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2Abstrat.Lie group methods provide a valuable tool for examining invariane andnon-uniqueness assoiated with geophysial inverse problems. The tehniques arepartiularly well suited for the study of non-linear inverse problems. Using thein�nitesimal generators of the group it is possible to move within the null spae in aniterative fashion. The key omputational step in determining the symmetry groupsassoiated with an inverse problem is the singular value deomposition (SVD) of a sparsematrix. I apply the methodology to the eikonal equation and examine the possiblesolutions assoiated with a rosswell tomographi experiment. Results from a synthetitest indiate that it is possible to vary the veloity model signi�antly and still �t thereferene arrival times. The approah is also applied to data from rosswell surveysonduted before and after a CO2 injetion at the Lost Hills �eld in California. Theresults highlight the fat that a fault ross-utting the region between the wells may atas a onduit for the ow of water and CO2.



3IntrodutionGeophysial inverse problems rarely have unique solutions. Typially, uniquenessis bestowed upon an inverse problem through the introdution of spei� biases, 'prior'information, or penalty terms (Jakson 1979, Tarantola 1987, Parker 1994). Suh biasesstabilize the inverse problem and provide a seemingly unique solution. However, thesolution now depends on the nature of the 'prior' information, thus trading one form ofnon-uniqueness for another.The non-uniqueness of solutions to geophysial inverse problems has been reognizedfor some time. A number of methods have been developed to quantify the range ofpossible solutions. Rather omplete treatments exist for linear inverse problems. Theearly treatment by Bakus and Gilbert (1968, 1970) and others (Jakson 1972, Wiggins1972) emphasized the non-uniqueness inherent in the majority of geophysial inverseproblems and the averaging nature of model parameter estimates. For linear problems,non-uniqueness has been haraterized by model parameter ovarianes (Tarantola 1987,Parker 1994) as well as by bounds (Bakus 1970, Parker 1974, Sabatier 1977, Safonet al. 1977) or on�dene intervals (Bakus 1989, Stark 1992) on model parameters.Furthermore, tehniques whih make use of the null-spae assoiated with a linearinverse problem may be used to inorporate a priori information without inueningthe �t to the data (Deal and Nolet 1996, Rowbotham and Pratt 1997).For non-linear inverse problems the haraterization of non-uniqueness is morediÆult due to the presene of loal minima. Hene, it is generally not possible toguarantee that the non-uniqueness has been ompletely quanti�ed, and one must relyon approximations and/or iterative methods. For example the methods of Bakus andGilbert (1968, 1970), an be applied to non-linear inverse problems using an iterativeperturbation approah. Alternatively, it may be possible to transform a non-linearinverse problem into a linear problem using either statistial or algebrai means(Vaso 1995, 1997). Tehniques from linear inverse theory may then be applied in thetransformed spae in order to quantify non-uniqueness. For disrete inverse problemsseveral statistial sampling-based methods, suh as Monte Carlo searh (Press 1968) orits extensions (Mosegaard and Tarantola 1995, Sambridge 1998), have been proposedto examine non-uniqueness. A di�erent approah by Vaso (1999, 2000) makes useof tehniques from omputational algebra to haraterize the solutions to non-lineargeophysial inverse problems.There is a need for general and robust tehniques for exploring the null spaeassoiated with a non-linear geophysial inverse problem. In partiular, it would beuseful to have the ability to move about the spae of model parameters and yet staywithin the null spae. It would be espeially advantageous to have the ability of movingwithin the null spae in a diretion whih minimizes or maximizes some attribute of the



4model suh as roughness. In this paper I introdue a method for moving within the nullspae that is based upon Lie groups. Lie groups are ontinuous groups that have provenuseful in a variety of ontexts, partiularly in appliations to non-linear problems (Olver1986, Bluman and Kumei 1989, Euler and Steeb 1992). The tehnique developed hereis very general and only requires the singular value deomposition (SVD) of a sparsematrix. The method generalizes the approah of Deal and Nolet (1996) and Rowbothamand Pratt (1997) for linear inverse problems.I apply the methodology to a set of governing equations for �rst-arrival timetomography. Both veloity and the travel time �elds for all of the soures are treatedas unknowns. This provides insight into the nature of the non-uniqueness assoiatedwith the inverse problem. The appliation to �eld data from the Lost Hills, Californiaindiates that the tehnique works in the presene of noise. I must emphasize thatthe tehnique is appliable to the normal equations resulting from a least squaresformulation. Symmetry groups may also be useful in stohasti formulations of inverseproblems. In partiular, Lie groups may be used to examine invariane and symmetryassoiated with probability density funtions. Another advantage of Lie groups is thatthey may be used to treat ontinuous problems in the form of di�erential and integralequations (Olver 1986). For example, in Vaso (1997) Lie groups are used to determineif an inverse problem involving non-linear funtionals may be transformed into a linearinverse problem.MethodologyIn this setion I briey de�ne Lie groups and indiate how they are used totransform a vetor of model parameters. The notion of symmetry is de�ned, as arethe ideas of in�nitesimal invariane and Lie vetor �elds. The �nal result is a set ofonditions for a Lie group to be a symmetry group of a system of equations. That is,onditions suh that a transformed model stays within the solution set.Non-uniqueness and invarianeConsider a set of l equationsF i(x) = 0; i = 1; :::; l (1)where x 2 M � Rn is a vetor of unknowns, and the F i(x) are smooth real-valuedfuntions of x. I am interested in transformations whih leave the solution set of theequations invariant. Note that this is not the same as leaving the funtions themselvesinvariant. Groups, in partiular the Lie groups I disuss below, are a useful tool in thestudy of invariane.



