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Abstract

A new direct constrained optimization algorithm for minimizing the Kohn-Sham
(KS) total energy functional is presented in this paper. The key ingredients of this
algorithm involve projecting the total energy functional into a sequences of sub-
spaces of small dimensions and seeking the minimizer of total energy functional
within each subspace. The minimizer of a subspace energy functional not only pro-
vides a search direction along which the KS total energy functional decreases but
also gives an optimal “step-length” to move along this search direction. A numerical
example is provided to demonstrate that this new direct constrained optimization
algorithm can be more efficient than the self-consistent field (SCF) iteration.

Key words: electronic structure calculation, total energy minimization, nonlinear
eigenvalue problems, constrained optimization

1 Introduction

One of the fundamental problems in electronic structure calculations is to
minimize the Kohn-Sham (KS) total energy functional with respect to elec-
tron wave functions. Currently, the most widely used approach for solving this
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minimization problem is to apply the so called Self Consistent Field (SCF)
iteration to the nonlinear equation derived from the first order necessary op-
timality condition. In each SCF iteration, one must compute approximations
to a few smallest eigenvalues and their corresponding eigenvectors of a large
matrix (Hamiltonian).

Methods for minimizing the total energy directly have been examined in the
past (Kresse & Furthmüller 1996a; Gillan 1989; Teter 1989; Payne et al. 1992;
Pfrommer et al. 1999; Voorhis & Head-Gordon 2002; Bendt & Zunger 1982).
These methods construct a search direction based on the gradient of the total
energy, and perform some type of line search along that direction in order to
determine an optimal step length. The difficulty with these approaches is that
the line search strategy must take into account the orthonormality constraints
imposed on the wave functions. Due to this difficulty, the minimization algo-
rithms developed in the past could be slower than SCF by a factor of 1.5 to
10 (Kresse & Furthmüller 1996a).

In this paper, we show that direct minimization of the KS functional can be
made more effective than the SCF algorithm. Instead of using a simple line
search strategy, we project the total energy into a subspace from which an
optimal search direction and step length are determined simultaneously by
solving a smaller nonlinear eigenvalue problem. In our approach, the optimal
wave functions are determined simultaneously rather than “band-by-band”.
The orthonormality constraint of these wave functions is automatically satis-
fied by the solution to the small nonlinear eigenvalue problem.

2 Mathematical background

In this section, we establish the mathematical notation required to describe a
new constrained optimization algorithm. We begin with the continuous formu-
lation of the optimization problem, and establish the finite-dimensional analog
in terms of linear algebra notation.

Following the notation established in (Goedecker & Scuseria 2003), we de-
note the i-th electron wave function by ψi(r), where r represents the (three-
dimensional) spatial coordinates. We denote the electron charge density by
ρ(r). It is defined by

ρ(r) =
k

∑

i=1

|ψi(r)|
2,

where k is the number of occupied states.

2



The KS total energy functional consists of several components, i.e.,

Etotal({ψi}) = Ekinetic + Eion + EH + EXC , (1)

where Ekinetic is the kinetic energy, Eion, EH and EXC are potential energies
induced by the electron-ion interaction (ionic potential), the electron-electron
interaction (Hartree potential) and the exchange correlation potential respec-
tively.

The kinetic energy of the atomistic system is defined by

Ekinetic = −
1

2

k
∑

i=1

∫

ψ̄i(r)∇
2ψi(r)dr,

where ∇2 is the Laplacian operator, and ψ̄ is the complex conjugate of ψ.

The ionic potential energy consists of a local and a non-local term. The local
term can be expressed by

Eion(local) =
∫

Vion(r)ρ(r)dr,

where Vion(r) represents some local ionic potential function. The contribution
from the non-local term is defined by

Eion(nonlocal) =
k

∑

i=1

∑

ℓ

[
∫

ψ̄i(r)wℓ(r)dr
]2

,

where wℓ(r) denotes a pseudo-potential reference projection function.

The Hartree potential, defined by

VH(r) =
∫

ρ(r′)

r − r′
dr′,

is used to model the classical electrostatic average interaction between elec-
trons. Its contribution to the total energy is defined by

EH =
1

2

∫

VH(r)ρ(r)dr.

