
ombinations are averages of the 
omponents whi
h lie between the sour
elo
ation and the various re
eivers. In Figure 6, I have plotted the 
omponents asso
iatedwith the �rst, third, and �fth shot points. The ve
tors vi in Figure 6 
orrespond to thelargest singular value. Note how the pattern of averaging shifts as the sour
e lo
ation is
hanged.The 
omponents of vi asso
iated with the 1st, 50th, and 100th null ve
tors areplotted in Figure 7. That is, these three ve
tors lie in the null spa
e, signi�ed by �i = 0.Hen
e, these 
ombinations of 
omponents of ~� and ~� not 
onstrained by equation (21)and may vary arbitrarily. The averaging appears to in
lude parti
ular 
ells in theinterior of the 
rosswell region and a signi�
ant number of 
ells near the upper edge ofthe region. The upper edge of the region between the wells in not 
onstrained by seismi
energy, as is evident from the sour
e-re
eiver distribution in Figure 1. As shown next, itis the ve
tors vi asso
iated with zero singular values whi
h de�ne permissible movement



11within the model spa
e.Movement within the null-spa
eIn this sub-se
tion I will let xi denote the ith model parameter and I shall notdistinguish between slowness and travel time �eld variables. Based upon the SVD I 
anwrite Xx in the partitioned form Xx = Xxg +Xx0 (25)where Xxg is 
omputed using the generalized inverse (Aki and Ri
hards, 2002) and Xx0is a ve
tor in the null-spa
e. That is, a ve
tor of the formXx0 = NuXi=p+1 ai NuXj=1 vj i ��xj (26)where ai is an arbitrary multipiler, and vj i is the jth 
omponent of the ith 
olumn ve
torof V. Be
ause the right-hand-side of (21) is zero, Xxg is also zero. This is 
lear be
auseXxg is simply the generalized inverse, a matrix, multiplied by the right-hand-side of (21)whi
h is the zero ve
tor.The Lie ve
tor Xx may be used to move through the null-spa
e. Spe
i�
ally, I 
anuse equation (9) to transform the 
urrent model x to a new model. It will be assumedthat " is small so that terms of order "2 and greater may be negle
ted. I will denote thenew model by a prime, thus x0 = x+ "Xx0x (27)to order ". Applying Xx0 to x givesXx0x = NuXi=p+1 ai NuXj=1 vj i �x�xj : (28)Be
ause �xk�xj = Ækj; (29)where Ækj is the Kroniker delta fun
tion whi
h is 1 when k = j and 0 when k 6= j, I maywrite equation (27) as x0 = x+ " NuXi=p+1 aivi: (30)Equation (30) allows one to move to a new model x0 while remaining within thesolution set. By varying the 
oeÆ
ients ai I 
an generate various models whi
h satisfythe 
onstraints. The issue now is to �nd models whi
h are of parti
ular interest. Forexample, to move toward models whi
h satisfy the data but are smoother than the



12
urrent model, or models whi
h are 
loser to a preferred stru
ture, In this se
tion andthe next, I will 
onsider the latter 
ase, denoting the preferred model parameter ve
torby �. The goal is to move towards � while remaining within the solution set. To thisend, I de�ne a fun
tional R(a), whi
h provides a measure of the distan
e between x0and � R(a) = (x0 ��)T � (x0 ��) (31)whi
h is a fun
tion of the 
oeÆ
ients ai in equation (30). Geometri
ally, the dire
tionin whi
h one should move in order to minimize R(a) is the proje
tion of rR(a) ontothe null-spa
e. That is, the proje
tion of x�� onto the basis ve
tors vi in equation(30). Thus, ai = n � vi where n = (x��)=jx��j is the unit ve
tor in the dire
tion ofx��. In terms of n, equation (30) be
omesx0 = x+ " NuXi=p+1 �n � vi�vi: (32)The pro
edure for moving towards the model � involves the repeated updating of x, asgiven in equation (32). For ea
h update, the ve
tors vi are re
omputed based upon anSVD of the matrix P, given in equation (22). The matrix P must be re
al
ulated atea
h iteration due to the 
hange in the model following an update. Note that when theve
tors de�ning the null-spa
e motion, vi, are orthogonal to n the updates 
ease to besigni�
ant. Geometri
ally, the 'tangent plane' to the null-spa
e is perpendi
ular to theve
tor rR(a).I illustrate the te
hnique with an appli
ation to the 
rosswell problem des
ribedabove (Figure 1). In this 
ase I wish to �nd a model whi
h satis�es the data yet is
losest to a homogeneous model. The homogeneous model has a 
onstant slownessof 0.61 s/km. Starting with the model in Figure 1 I 
ompute the group parametersbased upon the SVD of P, as in equation (23). The model is then updated a

