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ABSTRACT 

 

This paper presents a reverse time migration (RTM) method for the migration of shot 

records in tilted transversely isotropic (TTI) media. It is based on the tilted TI acoustic 

wave equation that was derived from the dispersion relation. The RTM is a full depth 

migration allowing for velocity to vary laterally as well as vertically and has no dip 

limitations. The wave equation is solved by a tenth-order finite difference scheme. Using 

2D numerical models, we demonstrate that ignoring the tilt angle will introduce both 

lateral and vertical shifts in imaging. The shifts can be larger than 0.5 wavelength in the 

vertical direction and 1.5 wavelength in the lateral direction.    

 

Keywords:  tilted transversely isotropic (TTI) media, reverse-time migration (RTM).   

 

INTRODUCTION 

 

Field and theoretical studies show that many sedimentary rocks exhibit anisotropy.  

Ignoring anisotropy in migration may lead to large positional errors (Larner and Cohen, 

1993) or a complete loss of steeply dipping structures (Martin et al., 1992). In recent 

years several authors have developed migration algorithms for anisotropic media. The 

Kirchhoff method (Ball, 1995; Kendall et al., 2001; Grech et al., 2002) is the most 

popular method because it is fast, especially for 3D, there is no limit on the dip angle of 

the reflector, and it is robust compared to finite-difference techniques. However 

Kirchhoff migration has difficulties in complex geological structures where multipathing 



occurs. One-way wave equation methods (Ristow, 1998,1999; Le Rousseau, 1997) which 

image multiple arrivals properly through downward continuation of wavefields can 

sometimes produce more accurate images than Kirchoff methods (Uzcategui, 1995; 

Joncour et al., 2003). However, with one-way wave equation migration methods, 

approximations, such as steep-dip limit on finite difference methods or velocity 

simplification on mixed domain (Fourier domain) methods, have become so dominant 

that the artifacts caused by these approximations could overshadow the benefits of wave 

equation migration (Mulder; Plessix, 2003; Li, et al, 2003).  

 

      Verwest (1989) discussed finite difference migration for elliptically anisotropic 

media. Kitchenside (1993) developed finite difference schemes for transversely isotropic 

(TI) media. Ristow (1999) developed an implicit depth migration scheme for TI media 

based on optimizing the coefficients of finite difference equations. Uzcategui (1995) 

proposed an explicit finite difference scheme for VTI media with lateral and vertical 

variations of anisotropy. Le Rousseau (1997) extended the phase-shift-plus-interpolation 

method to TI media to accommodate lateral variations. An explicit finite difference 

scheme was extended to TTI media by Zhang et al. (2001) and Ferguson and Margrave 

(1998, 2002) used a symmetric non-stationary phase-shift (NSPS) to migrate TTI 

physical model data. Isaac et al. (1999) and Vestrum et al.( 1999, 2002) studied image in 

TTI media with Kirchhoff method.   

 

      A subset of wave equation migration methods is reverse time migration (RTM). RTM 

uses finite difference to solve the wave equation, but instead of extrapolating in depth, it 



solves the full acoustic or elastic wave equation by extrapolation in time, allowing waves 

to propagate in all directions (Baysal et al., 1983; McMechan, 1983; Whitmore,1983; 

Yoon et al., 2003; Youn et al., 1999, 2001). RTM is a boundary value method and can 

handle the topography naturally. There is no limit on velocity, dip or wave field type, and 

evanescent wave are handled correctly. Dong and McMechan (1993) proposed a 3-D 

prestack reverse time migration of compressional waves in anisotropic media. Recently 

Biondi and Shan (2002) found that RTM technique is very useful for imaging both 

overturned reflections and prismatic reflections in more complex models.    

 

      In this paper, we develop a P-wave RTM method for tilted transversely isotropic 

(TTI) media, and we investigate how tilt angle can effect image quality and positioning 

of reflections. Our RTM algorithm uses a new P-wave acoustic wave equation for TTI 

media (Zhang et al., 2003).     

 

THE ALGORITHM 

 

The procedure for prestack reverse-time migration for anisotropic media follows the 

corresponding algorithm for isotropic media. The difference is the use of an anisotropic, 

rather than an isotropic, wave equation for extrapolation of the data.  

      The anisotropic migration for a common shot dataset consists of three main steps: 

first, forward-propagated wavefields from the source to all grid points; second, 

backward-propagation of the reverse-time data records; third, application of the imaging 

condition.  