The exchange correlation function ǫxc is used to model the non-classical and
quantum interaction between electrons. The potential energy induced by this
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function is defined by

EXC =
∫

ǫxc(ρ(r))dr.

It is important to note that the minimization of the total energy (1) must be
carried out under the orthonormality constraint

∫

ψ̄i(r)ψj(r)dr = δi,j.

In the following discussion, we will use AT to denote the transpose of a matrix
A, and A∗ to denote the complex conjugate of A. A submatrix of A consisting
of rows i through j and columns p through q will be denoted by the notation
A(i : j, p : q). If the submatrix contains all rows (columns) of A, it will be
denoted by A(:, p : q) ( A(i : j, :) ).

With an appropriate discretization scheme, the electron wave function ψi(r)
can be approximated by a vector xi ∈ Cn, where n is the spatial degree of
freedom, i.e., the number of real space grid points. If we let X = (x1, x2, ..., xk),
then the charge density associated with the k occupied states can be expressed
by

ρ(X) = diag(XX∗),

where diag(A) denotes a column vector consisting of diagonal entries of the
matrix A.

Under the same discretization, the Laplacian operator∇2 can be approximated
by a Hermitian matrix L ∈ C

n×n. The discretized local ionic potential can be
represented by a diagonal matrix Dion, and the discrete form of the Hartree
potential can be represented by the product of a Hermitian matrix S ∈ Cn×n

with ρ(X).

Using the notation established above, we can express the discrete form of
various components of the total energy (1) by

Ekinetic =
1

2
trace(X∗LX), (2)

Eion(local) =trace(XDionX
∗), (3)

Eion(nonlocal) =
∑

i

∑

ℓ

(

x∗iwℓ

)2

, (4)

EH =
1

2
ρ(X)TS ρ(X), (5)
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EXC = eT

(

ǫxc[ρ(X)]
)

, (6)

where e is a column vector of ones.

Once discretized, the minimization problem becomes

min Etotal(X)

s.t. X∗X = Ik,
(7)

where Ik denotes a k × k identity matrix.

The Lagrangian associated with (7) is

L(X) = Etotal(X)− trace
[

ΛT (X∗X − Ik)
]

, (8)

where Λ is a k×k matrix containing the Lagrange multipliers associated with
the constraints specified by X∗X = Ik.

The solution to (7) must satisfy the first order necessary condition

∇XL(X)= 0, (9)

X∗X = Ik.

Here, ∇XL represents an n × k matrix whose (i, j)-th entry is the partial
derivative of L with respect to the (i, j)-th entry of X.

It is easy to verify that

∇XEkinetic =
1

2
LX, (10)

∇XEion(local) =DionX, (11)

∇XEion(nonlocal) =
∑

ℓ

(wℓw
∗

ℓ )X, (12)

∇XEH =Diag(Sρ(X))X, (13)

∇XEXC =Diag(µxc(ρ))X, (14)

where

µxc(ω) ≡
dǫxc(ω)

dω

is the derivative of the exchange-correlation function. Here the notation Diag(ρ)
represents a diagonal matrix whose diagonal is determined by the vector ρ,
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and we scaled (10) -(14) by 1/2 to be consistent with the convention used in
the electronic structure community.

Substituting (10) - (14) into (9), we obtain the Kohn-Sham equation

[

1

2
L+Dion +

∑

ℓ

wℓw
∗

ℓ + Diag(Sρ) + Diag(µxc(ρ))
]

X =XΛk, (15)

X∗X = Ik. (16)

Because the vector ρ in (15) depends on X, the eigenvalue problem defined
by (15) is nonlinear. Note that the solution to (7) is not unique. If X is a
solution, then XQ is also a solution for some Q ∈ Ck×k such that Q∗Q = Ik.
That is, the solution to the constrained minimization problem or, equivalently,
the nonlinear equations (15) is a k-dimensional invariant subspace in Cn rather
than a specific matrix. In particular, Q can be chosen such that Λk is diagonal.
In this case, X consists of k Kohn-Sham eigenvectors associated with the k
smallest eigenvalues of (15).