ordingto equation (32) where � is the 
onstant slowness model. The method is iterative, atea
h stage a new model x0 is derived using equation (32) with " = 0:1. The value of thefun
tion R(a), given by equation (31), as a fun
tion of the number of iterations is shownin Figure 8. Note that, after about ten iterations, the de
rease in R(a) levels o� as vibe
omes orthogonal to rR(a) and the 
oeÆ
ients in the summation (32) approa
h zero.The value of R(a) is redu
ed to less than 30% of its original value in sixteen iterations.In Figure 9 four models are displayed, 
orresponding to various stages of theiterative algorithm. The range in models is rather remarkable. As expe
ted, the overallamplitude variation from the ba
kground slowness of 0.61 s/km de
reases with thenumber of iterations. Similarly, the spatial variation in slowness be
omes generallysmoother as the iterations pro
eed. However, some small amplitude heterogeneity whi
hvaries rapidly in spa
e is super-imposed on a smoothly varying ba
kground in the 16th



13iteration. It is interesting that the high amplitude, low-slowness region, lo
ated arounda depth of 7.2 m, migrates downward and out of the model. At the 4th iteration it liesat a depth of 8 m and by the 8th iteration it is found at a depth of 9 m. In the �nalmodel the low-slowness zone is no longer present.Data mis�t at four steps of the algorithm are shown in Figure 10. The mis�t isasso
iated with the models in Figure 9. In general there is a slight degradation atthe iterations pro
eed. This is due to numeri
al noise asso
iated with ea
h iteration.First, only zero singular values were used in the sum (30). Very small amplitudesingular values were negle
ted. Se
ond, as is evident in equation (9), the movement inthe null-spa
e is a
tually given as an in�nite sum in ". Thus, the linearized step ofequation (30) is an approximation whi
h introdu
es some errors in x0. Thus, arrivaltimes predi
ted by x0 will 
ontain 
orresponding errors. Su
h errors 
an be redu
ed bytaking smaller iterations or by adopting a predi
tor-
orre
tor s
heme.Time-lapse seismi
 tomography at the Lost Hills �eldI apply the Lie group approa
h to a pair of 
rosswell seismi
 surveys at the Lost Hillsoil �eld in southern California. The surveys were part of an experiment to determine ifintegrated time-lapse ele
tromagneti
 (EM) and seismi
 methods 
an be used to imagesaturation and pressure 
hanges due to enhan
ed oil re
overy (Hoversten et al. 2003).The Lost Hills reservoir is 
omposed of diatomite, a ro
k with unusually high porosity(45-70%) and low permeability (� 1 millidar
y). Produ
tion in the Lost Hills �eld wasenhan
ed by hydrofra
turing in the 1970s and water 
ooding in the 1990s. Despite thesee�orts , and a well spa
ing of only 1.25 a
res, only 5% per
ent of the oil in pla
e hadbeen re
overed (Gritto et al. 2004). Re
ently CO2 inje
tion was undertaken in order toimprove the amount of re
overed oil. Initial pilot tests were su