 

      The wavefields from the source are obtained by solving the acoustic wave equation in 

TTI media with a tenth-order finite difference scheme. Based on dispersion relation (by 

assuming shear velocity equal zero (Alkhalifah, 1998a, b)), we derived a 2D acoustic 

wave equation for P-wave in TTI media (Zhang et al., 2003): 
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V is the NMO velocity.  P is pressure. δ and ε are the Thomsen anisotropic parameters ( 

Thomsen, 1986). V is the vertical velocity. 
0P

φ is the title angle with respect to the vertical 

direction and a function of position( x, z). is the wavefield. Equation (4.1) assumes a 

constant density. These equations are fourth-order partial differential equations in t, x and 

z. In this study, the 10

F

th order in space and second order in time finite difference method 

(FD) is used to solve equations (1) and (2). The FD coefficients were obtained by the 



optimized method proposed by Rector et al (2002). The finite difference equations for 

equation (1) and (2) are: 
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where A is the right hand side of equation (1) with finite difference approximation to the 

spatial derivatives. The source is located at (  with the source time function .   ), ss zx )(ts

 

      Backward propagation of the recorded data is a boundary value problem. It starts 

from all receiver locations used for a single shot gather, with the recorded traces in the 

reverse time direction. The backward propagated wave fields are implemented by solving 

the equations:        
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At each time step during reverse time extrapolation, the imaging condition is applied by 

extracting the amplitudes at all grid points that satisfy the imaging condition at that time. 

The standard imaging condition for prestack reverse time migration is based on the 

crosscorrelation in time of the source wavefield (S) with the receiver wavefield (R). For 

multiple sources the imaging condition would be: 
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where I(x,z) is the migration image value at point (x,z);  and  are the forward and 

reverse-time wavefields at point (x,z) for the s-th source. Equation (5) is a zero-lag 

correlation. For each shot, the source and receiver wavefield are multipled together at 

each grid point at each time step and the result is added to an image plane. The image 

plane is summed over all the time steps and sources. Common image gathers (CIGs) can 

be computed by (Biondi and Shan, 2002): 
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 where  is a subsurface offset. Equation (6) has potential application to velocity 

analysis. If we use the correct velocity the energy calculated by equation (6) in CIGs will 

focus on zero-offset. 

hx

 

Prior to reverse time extrapolation of the recorded common-shot wavefields, some 

preprocessing is required. This includes muting of the first-break to avoid the associated  

low-wavenumbers artifact, tapering at the time and space edges of the data to reduce 

artifacts associated with finite recording aperture, and reversal of the time axis.  

 

 

 



 

 

SYNTHETIC DATA EXAMPLES 

 

In this section, numerical examples are presented to illustrate and evaluate the prestack 

migration algorithm in a variety of anisotropic situations. Some previous papers have 

shown the effect of anisotropy on migration (Isaac, et al. 1999; Vestrum et al., 

1999,2002). In our research we use numerical examples to illustrate distortion of the 

migrated images when data from TTI media are migrated assuming VTI or isotropy so 

that we can see how the tilt angle and anisotropy affects on migration.  

 

      Figure 1 shows a four-layer velocity model. The second layer is a tilted TI medium 

with V =2945 m/s, ε=0.24, δ=0.1 and tilt angle φ=300P
0. We use the tenth-order finite-

differencing to generate a 16 common shot dataset. The central frequency of wavelet is 

20Hz.  A 500×360 regular grid with 10 m spacing in both x and z directions was used. To 

evaluate the quality of the migration, Figure 2 shows the zoomed depth image with our 

reverse time migration using the correct velocity model. We can image the structures 

accurately and there are no obvious artifacts. Offset-domain CIGs (Figure 3) show that 

the image is nicely focused at zero-offset. In contrast, the zoomed depth image and CIGs 

of the corresponding shot gathers obtained using VTI are shown in Figures 4 and 5. 

Differences observed between Figure 2 and Figure 4 are attributed only to tilt angle 

difference between the VTI and TTI. Neglecting the tilt angle, the interfaces beneath the 

anisotropic layer are moved up 64 m vertically and an imaged step is shifted about 210 m 



laterally. This corresponds to 0.5 and 1.5 wavelength shifts in the vertical and horizontal 

directions, respectively. Figure 5 shows that the energy focused at zero-offset is not as 

good as that in Figure 3. Therefore the VTI migration introduces the artifacts in Figure 4. 

Figures 6 and 7 show the zoomed depth image and CIGs obtained by isotropic velocity 

model. In Figure 6, the vertical shift is 80 m and lateral shift is approximately 220 m. The 

energy can not be focused at zero-offset as shown in Figure 7 and the focusing in Figure 

7 is worse than that in Figure 5. As a result, the migration with the isotropic model 

(Figure 7) has more artifacts than that obtained by the VTI model (Figure 6).  In both the 

VTI and isotropic models, the vertical velocity is less than the true vertical velocity in 

TTI model. Therefore it causes the vertical shift of the imaging step under anisotropic 

layer. In addiction, as we used the wrong horizontal velocity for anisotropic layer, the 

imaged step also has a lateral shift. Figures 8 and 9 show the imaged and CIGs using the 

isotropic model with the correct vertical velocities. No vertical shift is observed but a 

lateral shift still exists. This situation may happen in real data because we may estimate 

Vnmo closer to the true Vnmo.  