5Invariane and groupsFor the study at hand, the most relevant groups are those whih 'at' on sets ofobjets, the transformation groups:De�nition A transformation group is a ontinuous group S and a set M � Rn alongwith a smooth map 	 : S �M !M whih satis�es, for s; t 2 S;x 2M ,	(s;	(t;x)) = 	(s � t;x); (2)and ontains an identity element e suh that	(e;x) = x; (3)and an inverse element s�1 	(s�1;	(s;x)) = x: (4)It turns out that the group properties (2), (3), and (4), together with ontinuityrequirements on the multipliation and inversion operations, provide enough algebraistruture for the study of invariane or symmetry (Gilmore 1974).De�nition A group of transformations ating on a set M � Rn, S is alled a symmetrygroup of M , if whenever x 2M and s 2 S then 	(s;x) 2M .The set M is said to be invariant with respet to the ations of the group. In ases ofinterest the set M is de�ned by the vanishing of l equations. Suh sets are known as thezero set or the variety of the system of equations (1).In�nitesimal invariane and Lie vetor �eldsThe great utility of ontinuous groups rests upon a form of linearization. Thistype of linearization is di�erent from one about a partiular value of x. Rather, Ilinearize with respet to the group element s, about the identity transformation e.The importane of this linearization annot be over-emphasized. It allows one totransform ompliated non-linear invariane onditions on the group to linear equations.Furthermore, beause the linearization is about the group parameters and not aboutpartiular values of the variables, the onditions are appliable to the entire range ofsolutions.To illustrate the main ideas, I shall examine a one parameter group oftransformations x0 = 	(";x); (5)where the salar " represents the group parameter. One an onstrut multi-parametergroups from one-parameter omponents (Olver 1986, Bluman and Kumei 1989).



6Consider a Taylors expansion of 	(";x) in ", about " = 0,	j(";x) = xj + "�j(x) + � � �: (6)The partial derivative of the transformed variable with respet to a hange in " at " = 0(at the identity transformation), is denoted by �j(x):�	j(";x)�" j"=0 = �j(x): (7)The Taylor series expansion, given in equation (6), is equivalent to a repeatedappliation of a di�erential operator derived from �(x) (Bluman and Kumei 1989, p. 41)Xx = �	j(";x)�" j"=0 ��xj = �j(x) ��xj (8)where the summation onvention, summation over repeated indies, has been employed.Mathematially, the vetor �eld Xx is a di�erential operator whih ats on a funtionto give the rate of hange of the funtion in the diretion spei�ed by the omponents�j(x). That is, along the ow of the mapping, as parameterized by ". Thus, I may writethe Taylors expansion of 	(";x) as	(";x) = x+ "Xxx+ "22 XxXxx+ � � �= "Xk=01 "kk!Xxk#x (9)The in�nite sum in brakets, known as a Lie series, is often denoted symbolially byEXP("Xx) (Gilmore 1974). Equation (9) suggests that the operator Xx ontains allthe information onerning the transformation. Beause of this, Xx, known as thein�nitesimal generator or Lie vetor, forms the basis for studying invariane with respetto suh transformations. In partiular, the onditions for the group to leaveM invariantmay be written in terms of Xx.Theorem 1 Let S be a Lie group of transformations ating on the m-dimensional setM � Rn. Let F : M ! Rl; l � m de�ne a system of equationsF i(x) = 0; i = 1; :::; l: (10)Then S is a symmetry group of the system if and only ifXx[F i(x)℄ = 0; ; i = 1; :::; l (11)whenever F i(x) = 0; i = 1; :::; l for every in�nitesimal generator Xx of S.This theorem follows by applying EXP("Xx) in equation (9) to F i(x) (Bluman andKumei 1989). As demonstrated below, this theorem means that ompliated non-linearonditions for invariane may be replaed by a linear system of equations.