essful, improving there
overy to 56-65% of the oil in pla
e. Even with this dramati
 improvement in re
overythere are produ
tion problems due to the diÆ
ulty in predi
ting where the CO2 willmigrate. Due to the expense of the CO2 it is important to minimize its loss duringenhan
ed re
overy.In order to examine the e�e
tiveness of integrated geophysi
al monitoring,investigators from Berkeley Laboratory and Chevron Petroleum Company 
ondu
tedpairs of seismi
 and EM 
rosswell surveys before and after the inje
tion of CO2. Thesurveys were 
ondu
ted in order to image saturation and pressure 
hanges due to theinje
tion of the CO2. The overall geometry of the experiments is displayed in Figure 11.The 
rosswell surveys were 
ondu
ted in the observation wells OB-C1 and OB-C2. Thetwo observation wells are lo
ated within a �ve-spot inje
tion pattern, approximately6 m from inje
tion well 11-8WR (Figure 11) (Gritto 2004). The inje
tion well washydrauli
ally fra
tured and initially water 
ooded from 1995 to the start of CO2



14inje
tion in August of 2000. The CO2 inje
tion rate gradually in
reased from 3.5 to 12.0million m3 per day. The pressure varied between 5.5 and 6.2 MPa during the inje
tion(Gritto 2004).Initially, I followed a 
onventional approa
h and 
onstru
ted velo
ity models basedupon inversions of the arrival time data. The area between the observation wells wassub-divided into a 9 (horizontal) by 38 (verti
al) grid of 
ells, in order to representvelo
ity heterogeneity. Five sour
es, and thus �ve travel time �elds, are part of thearrival time inversion. For ea
h sour
e, the unknown parameters are 
onstrained byobservations from between 10 and 25 re
eivers, for a total of 95 arrival times. Thesour
e-re
eiver 
on�guration varied between the two surveys, resulting in di�erent ray
overage (Figure 12). The observed arrival times for the two surveys are shown inFigure 13, along with arrival times predi
ted using a uniform initial slowness model(0.58 s/km). While the post-inje
tion results roughly follow the predi
ted linear trendof a uniform model, the observed pre-inje
tion times in
reasingly deviate, as a fun
tionof o�set, from the predi
tions.Using a quasi-Newton iterative te
hnique (Gill et. al. 1981) to minimize the mis�tto the observed travel times, I estimated both pre- and post-inje
tion velo
ity variationsfrom the ba
kground (Figure 14). In order to regularize the inverse problem, bothroughness and model norm penalties were in
luded in the formulation (Parker 1994).The pre-inje
tion inversion 
ontains a high-velo
ity linear feature extending from the
enter of the right-hand-side of the 
rosswell region to the upper-left edge. This feature
oin
ides with a mapped fault whi
h traverses the 
rosswell region (Hoversten et al.2003, Gritto et al. 2004). The generally higher velo
ity in the fault may be due to waterdispla
ing oil, a 
onsequen
e of �ve years of water 
ooding. Velo
ities are generallylower in the lower-most half of the area between the wells. The post-inje
tion velo
itymodel 
ontains a prominent low-velo
ity anomaly at the 
enter-right portion of the
rosswell plane.The di�eren
e tomogram is obtained by subtra
ting the pre-inje
tion velo
ity modelfrom the post-inje
tion result. The resulting velo
ity 
hanges, shown in Figure 15, aredominated by the large velo
ity de
rease in the post-inje
tion inversion result. Thevelo
ity de
rease 
oin
ides with the lo
ation of an inje
tion interval in well 11-8WR,some six meters out of the 
rosswell plane. The inje
tion interval is indi
ated by thelarge �lled square in Figure 15. It is thought that a nearly verti
al fra
ture extendsfrom the inje
tor to the 
rosswell plane.The di�eren
e tomogram (Figure 150 indi
ates that a velo
ity de
rease of over10% is asso
iated with the inje
tion of CO2. However, due to equipment 
hanges thegeometry of the two experiments, in parti
ular the sour
e-re
eiver lo
ations and hen
ethe ray 
overage, 
hanged signi�
antly (Figure 12). Thus, some portion of the velo
ity
hange between the boreholes may be due to di�eren
es in survey geometry and not