 

 

 

 

 

 

 

 



 

 

 

Figure 1. Velocity model. The second layer is a tilted TI medium with tilt angle 300. 

 

 

Figure 2. Reverse time migration with the TTI velocity model. The red lines are the 

correct boundary position. 



 

Figure 3. Offset-domain CIGs at 1500 m and 2500 m. 

 

 

Figure 4.  Reverse time migration with the VTI model. The red lines are the correct 

boundary position. 



 

Figure 5. Offset-domain CIGs at 1500m and 2500m with the VTI model. 

 

Figure 6.  Reverse time migration with isotropic model. The red lines are the correct 

boundary position. 



 

 

Figure 7. Offset-domain CIGs at 1500 m and 2500 m with the isotropic model. 

 

Figure 8.  Reverse time migration with the correct vertical velocity in the isotropic model. 

The red lines are the correct boundary position. 



 

Figure 9. Offset-domain CIGs at 1500 m and 2500 m with the correct vertical velocity in 

the isotropic model. 

 

 

       To study how η and φ effect migration, we use different η and φ to migrate the 

synthetic data. Figures 10 and 11 show the lateral and vertical shifts as function of the tilt 

angle φ  and η. The lateral and vertical shifts become larger when the errors in η and 

φ become larger. The maximum lateral and vertical shifts occur when we use an isotropic 

model to migrate the common shot gather dataset.   

 

 

 



 

Figure 10.  Lateral shifts (m) of the reflector at 1840 m as function of the tilt angle and η 

for the velocity model in Figure 1.  



 

Figure 11.  Vertical shifts (m) of the reflector at 1840 m as function of the tilt angle and η 

for the velocity model in Figure 1.  

 

       A more realistic model is shown in Figure 12. We assume that the tilt angles are 

normal to the lower interfaces. Synthetic 35 common shot gathers were generated by the 

tenth order finite-difference method with shot interval 500 m and receiver interval 25 m. 

The Thomsen parameters ε and δ vary from 0 to 0.25 and from 0 to 0.05, linearly from 

the sea bottom to the second interface. Below second interface ε=0.25 and δ=0.05. The 

minimum and maximum offsets are 0 m and 8000 m. Figures 13 and 14 show the images 

with true TTI and VTI velocity model, respectively. The true boundaries (red lines) are 

overlapped on the image. Figure 14 shows that the dipping boundaries can not be imaged 



well. To see the mispositioning due to ignoring the tilt angle more clearly, we enlarge 

part of the VTI image. Figure 15 shows the vertical and horizontal mispositioning that 

result from ignoring the tilt angle and the anisotropy.  The lateral and vertical shifts can 

be larger than 250 m from the true location.  

 

 

 

 

 

 

 

 

 

 



 

Figure 12. Vertical velocity model. 

 



Figure 13. Imaging with the correct TTI model. The red lines are the correct boundary 

positions. 

 

Figure 14. Imaging with the VTI model. The red lines are the correct boundary positions. 

 



 

                          Figure 15.  Imaging with the VTI model. The red lines are the correct 

boundary positions. 

 

 

 

 

 

 

 

 

 

 



 

CONCLUSIONS 

 

It was well-known that anisotropy can cause lateral and vertical mispositioning. In this 

research we investigate tilt angle effects on migration by comparing VTI and TTI image. 

Based on the acoustic TTI wave equation, we developed a reverse time migration 

algorithm. The RTM method uses shot gathers as input and produces a depth image. 

Therefore, all intermediate processing steps such as deconvolution, multiple suppression 

and other signal extraction or enhancement steps used in conventional processing are not 

required. It also can be applied in models with strong velocity contrasts.  

        

      Numerical examples demonstrate both the vertical and the horizontal mispositioning 

that result from ignoring the tilt angles. These vertical and lateral shifts depend on tilt 

angle and η . The shifts could be much larger than 1.5 wavelength when we use VTI 

velocity model to migrate a TTI dataset. The positioning errors become much bigger 

when an isotropic velocity model is used for the TTI datasets. The mispositioning is 

significant because it could lead to a serious mispositioning of well locations. 

 

      The computational cost of the new method, because of the increased complexity of 

the wave equation, is much more than that for the corresponding isotropic migration. To 

process the real data in 3D a new parameter estimation technique for TTI media and a 

parallel version of the RTM code are needed.      
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