7AppliationTravel-time tomographyGoverning EquationsIn this setion I onsider the non-uniqueness assoiated with travel-time tomography.I will illustrate the Lie group approah in a rosswell tomographi setting, as shown inFigure 1. A seismi soure is moved, in suession, to �ve positions in left-most borehole[denoted by stars℄. At eah position the soure is ativated and the resulting seismiwave�eld is reorded by 14 reeivers in the borehole on the right [denoted by �lledsquares℄.The starting point is the eikonal equation desribing the evolution of the traveltime (Aki and Rihards 2002, page 87). In all that follows I shall denote the travel time�eld assoiated with soure l by ul(r), a funtion of position r in the Earth. For a sourel the following onstraints applyrul(r) � rul(r)� �(r) = 0 (12)ul(rml) = T lml ml = 1; :::;Ml (13)where the variable �(r) represents the reiproal of the square of the veloity or thesquare of the slowness, whih is also a funtion of position, ml denotes the reeivernumber, and rml is the position of reeiver number ml. For soure l there are a total ofMl reeivers, a number whih will generally vary for eah soure. Note that one shouldalso inlude the soure point as a zero travel time onstraint, a boundary ondition forthe eikonal equation. Thus, the soure point introdues another onstraint of the form(13).I must emphasize that, in addition to the unknown slowness distribution betweenthe boreholes, the travel time �elds between the wells (Figure 2) are also unknown.Usually, the travel time �eld assoiated with eah soure is onsidered to be a funtionof the slowness �eld. However, stritly speaking, both the travel time and slowness�elds are unknowns in the inverse problem. The unknown slowness and eah travel time�eld are onstrained by the eikonal equation (12) and the arrival times measured at thereeivers (13). It is true that, given the slowness �eld I an use the eikonal equation(12) to ompute the travel time variation between the boreholes. But, it is equally truethat, given the travel time distribution between the wells I an use the eikonal equationto �nd the slowness. Figure 3 illustrates the fat that, by omputing the gradient of thetravel time �eld, alulating its magnitude, and taking the square root, I an determinethe slowness variation. In what follows I inlude the travel time �elds as expliitunknowns in the inverse problem. While this neessitates additional omputation, itprovides important insight into the nature of the non-uniqueness assoiated with theinverse problem.



8The Disrete ProblemIn this paper I shall onsider the disrete inverse problem, desribed by a �nitenumber of parameters. Before I derive the symmetry group generators I �rst writeequations (12) and (13) as a disrete system of equations. The nl-th onstraintassoiated with the eikonal equation (12) is given by�nl = �nunl ��nunl � �n = 0 (14)where n = 1; :::; N signi�es one of the N grid points, �n is a �nite di�ereneapproximation to the gradient, and l = 1; :::; L, for L soures. For reeiver number mland soure l, the data and soure boundary onstraints are
ml l = uml l � Tml l = 0 (15)with ml = 1; :::;Ml + 1. Note that, as eah additional soure is introdued, one gainsN onstraints from the eikonal equation and Ml onstraints from the travel timeobservations at the reeivers. There may also be a number, say Nb, of boundaryonstraints on the slowness. For example, well logs might be used to �x the veloitynear the borehole wall. The total number of equations, Neq is given by the sumNeq = N � L+ LXl=1Ml + L+Nb: (16)However, beause an additional travel time �eld ul is assoiated with eah new soure, Ialso add N new variables to the set of unknowns. Thus, the total number of unknownsis Nu = N � (L + 1) (17)and the inverse problem is formally over-determined when PLl=1Ml +L+Nb exeeds N .The variables for the tomographi inverse problem, the omponents of x, are thesquare of the slowness in eah grid blok �n and the travel time for eah soure in eahgrid blok, unl. Thus, I may write the vetor of model parameters x as a ompositevetor (�;u1; :::;uL). The Lie vetor Xx is written in the partitioned form X�;uX�;u = �n ���n + �nl ��unl (18)where I have invoked the onvention of summing over repeated indies.Estimating group parameters using the SVDI wish to haraterize the transformation group whih will allow me to vary themodel parameters and still satisfy the onstraint equations. In what follows I will not



