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Abstract

Options being considered for the damping rings for the
International Linear Collider (ILC) include lattices with
circumferences of around 16 km. The circumference, beam
current and beam energy place the damping rings in a
regime where resistive-wall instability is a concern, partic-
ularly as there are very demanding tolerances on the bunch-
to-bunch jitter. Generally, it is possible to make good an-
alytical estimates of the coupled-bunch growth rates in a
storage ring, but particular features of the damping rings
make it desirable to study the coupled-bunch instabilities
using simulations. We present the results of simulations
(including a bunch-by-bunch feedback system) of the trans-
verse instabilities using a detailed lattice model.

ILC DAMPING RINGS

Damping rings are needed in the International Linear
Collider (ILC) to produce ultra-low emittance and highly
stable beams for acceleration in the main linac. Beam sta-
bility is critical to the luminosity and there are demand-
ing specifications on both the longitudinal and the trans-
verse bunch-to-bunch jitter for the beam extracted from the
damping rings: in the vertical plane, the specification on
the maximum bunch-to-bunch jitter is 0.01 pm. Beam jit-
ter can come from a wide variety of sources, including:
magnet vibrations; magnet power-supply ripple; pulse-to-
pulse amplitude variation in the extraction kickers; phase
noise on the RF system; collective effects such as instabil-
ities driven by resistive-wall wakefields and higher-order
modes in the RF cavities and vacuum chamber. Each of
these sources must be carefully considered.

One option presently being considered for the ILC
damping rings specifies a 16 km lattice storing 2820
bunches with charge 2×1010 particles, and roughly 20 ns
bunch separation [1]. With these parameters, coupled-
bunch instabilities driven by resistive-wall wakefields are
a potential concern. In the ILC damping rings, bunch-by-
bunch feedback systems will be needed to suppress both
longitudinal and transverse instabilities; the jitter that the
feedback systems can themselves cause (for example, be-
cause of limited resolution on the pickup, or because of
amplifier noise) could be a problem, particularly in the ver-
tical plane. It is therefore necessary to have a good under-
standing of the sources of the beam jitter, and the necessary
performance of the feedback system.
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In many cases it is possible to make reliable estimates
of the growth rates expected from the resistive-wall im-
pedance using analytical formulae. However, such esti-
mates rely on a number of simplifying assumptions that
are not necessarily valid in the case of the ILC damping
rings. In particular: the fill pattern will contain frequent
gaps for clearing ions or electron cloud; the internal diam-
eter of the vacuum chamber varies widely around the ring,
from 20 mm in the damping wigglers, to 80 mm in the long
straight sections; the beam is strongly coupled in the long
straights, to reduce space-charge effects; the average beta
functions vary widely between different parts of the lattice.
We have therefore developed a simulation code to study
coupled bunch instabilities taking full account of all these
effects, and including also the effects of synchrotron radi-
ation damping and the feedback system. In the following
sections, we compare some analytical estimates with sim-
ulation results. Since the most demanding stability spec-
ification is on the vertical beam jitter, we concentrate on
instabilities in the vertical plane: attention also needs to
be given to the horizontal and longitudinal degrees of free-
dom.

ANALYTICAL ESTIMATES

In the presence of a transverse impedanceZ1(ω), the
growth rate of theµ−th coupled-bunch mode is given by:
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wheree is the electronic charge,c is the speed of light,〈I〉
is the average current,ν is the betatron tune,E0 is the beam
energy. The impedance is evaluated at the frequencies:
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wherenb is the number of bunches in the ring, andω0 is
the revolution frequency. The resistive-wall impedance is
given by:
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whereZ0 is the impedance of free space,C is the circum-
ference of the ring,b is the vacuum chamber radius, and the
skin depthδskin is given for a vacuum-chamber conductivity
σ by:
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Using average values for the current, beta functions and the
vacuum chamber radius, we can estimate the growth rates
in the ILC damping rings, and find that the shortest growth
time in the vertical plane is 4.5 ms, or 85 turns.



COUPLED-BUNCH SIMULATION CODE

We have written a simulation code in C++ for modeling
(in the time domain) the effects of long-range wakefields.
The lattice is represented as a number of equally-spaced
slices, and the bunches are distributed between them. A
bunch is modeled as a single particle, so only coherent
dipole motion is represented, and decoherence effects are
not included. Tracking involves moving each bunch from
one slice to the next, with the change in co-ordinates de-
termined by the lattice functions and the wakefields at
each slice. A record is maintained of the bunches moving
through each slice, so the correct wakefield kick can be cal-
culated. Each bunch can have a different charge and energy
from other bunches in the ring. The processes performed
by the code are: symplectic tracking; radiation damping;
wakefield effects; effects of a bunch-by-bunch feedback
system.

Symplectic Tracking

The betatron co-ordinates of each bunch are stored in
action-angle form(Jx, φx, Jy, φy). Symplectic tracking
simply involves advancing the angle co-ordinates by the
phase advance, while keeping the action co-ordinates con-
stant.