3 The Self-Consistent Field Iteration

The most widely used method for computing the wave functions associated
with the minimum total energy is the so-called Self Consistent Field (SCF)
iteration, which corresponds to a fixed point iterative scheme applied to the
Kohn-Sham equation (15). Given an initial guess of X, say X(0), one forms
the discrete Hamiltonian,

H(1) =
1

2
L+Dion +

∑

ℓ

wℓw
∗

ℓ + Diag(Sρ(X(0))) + Diag(µxc(ρ(X
(0)))),(17)

and computes eigenvectors X(1) associated with the k smallest eigenvalues of
H(0). These eigenvectors defines a new Hamiltonian H(2). In the basic version
of the SCF iteration, the difference between ρ(X(i−1)) and ρ(X(i)) is examined
at each step to determine whether the iteration should be terminated. If the
change in the charge density remains large, the eigenvectors associated with
the k smallest eigenvalues of H(i) are computed, and this process continues
until the ‖ρ(X(i−1)) − ρ(X(i))‖ becomes negligibly small. In this case, X(i)

consists of a set of wave functions that are self-consistent with respect to the
KS equation (15).

For completeness, we outline the major steps of the basic version of a SCF
calculation in Figure 1. Depending on the discretization scheme used, it may
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SCF Iteration

Input: The matrices L, Dion, S, the vectors wℓ, ℓ = 1, 2, .... The
derivative of the exchange-correlation function µxc(x); an
initial guess X(0) for the optimal wave function X ∈ Cn×m;

Output:X ∈ Cn×m such that X∗X = Im and Etot(X) is minimized,
where Etot(X) is defined by (10) - (14).

1. for i = 1, 2, ... until convergence

2. Form H(i) = H(X(i−1));

3. Compute X(i) such that H(i)X(i) = X(i)Λ(i), and Λ(i) con-
tains

the k smallest eigenvalues of H(i);

4. end for

Fig. 1. The SCF iteration

not be necessary or possible to form the Hamiltonian H (i) explicitly in the
SCF calculation. This is particularly true when the continuous problem is
discretized by a spectral method using a plane wave basis. In that case, H (i)

only exists in the form of matrix vector multiplication procedure.

For large-scale problems or problems in which H(i) cannot be formed explic-
itly, it is usually not feasible to solve the linear eigenvalue problem H (i)X(i) =
X(i)Λ(i) by using a QR (Francis 1961; Francis 1962) type of eigensolver. It-
erative methods such as the Lanczos (Lanczos 1950), preconditioned conju-
gate gradient (Hestenes & Karush 1951) or a Jacobi-Davidson type of method
(Sleijpen & Van der Vorst 1996; Davidson 1975; Olsen et al. 1990) are more
appropriate in this setting.

The major computational cost of the SCF scheme is in solving a linear eigen-
value problem at Step 3 in each iteration. Because the condition number of
H(i) is typically large (> 106), and the eigenvalues of interest are typically
clustered at the low end of the spectrum, solving such an eigenvalue problem
can be extremely challenging. In the materials science community, the com-
mon practice for computing the desired eigenvalues of H (i) is to apply a pre-
conditioned conjugate gradient algorithm to minimize the Rayleigh Quotient
u∗H(i)u/u∗u. Eigenvalues are often computed one at a time, and standard
deflation techniques are employed to ensure the computed eigenvectors are
mutually orthogonal.
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Although an SCF iteration is often viewed as a fixed-point iteration, one can-
not write down an explicit mapping from X(i−1) to X(i) even if the linear
eigenvalue problem

H(i)X(i) = X(i)Λ(i), (18)

can be solved exactly. Therefore, it is somewhat difficult to analyze the conver-
gence of the SCF iteration using the standard theory for a fixed point iteration
without making certain assumptions.

Although the basic SCF iteration works on some problems, it tends to fail for
most large systems. In practice, a modified scheme in which a mixture of H (i)

andH(i−1) is used to replace H(i) in Step 2 of the algorithm is much more effec-
tive. This scheme is called charge or potential mixing (Kresse & Furthmüller 1996b;
Kresse & Furthmüller 1996a). Furthermore, charge mixing is often combined
with the use of the direct inversion of iterative subspace (DIIS) algorithm
proposed in (Pulay 1980; Pulay 1982) to accelerate the convergence of SCF.
However, there is no theoretical guarantee that these techniques will always
work. In fact, there are cases in which these techniques fail also.