15simply due to 
hanges in 
uid saturation and pressure. It would be useful to estimatethose 
hanges that are required in order to mat
h the post-inje
tion arrival time data.In order to determine velo
ity 
hanges that are required to mat
h the observations, Iemploy the methodology des
ribed above. Spe
i�
ally, I begin with the model produ
edby an inversion of the post-inje
tion travel time data (Figure 14b). Then, I �nd themodel whi
h �ts the data equally well but is as 
lose as possible to the pre-inje
tionvelo
ity model (Figure 14a). Thus, I employ the updating s
heme of equation (32) where� is the pre-inje
tion slowness model (Figure 14a). A value of 0.025 is used for " inequation (32). In 15 iterations the squared model norm R(a) in equation (31) is redu
edfrom 500.5 to 353.9, as shown in Figure 16. By the �nal iteration there is relatively little
hange in R(a), as n � vi tends to zero. The 
hange in velo
ities are shown in Figure17 for iterations 5, 10 and 15. The large amplitude, low-velo
ity feature in the initialpost-inje
tion result (Figure 14b) disappears. The lower-most region is 
hara
terizedby lower velo
ities while generally higher velo
ities are found in the 
entral and upperportion of the 
rosswell region. The low-velo
ity anomaly, whi
h is notable in the �fthiteration, appears to spread downward and de
rease in amplitude as the iterationspro
eed.The di�eren
e tomogram is 
omputed by subtra
ting the pre-inje
tion result (Figure14a) from the �nal post-inje
tion model, the 15th iteration in Figure 17. The resultingvelo
ity 
hange is shown in Figure 18. Overall, the large-s
ale pattern of velo
ity 
hangeis roughly similar to the di�eren
e tomogram in Figure 15. In parti
ular, signi�
antvelo
ity de
rease is asso
iated with the proje
tion of the upper-most inje
tion port(indi
ated by the largest �lled square in Figures 15 and 18). Furthermore, some velo
ityde
rease is found along what appears to be an interse
ting fault in the upper-mostportion of the two tomograms. However, there are two signi�
ant di�eren
es in theamplitude and the detailed spatial distribution of velo
ity 
hange. First, the velo
ityde
rease around the CO2 inje
tion interval has a signi�
antly lower amplitude and isskewed to the right in the new di�eren
e tomogram. Se
ond, the low velo
ity anomalyasso
iated with the dipping fault is more signi�
ant in the new model. Note that bothmodels �t the observations equally well (Figure 19).Dis
ussion and Con
lusionsFa
ed with a non-linear inverse problem it is 
ommon pra
ti
e to simply �nd asingle solution whi
h �ts the data in some sense. The next step is to �nd the modelparameter 
ovarian
es asso
iated with a linearization of the inverse problem. Neitherquantity provides an appre
iation of the true variability whi
h is possible in the solutionssatisfying the non-linear inverse problem. As shown in this paper, for under-determinedinverse problems, it is possible for model parameters to 
hange substantially and still



16�t the observations. To date, there has been little dis
ussion 
on
erning the possiblevariation in non-linear inverse problems that has not involved some type of linearization.In Vas
o (1998) a homotopy approa
h is used to examine the variation due to 
hangesin the weight given to regularization penalty terms in the inversion. In this algorithmthe solution is 
ontinuously deformed as the regularization weight is varied. Themethod is useful in 
onstru
ting trade-o� 
urves for the non-linear inverse problem anddetermining the regularization penalty weight. In Mosegaard and Tarantola (1995) asampling algorithm is used to generate a large 
olle
tion of models a