Radiation Damping

Radiation damping is assumed to reduce the values of
the action co-ordinates of a bunch, while not affecting the
angle co-ordinates. IfτSR is the radiation damping time,
then in each time step∆t the action is reduced by:
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Wakefield Effects

The wakefield kick on a bunch moving distance∆s from
one lattice slice to the next is given by:
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whereW1(z) is the wake function,γ is the relativistic fac-
tor of the bunch being kicked, and[Ny]n is the product of
the charge and the transverse offset of the bunch that passed
through the slicen time-steps previously. Each slice in the
lattice has its own wake function. The resistive-wall wake
function is:
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In practice, evaluation of the summation in Eq. (6) must
be terminated at a finite upper limit. In the code, this is
achieved by discarding the contribution of any bunch, once
its contribution to the wakefield kick is less than some spec-
ified fraction (usually we use 10%) of the largest contribu-
tion of any bunch.

Evaluation of the wakefield kick requires conversion
between Cartesian and action-angle co-ordinate systems.
This can be done using a matrixN, which relates the phase-
space vectors in the two systems,X andJ respectively:

X = N · J (8)

N is the normalizing transformation of the single-turn ma-
trix M at the chosen point in the lattice, and is constructed
from the eigenvectors ofM. In an uncoupled lattice,N can
also be expressed in terms of the Twiss parameters, but the
eigenvector construction is more general.

Feedback System

Feedback systems are implemented by associating a
pick-up with one lattice slice, and a kicker with a second
lattice slice. As bunches pass the pick-up, their offsets are
stored in a buffer; as they later pass the kicker, the stored
offset is used to calculate a kick applied to the bunch. Any
number of feedback systems can be included in the simula-
tion, each with its own algorithm for determining the kick
from the offset at the pick-up. A simple feedback system
applies the kick determined by:

∆py|kicker = g(y|pick-up + δy) (9)

whereg is the gain of the feedback system, andδy is a sto-
chastic variable representing the limited resolution of the
pick-up. Assuming a betatron phase advanceπ/2 between
the pick-up and the kicker, the damping rate provided by
the feedback system is given by:
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whereβ1 andβ2 are the values of the beta function at the
pick-up and kicker respectively, andT0 is the revolution
time. The presence of pick-up noiseδy leads to the equa-
tion of motion for the action of a single bunch:
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whereτ is the damping time from the combined effects of
synchrotron radiation and the feedback system. Clearly, the
equilibrium bunch-to-bunch jitter is given by:
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SIMULATION RESULTS

The results of a simulation in the ILC damping rings
without radiation or a feedback system, are shown in Fig. 1.
The growth rates are estimated from the simulation results
by fitting an exponential to the amplitude of each Fourier
mode in the beam as a function of turn number. In this
case, we tracked the nominal fill pattern for 30 turns, start-
ing with a small amount of random beam-to-beam jitter.



Note that the normal modes in the presence of resistive-
wall wakefields arenot Fourier modes; the large scatter in
the simulation results relative to the analytical estimateis
principally a consequence of analyzing the beam motion in
terms of Fourier modes, rather than the real normal modes
of the system.
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Figure 1: Growth rates of coupled-bunch modes driven by
resistive-wall wakefields in the ILC damping rings. The
points show simulation results; the line shows an analytical
estimate.

Fig. 2 shows the results of a simulation including a feed-
back system with a gain adjusted to produce a damping rate
of 300 s−1, and with synchrotron radiation damping that
provides an additional damping of 37 s−1. The feedback
system and radiation damping have the expected effect, and
all modes are now damped.
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Figure 2: As Fig. 1, but with feedback system and radiation
damping.

The specification on the beam stability is that the bunch-
to-bunch jitter should be less than 10% of the beam size; in
the vertical plane, the specified vertical emittance is 2 pm,
so the bunch-to-bunch action jitter must be less than 0.01
pm. The feedback system is set for a gain ofg = 0.00315

and the beta function at the kicker isβ2 = 8.8 m. The
revolution period isT0 = 53.2 µs, and the total damping
rate (from synchrotron radiation and the feedback system)
is 1/τ ≈ 330 s−1; so from Eq. (12), the pick-up needs a
resolution of better than 3µm to avoid inducing jitter on
the beam outside the stability specification.

To test the effects of noise from feedback system, we
tracked a beam starting with zero betatron action for each
bunch. The parameters used in the simulation were as given
above, with gaussian noise (rms 3µm) added to the pick-
up signal. The average action over all the bunches in the
beam as a function of the turn number in the simulation is
shown in Fig. 3. The simulation results agree well with the
prediction from Eqn. (11).
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Figure 3: Growth of the betatron action averaged over all
bunches in the beam, over 500 turns.

CONCLUSIONS

Analytical estimates of coupled-bunch growth rates in
one possible design for the ILC damping rings have been
confirmed using time-domain simulations. The simula-
tions include variations in fill pattern, chamber radius and
beta functions, and also include synchrotron radiation and
bunch-by-bunch feedback systems. The simulation code
is ready to handle other sources of long-range wakefields
(for example, higher-order modes in the RF cavities) and
betatron coupling; these effects will be included in future
studies.

Studies so far have indicated the parameter regime in
which the transverse bunch-by-bunch feedback system will
need to operate. Growth times of the resistive-wall insta-
bility are likely to be less than 100 turns. Jitter induced on
the beam from the feedback system is a concern, but can
be kept within specification if the feedback system pick-up
has a resolution better than a few microns.
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