9expliitly inlude the boundary onditions on �n. As stated in Theorem 1, the onditionfor X�;u to generate the symmetry group for the inverse problem is that X�;u�nl andX�;u
ml l vanish. Applying X�;u to the eikonal onstraint �nl, given by (14), results in alinear equation in �nl and �n 2�nunl ��n�nl � �n = 0 (19)for n = 1; :::; N and l = 1; :::; L. Similarly, applying X�;u to the data onstraint 
ml l,equation (15), results in �ml l = 0 (20)where ml = 1; :::;Ml.I an rewrite the two sets of equations (19) and (20) as a single matrix-vetorequation P� = 0 (21)where I have de�ned the vetor of oeÆients � = (~�; ~�1; : : : ; ~�L) and the matrix PP = 266666664�I D1 : : : 0 00 T1 : : : 0... . . . ...�I : : : 0 DL0 0 : : : 0 TL 377777775 : (22)In the matrix P, the sub-matries Tl ontain the oeÆients orresponding to the dataonstraints (20). Similarly, the sub-matries Dl ontains oeÆients orresponding tothe �rst term in equation (19), and I is the identity matrix.I will treat the situation when there are fewer onstraints than unknowns, that is,the quantity PLl=1Ml +L+Nb is less than N . Thus, the system of equations is formallyunder-determined and has an in�nite number of solutions. Equivalently, the matrix (22)is retangular and has fewer rows than olumns. In this ase there will be a non-trivialnull-spae whih haraterizes the non-uniqueness. The singular value deomposition(SVD) (Noble and Daniel 1977) is perhaps the most reliable tehnique for alulatingthe vetors in the null-spae and extrating its dimension. The SVD is a representationof the matrix P as the produt of three matriesP = U�VT (23)where U is an Neq �Neq matrix with orthogonal olumns, VT is an Nu �Nu orthogonalmatrix, and � is an Neq �Nu diagonal matrix, whih is of the form� = 266664�1 : : : 0 : : : 00 �2... . . . ...0 : : : �p 0 : : : 0 377775 : (24)



10The salars �i are ordered suh that �1 � �2 � ::: � �p�1 � �p. The integer p denotesthe atual dimension of the problem, whih may be less then Neq due to degeneray.The integer Nu � p haraterizes the dimension of the null-spae. That is, values of �iwhih are near zero indiate vetors whih are e�etively in the null-spae and shouldbe treated as suh.In Figure 4 I have plotted the singular values assoiated with the rosswellillustration. For this example the region between the boreholes is sub-divided into a 13(horizontal) by 25 (vertial) grid, a total of 325 grid-bloks. The unknown parametersare the slowness values for eah grid blok and the travel time values for eah soure ateah node of the grid. Thus, I have a total of 1950 model parameters in this test ase.The model parameters are onstrained by 1781 equations whih are provided by theeikonal equation for eah soure, the travel time onstraints, and boundary onstraints atthe wells. Hene, there is a 169 dimensional null-spae, representing the non-uniquenessinherent in the inverse problem. The null-spae vetors are assoiated with the zerosingular values in Figure 4. As additional soures are added the dimension of thenull-spae will derease. However, if the soure and reeiver positions are similar to aprevious soure-reeiver geometry, the additional onstraints are essentially redundant.In that ase, a nearly zero singular value ours, signifying an almost singular system ofequations.Seleted singular vetors vi, whih are olumn vetors of the matrix V, are plottedgraphially in Figures 5, 6, and 7. Figure 5 displays the vetors assoiated with the 1st,6th, and 25th largest singular values (�1, �6, and �25). The omponents of the vetorvi assoiated with the �rst soure (u1) and the squared slowness (~�) are plotted in theloations of the orresponding grid-bloks. The grey sale plots in Figures 5 and 6 showthe amplitude of the omponents. The patterns represent those ombinations of theomponents of ~�1 and ~� whih are well onstrained by the system of linear equations(21). The ombinations are averages of the omponents whih lie between the soureloation and the various reeivers. In Figure 6, I have plotted the omponents assoiatedwith the �rst, third, and �fth shot points. The vetors vi in Figure 6 orrespond to thelargest singular value. Note how the pattern of averaging shifts as the soure loation ishanged.The omponents of vi assoiated with the 1st, 50th, and 100th null vetors areplotted in Figure 7. That is, these three vetors lie in the null spae, signi�ed by �i = 0.Hene, these ombinations of omponents of ~� and ~� not onstrained by equation (21)and may vary arbitrarily. The averaging appears to inlude partiular ells in theinterior of the rosswell region and a signi�ant number of ells near the upper edge ofthe region. The upper edge of the region between the wells in not onstrained by seismienergy, as is evident from the soure-reeiver distribution in Figure 1. As shown next, itis the vetors vi assoiated with zero singular values whih de�ne permissible movement



11within the model spae.Movement within the null-spaeIn this sub-setion I will let xi denote the ith model parameter and I shall notdistinguish between slowness and travel time �eld variables. Based upon the SVD I anwrite Xx in the partitioned form Xx = Xxg +Xx0 (25)where Xxg is omputed using the generalized inverse (Aki and Rihards, 2002) and Xx0is a vetor in the null-spae. That is, a vetor of the formXx0 = NuXi=p+1 ai NuXj=1 vj i ��xj (26)where ai is an arbitrary multipiler, and vj i is the jth omponent of the ith olumn vetorof V. Beause the right-hand-side of (21) is zero, Xxg is also zero. This is lear beauseXxg is simply the generalized inverse, a matrix, multiplied by the right-hand-side of (21)whih is the zero vetor.The Lie vetor Xx may be used to move through the null-spae. Spei�ally, I anuse equation (9) to transform the urrent model x to a new model. It will be assumedthat " is small so that terms of order "2 and greater may be negleted. I will denote thenew model by a prime, thus x0 = x+ "Xx0x (27)to order ". Applying Xx0 to x givesXx0x = NuXi=p+1 ai NuXj=1 vj i �x�xj : (28)Beause �xk�xj = Ækj; (29)where Ækj is the Kroniker delta funtion whih is 1 when k = j and 0 when k 6= j, I maywrite equation (27) as x0 = x+ " NuXi=p+1 aivi: (30)Equation (30) allows one to move to a new model x0 while remaining within thesolution set. By varying the oeÆients ai I an generate various models whih satisfythe onstraints. The issue now is to �nd models whih are of partiular interest. Forexample, to move toward models whih satisfy the data but are smoother than the