ording to theposterior probability distribution. This 
olle
tion of models may be used to explore therange of possible solutions. However, the posterior distribution does depend on whi
h apriori information is used in solving the inverse problem.In the present paper the �t to the data is maintained while the solution is modi�edin order to minimize or maximize some aspe
t of the model. This approa
h is quitegeneral and may be used to minimize model roughness, to minimize the di�eren
ebetween the solution and a prior model, as well as to �nd bounds on model parameters.While I have applied the method dire
tly to the 
onstraint equations de�ned by theforward problem, it is possible to work with the normal equations of a least squaresformulation. Furthermore, Lie group methods 
an be applied to the general 
ontinuousproblems involving di�erential and integral equations (Olver 1986). As su
h, it ispossible to treat 
ontinuous inverse problems dire
tly, without resorting dis
retization atthe outset, as in Vas
o (1997). Finally, though the fo
us of this paper has been on thedeterministi
 approa
h to inverse problems, Lie group methods should also prove usefulin sto
hasti
 treatments. For example, group methods 
ould be used to 
hara
terize theinvarian
e or symmetry asso
iated with a given probability density fun
tion.The appli
ation to the eikonal equation and 
rosswell tomography illustrates theLie group approa
h. In the formulation both the travel times �elds asso
iated withea
h sour
e and the slowness �eld are treated as unknowns. There are advantagesand disadvantages asso
iated with su
h a treatment. There is greater 
exibility andinsight when one treats the travel time �elds as additional unknowns. For example, it ispossible to impose spatial roughness penalties dire
tly on the travel time �elds ratherthan on the slowness distribution. This makes physi
al sense be
ause one would notexpe
t that the slowness must vary smoothly between a sour
e and re
eiver. There maybe dis
ontinuities due to layering and faults. However, the travel time �eld must vary
ontinuously in the sub-surfa
e. Thus, it is more appropriate to require the travel timevariables to vary smoothly and let the slowness 
ontain dis
ontinuities. In addition, forsome inverse problems, su
h as waveform inversion one may have 
onstraints on theenergy in the wave�eld. For example, for an arti�
ial sour
e, the wave�eld energy 
annotex
eed the input energy. Therefore, one 
an bound the energy in the �eld variables,further 
onstraining the inverse problem. There is additional insight when one in
ludes



17both slowness and travel time �elds as unknown parameters. For example, it is easy tounderstand the level of non-uniqueness by 
ounting the total number of equations (16)and the total number of unknowns (17). The primary drawba
k of in
luding the �eldvariables, su
h as the travel time �elds, is 
omputational. By in
luding a 
ompletelynew set of variables with ea
h sour
e, the number of unknowns in
reases rapidly withproblem size (number of grid blo
ks).The utility of the approa
h is demonstrated by an appli
ation to a pair of 
rosswellseismi
 surveys 
ondu
ted at Lost Hills, California. The appli
ation to a
tual �elddata illustrates that the algorithm is pra
ti
al and works in the presen
e of noise. Theappli
ation to pre- and post-inje
tion 
rosswell observations suggests there must be ade
rease in seismi
 velo
ity in the inter-well region due to CO2 inje
tion. That is, it isnot possible to �t the post-inje
tion observations without some de
rease in velo
ity nearthe primary inje
tion interval. Furthermore, there is a suggestion that the interse
tingfault may a
t as a 
onduit for the migration of CO2 in the subsurfa
e. However, themagnitude of the velo
ity 
hange along the fault 
an vary substantially and whileremaining 
ompatible with the data.A
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20Figure 1. Referen
e slowness model used to generate travel times for a syntheti
 test.The �ve sour
es are denoted by stars at the left side of the model. The fourteen re
eiversare denoted by �lled squares and are found on the right-hand-side of the model. Thegrey-s
ale represents the slowness variation in the 
rosswell region.
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22Figure 2. Three travel time �elds asso
iated with sour
es 1, 3, and 5. The 
ontoursand grey-s
ale display the travel time �elds for the three sour
es and the model shownin Figure 1.
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24Figure 3. (Left) Unit ve
tors in the dire
tion of the gradient of the travel time �eldasso
iated with sour
e 3. (Right) The square root of the magnitude of the gradientve
tors.
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26Figure 4. Singular values asso
iated with a singular value de
omposition (SVD) of thematrix P in equation (23).
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27Figure 5. Three singular ve
tors 
orresponding to the SVD of the matrix P. The
omponents of the 1st, 6th, and 25th singular ve
tors 
orresponding to the arrival time�eld of sour
e 1, u1, and the square of the slowness �. The magnitude of the ve
tor
omponents are plotted in the 
ells to whi
h they 
orrespond. The grey-s
ale denotesthe magnitude of ea
h 
omponent.
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29Figure 6. Grey-s
ale plot of sele
ted 
omponents of the singular ve
tor asso
iated withthe largest singular value. The 
omponents 
orrespond to the 1st, 3rd, and 5th sour
es,u1, u3, and u5, respe
tively.
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31Figure 7. Three null ve
tors 
orresponding to the SVD of the matrixP. The 
omponentsof the 1st, 50th, and 100th null ve
tors 
orresponding to the arrival time �eld of sour
e1, u1, and the square of the slowness �. The grey-s
ale denotes the value, plotted in the
ell that 
orresponds to the parti
ular ve
tor 
omponent.
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33Figure 8. A plot of the fun
tion R(a) = (x0��)T � (x0��) as a fun
tion of the numberof iterations, where � is asso
iated with a uniform ba
kground value of 0.61 s/km.