4 A Constrained Optimization Algorithm for Total Energy Mini-

mization

The algorithm we present in this section aims at minimizing the KS total en-
ergy functional directly. This general approach has been discussed in a number
of papers (Gillan 1989; Teter 1989; Payne et al. 1992; Kresse & Furthmüller 1996a;
Voorhis & Head-Gordon 2002). In (Teter 1989; Payne et al. 1992), a conju-
gate gradient (CG) type of algorithm is used to minimize the total energy.
The minimization is carried out “band-by-band”, i.e., the total energy is min-
imized with respect to one wave function at a time. For the j-th band (wave-

function), the search direction p
(i)
j is generated from a linear combination of

the wavefunction x
(i)
j = X(i)ej and the residual

rj = H(i)x
(i)
j − x

(i)
j λj ,

where λj is the j-th eigenvalue of the projected Hamiltonian X(i)∗H(i)X(i).
Note that rj is simply the j-th column of the gradient matrix ∇XL(X(i)).

Similar to a standard CG algorithm, the linear combination of x
(i)
j and rj is

chosen so that p
(i)
j is H(i)-conjugate to the previous search direction p

(i−1)
j . The

new wavefunction x
(i+1)
j is then computed by minimizing the KS total energy in

the subspace spanned by x
(i)
j and p

(i)
j . To simplify this minimization problem,
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p
(i)
j is first orthogonalized against x

(i)
j and normalized so that ‖p

(i)
j ‖ = 1. The

new wavefunction is parameterized by

x
(i+1)
j = x

(i)
j cos θ + p

(i)
j sin θ,

where the optimal θ is obtained by a standard line search procedure. Instead
of using the KS functional to perform the line search, Teter et al. (Teter 1989)
proposed using a surrogate function that is cheaper to evaluate. However, this
approach was shown in (Kresse & Furthmüller 1996a) to be less efficient than
the SCF iteration. We believe this is primarily due to the ”band-by-band”
nature of the algorithm.

A constrained Quasi-Newton algorithm is used in (Voorhis & Head-Gordon 2002)
to minimize the total energy with respect to all wave functions (associated
with the occupied states) simultaneously. The algorithm first computes the
search direction via a limited-memory BFGS (Liu & Nocedal 1989) scheme,
the search direction is then modified through a parallel transport technique
(Edelman et al. 1998) to ensure that the orthonormality constraint X∗X = Ik
is satisfied in the line search procedure. It is reported in (Voorhis & Head-Gordon 2002)
that this constrained Quasi-Newton approach is generally slower than the SCF
iteration combined with DIIS extrapolation. It was also found that the opti-
mization procedure can sometimes be trapped at a local minima. It was con-
jectured that these problems are associated with the poor approximation to
the Hessian of the total energy function due to the large number of degrees
of freedom. However, there are cases in which the constrained Quasi-Newton
algorithm converges to the optimal solution while the SCF iteration fails to
converge.

The direct minimization algorithm we present here also seeks the optimal wave
functions associated with all occupied states simultaneously as in (Voorhis & Head-Gordon 2002).
However, we choose the search direction from a subspace that consists of the
existing wave functions X(i), the gradient of the Lagrangian (8) and the search
direction computed in the previous iteration. A special line search strategy is
developed to minimize the total energy within the search space while maintain-
ing the orthonormality constrained required for X(i+1). This strategy requires
us to solve a projected nonlinear eigenvalue problem as we will show below.

Let R(i) be the preconditioned gradient of the Lagrangian (8) with respect
to X evaluated at X(i), and let P (i−1) be the search direction obtained in the
i-1st iteration. In our algorithm, the wave function update is performed within
the 3k-dimensional subspace spanned by X(i), R(i) and P (i−1). If we let

Y = (X(i), R(i), P (i−1)),
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we can then express the new approximation, X(i+1), by

X(i+1) = Y G, (19)

where G ∈ C3k×k is chosen to minimize Ê(G) ≡ Etotal(Y G), i.e. we must solve

minGEtotal(Y G)

s.t. G∗Y TY G = Ik.
(20)

The first order necessary condition of (20) can be derived by examining the
gradient of Ê(G) with respect to G.