12urrent model, or models whih are loser to a preferred struture, In this setion andthe next, I will onsider the latter ase, denoting the preferred model parameter vetorby �. The goal is to move towards � while remaining within the solution set. To thisend, I de�ne a funtional R(a), whih provides a measure of the distane between x0and � R(a) = (x0 ��)T � (x0 ��) (31)whih is a funtion of the oeÆients ai in equation (30). Geometrially, the diretionin whih one should move in order to minimize R(a) is the projetion of rR(a) ontothe null-spae. That is, the projetion of x�� onto the basis vetors vi in equation(30). Thus, ai = n � vi where n = (x��)=jx��j is the unit vetor in the diretion ofx��. In terms of n, equation (30) beomesx0 = x+ " NuXi=p+1 �n � vi�vi: (32)The proedure for moving towards the model � involves the repeated updating of x, asgiven in equation (32). For eah update, the vetors vi are reomputed based upon anSVD of the matrix P, given in equation (22). The matrix P must be realulated ateah iteration due to the hange in the model following an update. Note that when thevetors de�ning the null-spae motion, vi, are orthogonal to n the updates ease to besigni�ant. Geometrially, the 'tangent plane' to the null-spae is perpendiular to thevetor rR(a).I illustrate the tehnique with an appliation to the rosswell problem desribedabove (Figure 1). In this ase I wish to �nd a model whih satis�es the data yet islosest to a homogeneous model. The homogeneous model has a onstant slownessof 0.61 s/km. Starting with the model in Figure 1 I ompute the group parametersbased upon the SVD of P, as in equation (23). The model is then updated aordingto equation (32) where � is the onstant slowness model. The method is iterative, ateah stage a new model x0 is derived using equation (32) with " = 0:1. The value of thefuntion R(a), given by equation (31), as a funtion of the number of iterations is shownin Figure 8. Note that, after about ten iterations, the derease in R(a) levels o� as vibeomes orthogonal to rR(a) and the oeÆients in the summation (32) approah zero.The value of R(a) is redued to less than 30% of its original value in sixteen iterations.In Figure 9 four models are displayed, orresponding to various stages of theiterative algorithm. The range in models is rather remarkable. As expeted, the overallamplitude variation from the bakground slowness of 0.61 s/km dereases with thenumber of iterations. Similarly, the spatial variation in slowness beomes generallysmoother as the iterations proeed. However, some small amplitude heterogeneity whihvaries rapidly in spae is super-imposed on a smoothly varying bakground in the 16th



13iteration. It is interesting that the high amplitude, low-slowness region, loated arounda depth of 7.2 m, migrates downward and out of the model. At the 4th iteration it liesat a depth of 8 m and by the 8th iteration it is found at a depth of 9 m. In the �nalmodel the low-slowness zone is no longer present.Data mis�t at four steps of the algorithm are shown in Figure 10. The mis�t isassoiated with the models in Figure 9. In general there is a slight degradation atthe iterations proeed. This is due to numerial noise assoiated with eah iteration.First, only zero singular values were used in the sum (30). Very small amplitudesingular values were negleted. Seond, as is evident in equation (9), the movement inthe null-spae is atually given as an in�nite sum in ". Thus, the linearized step ofequation (30) is an approximation whih introdues some errors in x0. Thus, arrivaltimes predited by x0 will ontain orresponding errors. Suh errors an be redued bytaking smaller iterations or by adopting a preditor-orretor sheme.Time-lapse seismi tomography at the Lost Hills �eldI apply the Lie group approah to a pair of rosswell seismi surveys at the Lost Hillsoil �eld in southern California. The surveys were part of an experiment to determine ifintegrated time-lapse eletromagneti (EM) and seismi methods an be used to imagesaturation and pressure hanges due to enhaned oil reovery (Hoversten et al. 2003).The Lost Hills reservoir is omposed of diatomite, a rok with unusually high porosity(45-70%) and low permeability (� 1 millidary). Prodution in the Lost Hills �eld wasenhaned by hydrofraturing in the 1970s and water ooding in the 1990s. Despite thesee�orts , and a well spaing of only 1.25 ares, only 5% perent of the oil in plae hadbeen reovered (Gritto et al. 2004). Reently CO2 injetion was undertaken in order toimprove the amount of reovered oil. Initial pilot tests were suessful, improving thereovery to 56-65% of the oil in plae. Even with this dramati improvement in reoverythere are prodution problems due to the diÆulty in prediting where the CO2 willmigrate. Due to the expense of the CO2 it is important to minimize its loss duringenhaned reovery.In order to examine the e�etiveness of integrated geophysial monitoring,investigators from Berkeley Laboratory and Chevron Petroleum Company ondutedpairs of seismi and EM rosswell surveys before and after the injetion of CO2. Thesurveys were onduted in order to image saturation and pressure hanges due to theinjetion of the CO2. The overall geometry of the experiments is displayed in Figure 11.The rosswell surveys were onduted in the observation wells OB-C1 and OB-C2. Thetwo observation wells are loated within a �ve-spot injetion pattern, approximately6 m from injetion well 11-8WR (Figure 11) (Gritto 2004). The injetion well washydraulially fratured and initially water ooded from 1995 to the start of CO2