34Figure 9. The slowness distribution after 0, 4, 8, and 16 updates. The updates, given a
-
ording to equation (32), are designed to minimize the fun
tion R(a) de�ned by equation(31).
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36Figure 10. Cal
ulated travel times plotted against referen
e travel times after 0, 4, 8,and 16 updates. For a perfe
t mat
h to the syntheti
 values the points would lie on thesolid diagonal line.
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38Figure 11. Layout of the monitoring experiment at the Lost Hills oil �eld. The two�ber-glass 
ased observation wells (OB-C1 and OB-C2) are denoted by �lled squares.The inje
tion well 11-8WR is denoted by an open 
ir
le.
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40Figure 12. Ray 
overage for the pre- and post-inje
tion 
rosswell seismi
 surveys. Thegrey-s
ale depi
ts the ray density, the number of rays per 
ell, in the interwell region.
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41Figure 13. Plot of travel times as a fun
tion of sour
e and re
eiver o�set. The open
ir
les are the observed travel times and the �lled squares are the travel times 
al
ulatedusing a uniform velo
ity model (1.72 km/s).
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43Figure 14. Velo
ity variations whi
h resulted from an inversion of pre- and post-inje
tionarrival time data. The heterogeneity is plotted as deviations from a uniform ba
kgroundvelo
ity of 1.72 km/s.
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45Figure 15. A di�eren
e tomogram representing velo
ity 
hanges whi
h o

urred duringthe inje
tion of CO2. The di�eren
e tomogram is formed by simply subtra
ting the pre-inje
tion velo
ities from the post-inje
tion velo
ities. Three inje
tion points, signifyingthe lo
ations of inje
tion intervals in well 11-8WR in Figure 11, are indi
ated by the �lledsquares. The well 11-8WR is approximately six meters out of the plane 
ontaining theobservation wells. The size of ea
h square is proportional to the volume of inje
ted CO2.
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47Figure 16. A plot of the variation of R(a) = (x0 ��)T � (x0 ��) as a fun
tion of thenumber of iterations. The model � 
orresponds to the pre-inje
tion velo
ity variationshown in Figure 14a. In essen
e, I am trying to make the post-inje
tion velo
ity modelresemble the pre-inje
tion velo
ity model. Stated another way, I am trying to make thedi�eren
e tomogram as small as possible while satisfying the observations.



48



49Figure 17. Post-inje
tion velo
ity deviations from a uniform ba
kground value 0f 1.72km/s. The velo
ity deviations 
orrespond to the 5th, 10th, and 15th iterations of the Liegroup algorithm. The updates are given by equation (32), as dis
ussed in the text.
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51Figure 18. The di�eren
e tomogram obtained by subtra
ting the pre-inje
tion modelshown in Figure 14a from the post-inje
tion model whi
h resulted from the Lie groupalgorithm. The �nal post-inje
tion model is the 15th iteration, shown in Figure 17.
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53Figure 19. The initial and �nal travel time mat
hes for the Lost Hills post-inje
tioninversion. The travel times 
al
ulated using the initial (Figure 14b) and �nal (Figure 17)post-inje
tion models of the iterative algorithm.
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