It is easy to verify that

∇GÊL(G)=
1

2
∇G

[

trace(G∗Y ∗LY G)
]

= (Y ∗LY )G, (21)

∇GÊV (G)=∇G

[

trace(G∗Y ∗DionY G)
]

= Y ∗DionY G, (22)

∇GÊW (G)=∇G

[

∑

i

∑

ℓ

(w∗

ℓY gi)
2
]

=
∑

ℓ

(Y ∗wℓ)(Y
∗wℓ)

∗G, (23)

∇GÊR(G)=
1

2
∇G

[

ρ(Y G)TSρ(Y G)
]

= Y ∗Diag
[

Sρ(Y G)
]

Y G, (24)

∇GÊX(G)=∇G

[

ǫxc(ρ(G))
]

= Y ∗Diag
[

µxc(ρ(Y G))
]

Y G. (25)

Again, (21) - (25) have been scaled by 1/2 to be consistent with the convention
used in the electronic structure community.

If we define

Ĥ(G) = Y ∗

[

1

2
L+Dion +

∑

ℓ

wℓw
∗

ℓ + Diag
(

Sρ(Y G)
)

+ Diag
(

µxc(ρ(Y G))
)]

Y,(26)

then, solving (20) is equivalent to solving
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Ĥ(G)G=BGΩk, (27)

G∗BG= Ik, (28)

where B = Y ∗Y and the k × k diagonal matrix Ωk contains the k smallest
eigenvalues of (27).

Note that the projected nonlinear eigenvalue problem defined by (27) and (28)
is much smaller than the nonlinear eigenvalue solved in an SCF iteration. The
reduction in size provides us with more flexibility in terms of the algorithms
we can choose to solve the nonlinear eigenvalue problem. For example, if we
apply an SCF iteration to compute the desired eigenpairs of (27) and (28), the
linear eigenvalue problem that emerges from each SCF iteration can be solved
by using the LAPACK (Anderson et al. 1992) implementation of the QR algo-
rithm (Francis 1961; Francis 1962). We may even apply a standard nonlinear
constrained minimization algorithm such as a sequential quadratic program-
ming technique (SQP) (Boggs & Tolle 1995) to (20) directly. Furthermore, it
should be noted that it is not necessary to solve equations (27) - (28) to full
accuracy in the early stage of the direct minimization process because all we
need is a G that yields sufficient decrease in the objective function within the
subspace spanned by columns of Y .

Once G is computed, we can update the wave function following (19). In
addition, we can compute the search direction associated with this update

P (i) ≡ X(i+1) −X(i)G(1 : k, :) = Y (:, k + 1 : 3k)G(k + 1 : 3k, :).

Because the solution to (27)-(28) ensures columns of X(i+1) are orthonormal,
there is no need to explicitly orthogonalize P (i) against X(i) in our algorithm.

A complete description of the constrained minimization algorithm is shown in
Figure 2. We should point out that solving the projected optimization problem
in Step 6 of the algorithm may require us to evaluate the projected Hamilto-
nian (26) repeatedly as we search for the best G. However, since the first three
terms of Ĥ do not depend on G, they can be computed and stored in advance.
Only the last two terms of (26) need to be updated. These updates requires
the charge density, the Hartree and the exchange-correlation potentials to be
recomputed.

5 Numerical Example

In this section, we compare the performance of the direct constrained mini-
mization (DCM) algorithm presented in the previous section with that of the
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Algorithm: A Constrained Minimization Algorithm for Total Energy Mini-
mization

Input: An initial set of wave functionX(0) ∈ C
n×k; the matrices L,Dion,

S; the vectors wℓ, ℓ = 1, 2, .... The derivative of the exchange-
correlation function µxc(x); a preconditioner K;

Output:X ∈ Cn×k such that the KS total energy functional Etotal(X) is
minimized and X∗X = Ik.