14injetion in August of 2000. The CO2 injetion rate gradually inreased from 3.5 to 12.0million m3 per day. The pressure varied between 5.5 and 6.2 MPa during the injetion(Gritto 2004).Initially, I followed a onventional approah and onstruted veloity models basedupon inversions of the arrival time data. The area between the observation wells wassub-divided into a 9 (horizontal) by 38 (vertial) grid of ells, in order to representveloity heterogeneity. Five soures, and thus �ve travel time �elds, are part of thearrival time inversion. For eah soure, the unknown parameters are onstrained byobservations from between 10 and 25 reeivers, for a total of 95 arrival times. Thesoure-reeiver on�guration varied between the two surveys, resulting in di�erent rayoverage (Figure 12). The observed arrival times for the two surveys are shown inFigure 13, along with arrival times predited using a uniform initial slowness model(0.58 s/km). While the post-injetion results roughly follow the predited linear trendof a uniform model, the observed pre-injetion times inreasingly deviate, as a funtionof o�set, from the preditions.Using a quasi-Newton iterative tehnique (Gill et. al. 1981) to minimize the mis�tto the observed travel times, I estimated both pre- and post-injetion veloity variationsfrom the bakground (Figure 14). In order to regularize the inverse problem, bothroughness and model norm penalties were inluded in the formulation (Parker 1994).The pre-injetion inversion ontains a high-veloity linear feature extending from theenter of the right-hand-side of the rosswell region to the upper-left edge. This featureoinides with a mapped fault whih traverses the rosswell region (Hoversten et al.2003, Gritto et al. 2004). The generally higher veloity in the fault may be due to waterdisplaing oil, a onsequene of �ve years of water ooding. Veloities are generallylower in the lower-most half of the area between the wells. The post-injetion veloitymodel ontains a prominent low-veloity anomaly at the enter-right portion of therosswell plane.The di�erene tomogram is obtained by subtrating the pre-injetion veloity modelfrom the post-injetion result. The resulting veloity hanges, shown in Figure 15, aredominated by the large veloity derease in the post-injetion inversion result. Theveloity derease oinides with the loation of an injetion interval in well 11-8WR,some six meters out of the rosswell plane. The injetion interval is indiated by thelarge �lled square in Figure 15. It is thought that a nearly vertial frature extendsfrom the injetor to the rosswell plane.The di�erene tomogram (Figure 150 indiates that a veloity derease of over10% is assoiated with the injetion of CO2. However, due to equipment hanges thegeometry of the two experiments, in partiular the soure-reeiver loations and henethe ray overage, hanged signi�antly (Figure 12). Thus, some portion of the veloityhange between the boreholes may be due to di�erenes in survey geometry and not



15simply due to hanges in uid saturation and pressure. It would be useful to estimatethose hanges that are required in order to math the post-injetion arrival time data.In order to determine veloity hanges that are required to math the observations, Iemploy the methodology desribed above. Spei�ally, I begin with the model produedby an inversion of the post-injetion travel time data (Figure 14b). Then, I �nd themodel whih �ts the data equally well but is as lose as possible to the pre-injetionveloity model (Figure 14a). Thus, I employ the updating sheme of equation (32) where� is the pre-injetion slowness model (Figure 14a). A value of 0.025 is used for " inequation (32). In 15 iterations the squared model norm R(a) in equation (31) is reduedfrom 500.5 to 353.9, as shown in Figure 16. By the �nal iteration there is relatively littlehange in R(a), as n � vi tends to zero. The hange in veloities are shown in Figure17 for iterations 5, 10 and 15. The large amplitude, low-veloity feature in the initialpost-injetion result (Figure 14b) disappears. The lower-most region is haraterizedby lower veloities while generally higher veloities are found in the entral and upperportion of the rosswell region. The low-veloity anomaly, whih is notable in the �fthiteration, appears to spread downward and derease in amplitude as the iterationsproeed.The di�erene tomogram is omputed by subtrating the pre-injetion result (Figure14a) from the �nal post-injetion model, the 15th iteration in Figure 17. The resultingveloity hange is shown in Figure 18. Overall, the large-sale pattern of veloity hangeis roughly similar to the di�erene tomogram in Figure 15. In partiular, signi�antveloity derease is assoiated with the projetion of the upper-most injetion port(indiated by the largest �lled square in Figures 15 and 18). Furthermore, some veloityderease is found along what appears to be an interseting fault in the upper-mostportion of the two tomograms. However, there are two signi�ant di�erenes in theamplitude and the detailed spatial distribution of veloity hange. First, the veloityderease around the CO2 injetion interval has a signi�antly lower amplitude and isskewed to the right in the new di�erene tomogram. Seond, the low veloity anomalyassoiated with the dipping fault is more signi�ant in the new model. Note that bothmodels �t the observations equally well (Figure 19).Disussion and ConlusionsFaed with a non-linear inverse problem it is ommon pratie to simply �nd asingle solution whih �ts the data in some sense. The next step is to �nd the modelparameter ovarianes assoiated with a linearization of the inverse problem. Neitherquantity provides an appreiation of the true variability whih is possible in the solutionssatisfying the non-linear inverse problem. As shown in this paper, for under-determinedinverse problems, it is possible for model parameters to hange substantially and still



16�t the observations. To date, there has been little disussion onerning the possiblevariation in non-linear inverse problems that has not involved some type of linearization.In Vaso (1998) a homotopy approah is used to examine the variation due to hangesin the weight given to regularization penalty terms in the inversion. In this algorithmthe solution is ontinuously deformed as the regularization weight is varied. Themethod is useful in onstruting trade-o� urves for the non-linear inverse problem anddetermining the regularization penalty weight. In Mosegaard and Tarantola (1995) asampling algorithm is used to generate a large olletion of models aording to theposterior probability distribution. This olletion of models may be used to explore therange of possible solutions. However, the posterior distribution does depend on whih apriori information is used in solving the inverse problem.In the present paper the �t to the data is maintained while the solution is modi�edin order to minimize or maximize some aspet of the model. This approah is quitegeneral and may be used to minimize model roughness, to minimize the di�erenebetween the solution and a prior model, as well as to �nd bounds on model parameters.While I have applied the method diretly to the onstraint equations de�ned by theforward problem, it is possible to work with the normal equations of a least squaresformulation. Furthermore, Lie group methods an be applied to the general ontinuousproblems involving di�erential and integral equations (Olver 1986). As suh, it ispossible to treat ontinuous inverse problems diretly, without resorting disretization atthe outset, as in Vaso (1997). Finally, though the fous of this paper has been on thedeterministi approah to inverse problems, Lie group methods should also prove usefulin stohasti treatments. For example, group methods ould be used to haraterize theinvariane or symmetry assoiated with a given probability density funtion.The appliation to the eikonal equation and rosswell tomography illustrates theLie group approah. In the formulation both the travel times �elds assoiated witheah soure and the slowness �eld are treated as unknowns. There are advantagesand disadvantages assoiated with suh a treatment. There is greater exibility andinsight when one treats the travel time �elds as additional unknowns. For example, it ispossible to impose spatial roughness penalties diretly on the travel time �elds ratherthan on the slowness distribution. This makes physial sense beause one would notexpet that the slowness must vary smoothly between a soure and reeiver. There maybe disontinuities due to layering and faults. However, the travel time �eld must varyontinuously in the sub-surfae. Thus, it is more appropriate to require the travel timevariables to vary smoothly and let the slowness ontain disontinuities. In addition, forsome inverse problems, suh as waveform inversion one may have onstraints on theenergy in the wave�eld. For example, for an arti�ial soure, the wave�eld energy annotexeed the input energy. Therefore, one an bound the energy in the �eld variables,further onstraining the inverse problem. There is additional insight when one inludes