1. Orthonormalize X(0) such that X(0)∗X(0) = Ik;

2. for i = 0, 1, 2, ... until convergence

3. Compute θj = eT
j X

(i)∗H(i)X(i)ej, j = 1, 2, ..., k;

4. Compute R = K−1

[

H(i)X(i) −X(i)D
]

,

where D = Diag(θ1, θ2, ..., θm);

5. if (i > 1) then

Y ← (X(i), R, P (i−1))

else

Y ← (X(i), R);

endif

6. B ← Y ∗Y ;

7. Find G ∈ C2k×2k or C3k×3k that minimizes Etotal(Y G)

subject to the constraint G∗BG = I;

8. Set X(i+1) = Y G;

9. if (i > 1) then

P (i) ← Y (:, k + 1 : 3k)G(k + 1 : 3k, :);

else

P (i) ← Y (:, k + 1 : 2k)G(k + 1 : 2k, :);

endif

10. end for

Fig. 2. A Direct Constrained Minimization Algorithm for Total Energy Minimization
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SCF iteration implemented in the software package PEtot (Wang) through a
numerical example. In PEtot, ψi(r) is discretized by a spectral method us-
ing plane waves as the basis. These basis functions are eigenfunction of the
Laplacian operator (L) associated with the kinetic energy of the atomistic
system. Thus, PEtot stores only the Fourier coefficients of each wave function
xj = Xej instead of xj itself so that y ← Lxj can be carried out in O(n)
floating point operations (flops) in the frequency domain. However, because
the potential terms of the Hamiltonian (with the exception of the non-local
ionic potential) are diagonal in the spatial domain, PEtot converts the Fourier
space representation of xj into the real space representation before operations
involving these potential terms are performed. The complexity of this conver-
sion is O(n log n) when it is carried out by a Fast Fourier Transform (FFT).

We measure the convergence of both algorithms by examining the relative
reduction of the total energy computed in each outer iteration. The relative
reduction is evaluated by

∆Ei = Etotal(X
(i))−Emin,

where Emin is a lower bound of the total energy.

The computational cost of both the SCF and DCM is estimated by the number
of matrix vector multiplications y ← H(i)x performed in these two algorithms.
To illustrate that this is a reliable measure when k ≪ n, we also provide the
timing measurements. Our computation is performed on a single node of the
IBM SP maintained at NERSC. Each IBM SP node contains 16 Power3 CPUs
and 16 GB memory. Each Power3 CPU runs at a 375Mhz clock speed, and
has 2 MB L2 cache. Both SCF and DCM are parallelized using MPI. We used
the IBM math library ESSL for dense matrix and FFT calcluations.

In a PEtot SCF iteration, the linear eigenvalue problem (18) is solved by
applying a preconditioned conjugate gradient (PCG) algorithm to minimize
the Rayleigh quotient x∗H(i)x/x∗x. Explicit deflation is put in place to ensure
the convergence of the smallest k eigenpairs. Each PCG iteration requires a
single matrix vector (MATVEC) multiplication followed by a preconditioning
operation. When n is sufficiently large, the complexity of each MATVEC is
dominated by the cost of the FFT calculation used to convert the Fourier space
representation of xj to the real space representation. The Laplacian operator
L is used as the preconditioner. Because it is diagonal in the frequency space,
the cost of preconditioning is relatively small compared to a MATVEC. If m
PCG iterations are taken on average to compute an approximate eigenpair of
(18), then the total number of MATVECs used per SCF iteration is m× k.

In the direct constrained minimization (DCM) algorithm, k MATVECs are
performed in each outer iteration to compute the gradient. The inner iteration
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does not require a full MATVEC in the form of y ← H (i)x. However, the
update of the projected Hartree potential at each inner iteration requires us
to compute Sρ(Y G). Because S is the inverse of L, this calculation is typically
carried out by a fast Poisson solver. The complexity of this computation is
approximately O(n log n), which is equivalent to a single MATVEC used in
the SCF iteration asymptotically. Thus, if p inner SCF iterations are taken in
the DCM algorithm, the total number of MATVECs used per DCM iteration
is k + p.

We should point out that both the SCF and the DCM algorithms perform an
additionalO(n·k2) operations in each inner iteration. In SCF, these operations
were used to maintain the orthogonality of the Fourier representation of xj .
In DCM, these operations were used to update the charge density ρ(Y G) and
to compute the projected potential term

Y ∗

[

Diag
(

Sρ(Y G) + µxc(ρ(Y G))
)]

Y.