17both slowness and travel time �elds as unknown parameters. For example, it is easy tounderstand the level of non-uniqueness by ounting the total number of equations (16)and the total number of unknowns (17). The primary drawbak of inluding the �eldvariables, suh as the travel time �elds, is omputational. By inluding a ompletelynew set of variables with eah soure, the number of unknowns inreases rapidly withproblem size (number of grid bloks).The utility of the approah is demonstrated by an appliation to a pair of rosswellseismi surveys onduted at Lost Hills, California. The appliation to atual �elddata illustrates that the algorithm is pratial and works in the presene of noise. Theappliation to pre- and post-injetion rosswell observations suggests there must be aderease in seismi veloity in the inter-well region due to CO2 injetion. That is, it isnot possible to �t the post-injetion observations without some derease in veloity nearthe primary injetion interval. Furthermore, there is a suggestion that the intersetingfault may at as a onduit for the migration of CO2 in the subsurfae. However, themagnitude of the veloity hange along the fault an vary substantially and whileremaining ompatible with the data.Aknowledgments.This work was supported by the Assistant Seretary, OÆe of Basi Energy Sienes ofthe U. S. Department of Energy under ontrat DE-AC03-76SF00098. All omputations werearried out at the Center for Computational Seismology and the National Energy ResearhComputing (NERSC) Center, Berkeley Laboratory.
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20Figure 1. Referene slowness model used to generate travel times for a syntheti test.The �ve soures are denoted by stars at the left side of the model. The fourteen reeiversare denoted by �lled squares and are found on the right-hand-side of the model. Thegrey-sale represents the slowness variation in the rosswell region.
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22Figure 2. Three travel time �elds assoiated with soures 1, 3, and 5. The ontoursand grey-sale display the travel time �elds for the three soures and the model shownin Figure 1.
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24Figure 3. (Left) Unit vetors in the diretion of the gradient of the travel time �eldassoiated with soure 3. (Right) The square root of the magnitude of the gradientvetors.
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26Figure 4. Singular values assoiated with a singular value deomposition (SVD) of thematrix P in equation (23).
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27Figure 5. Three singular vetors orresponding to the SVD of the matrix P. Theomponents of the 1st, 6th, and 25th singular vetors orresponding to the arrival time�eld of soure 1, u1, and the square of the slowness �. The magnitude of the vetoromponents are plotted in the ells to whih they orrespond. The grey-sale denotesthe magnitude of eah omponent.
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29Figure 6. Grey-sale plot of seleted omponents of the singular vetor assoiated withthe largest singular value. The omponents orrespond to the 1st, 3rd, and 5th soures,u1, u3, and u5, respetively.
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31Figure 7. Three null vetors orresponding to the SVD of the matrixP. The omponentsof the 1st, 50th, and 100th null vetors orresponding to the arrival time �eld of soure1, u1, and the square of the slowness �. The grey-sale denotes the value, plotted in theell that orresponds to the partiular vetor omponent.
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33Figure 8. A plot of the funtion R(a) = (x0��)T � (x0��) as a funtion of the numberof iterations, where � is assoiated with a uniform bakground value of 0.61 s/km.



34Figure 9. The slowness distribution after 0, 4, 8, and 16 updates. The updates, given a-ording to equation (32), are designed to minimize the funtion R(a) de�ned by equation(31).
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36Figure 10. Calulated travel times plotted against referene travel times after 0, 4, 8,and 16 updates. For a perfet math to the syntheti values the points would lie on thesolid diagonal line.
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38Figure 11. Layout of the monitoring experiment at the Lost Hills oil �eld. The two�ber-glass ased observation wells (OB-C1 and OB-C2) are denoted by �lled squares.The injetion well 11-8WR is denoted by an open irle.
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40Figure 12. Ray overage for the pre- and post-injetion rosswell seismi surveys. Thegrey-sale depits the ray density, the number of rays per ell, in the interwell region.
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41Figure 13. Plot of travel times as a funtion of soure and reeiver o�set. The openirles are the observed travel times and the �lled squares are the travel times alulatedusing a uniform veloity model (1.72 km/s).



42



43Figure 14. Veloity variations whih resulted from an inversion of pre- and post-injetionarrival time data. The heterogeneity is plotted as deviations from a uniform bakgroundveloity of 1.72 km/s.
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45Figure 15. A di�erene tomogram representing veloity hanges whih ourred duringthe injetion of CO2. The di�erene tomogram is formed by simply subtrating the pre-injetion veloities from the post-injetion veloities. Three injetion points, signifyingthe loations of injetion intervals in well 11-8WR in Figure 11, are indiated by the �lledsquares. The well 11-8WR is approximately six meters out of the plane ontaining theobservation wells. The size of eah square is proportional to the volume of injeted CO2.
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47Figure 16. A plot of the variation of R(a) = (x0 ��)T � (x0 ��) as a funtion of thenumber of iterations. The model � orresponds to the pre-injetion veloity variationshown in Figure 14a. In essene, I am trying to make the post-injetion veloity modelresemble the pre-injetion veloity model. Stated another way, I am trying to make thedi�erene tomogram as small as possible while satisfying the observations.
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49Figure 17. Post-injetion veloity deviations from a uniform bakground value 0f 1.72km/s. The veloity deviations orrespond to the 5th, 10th, and 15th iterations of the Liegroup algorithm. The updates are given by equation (32), as disussed in the text.
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51Figure 18. The di�erene tomogram obtained by subtrating the pre-injetion modelshown in Figure 14a from the post-injetion model whih resulted from the Lie groupalgorithm. The �nal post-injetion model is the 15th iteration, shown in Figure 17.
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53Figure 19. The initial and �nal travel time mathes for the Lost Hills post-injetioninversion. The travel times alulated using the initial (Figure 14b) and �nal (Figure 17)post-injetion models of the iterative algorithm.
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