The cost of these operations is relatively small compared to that associated
with FFT when n≫ k. However, when k becomes a significant fraction of n,
the cost of these calculations cannot be ignored.

We applied both algorithms to a simple SiH4 test problem. The problem is
discretized on a 32× 32× 32 real space grid. The number of plane wave basis
functions used in the Fourier representation is 2103. The number of occupied
states for this molecule is k = 4.

In the SCF calculation, we set the convergence tolerance of each PCG run to
τ = 10−12 and the maximum number of PCG iterations allowed to 10. That
is, we terminate the PCG iteration when

‖H(i)x
(i)
j − λ

(i)
j x

(i)
j ‖ ≤ 10−12,

or when the number of PCG iterations taken reaches 10. In our experiment,
the PCG convergence tolerance was never reached before the maximum num-
ber of iterations were taken. Thus each outer SCF iteration consumed 4 ×
10 MATVECS. Both Pulay-Kerker and Pulay-ThomasFermi charge mixing
scheme were used in the outer SCF iteration to accelerate the convergence.

In DCM, the projected minimization problem was solved by applying a simple
SCF iteration (without charge mixing) to (27). We set the number of inner
SCF iterations to 3.

Figure 3 shows that both SCF and DCM reached the same total energy level
after 15 outer iterations. Clearly, DCM consumed a much smaller number of
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MATVECs. Furthermore, we observed that the reduction in total energy is
monotonic in DCM. In the PEtot version of SCF, the KS Hamiltonian was
not updated until the end of 4-th outer iteration. This was required to carry
out the charge mixing procedure for accelerating the convergence of SCF. As
a result, the total energy objective does not show significant improvement
between the 2nd and the 4-th outer iteration.
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Fig. 3. Comparing the convergence of SCF and DCM in terms of the number of
MATVECs performed.

Because the number of occupied states (k = 4) in SiH4 is relatively small,
both SCF and DCM are dominated by the FFT computation required in
each MATVEC. Hence, the MATVEC count shown in Figure 3 gives a good
measure of how the two methods compare in terms of computational speed.
In Figure 4 we plot the reduction of the total energy with respect to the wall
clock time used in both SCF and DCM. The figure shows that DCM is almost
4 times faster than SCF in terms of wall clock time.
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Fig. 4. Comparing the performance of DCM with SCF in terms of wall clock time.
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6 Concluding Remarks

A direct constrained minimization (DCM) algorithm for computing the ground
state total energy of a large scale atomistic system is presented in this paper.
The algorithm constructs a new search direction from the subspace S spanned
by the current approximation to the optimal wavefunction, the gradient of the
total energy and the previous search direction. The optimal search direction
and step length are computed by minimizing the total energy functional within
S subject to an orthonormality constraint. Solving this smaller optimization
problem is equivalent to solving a small nonlinear eigenvalue problem. In our
computational scheme, all wave functions associated with the occupied states
are updated simultaneously instead of “band-by-band”.

We compared the convergence of the DCM algorithm with that of the SCF it-
eration implemented in PEtot through a numerical example. We demonstrated
that DCM can be more efficient than SCF. Because DCM modifies the wave
functions associated with all occupied states simultaneously (a block algo-
rithm), we can make better use of the cache and memory in each MATVEC
thereby further improving the performance of the computation.

It is observed that neither DCM nor SCF requires each inner iteration to con-
verge to full accuracy in order to reach the optimal solution. In our numerical
experiment, we set the number of inner iterations in both methods to a fixed
number. However, this is clearly not the best strategy. More research is re-
quired to develop a more effective stopping criterion for the inner iteration in
both methods.

In our numerical experiment, the projected optimization problem (20) is solved
by applying a basic SCF iteration to (27). This simple scheme worked well for
the SiH4 system. However, it is conceivable that the inner SCF iteration may
fail to converge or fail to produce a sufficient reduction in the objective function
for other systems. It may be necessary to use the DIIS or other charge mixing
extrapolation scheme to improve the convergence of the inner iteration. It may
also be possible to replace the SCF iteration with a Newton type of algorithm
because of the small dimension of the projected problem.
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