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Abstract 

For a microphase-separated diblock copolymer ionic gel swollen in salt solution, a 

molecular-thermodynamic model is based on the self-consistent field theory in the limit of 

strongly segregated copolymer subchains. The geometry of microdomains is described using the 

Milner generic wedge construction neglecting the packing frustration. Thermodynamic functions 

are expressed analytically for gels of lamellar, bicontinuous, cylindrical and spherical 

morphologies. Molecules are characterized by chain composition, length, rigidity, degree of 

ionization, and by effective polymer-polymer and polymer-solvent interaction parameters. 

The model predicts equilibrium solvent uptakes and the equilibrium microdomain spacing 

for gels swollen in salt solutions. Results are given for details of the gel structure: distribution of 

mobile ions and polymer segments, and the electric potential across microdomains. Apart from 

effects obtained by coupling classical Flory-Rehner theory with Donnan equilibria, viz., 

increased swelling with polyelectrolyte charge and shrinking of gel upon addition of salt, the 

model predicts the effects of microphase morphology on swelling. 
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Introduction 

Because polymer gels show a variety of structure-property relations, they find numerous 

applications in the design of biomedical materials 1, drug-release systems 2, cosmetics, food 

technology and other rapidly developing areas. Especially important are ionic gels whose 

swelling and elastic properties depend on electrostatic interactions that are sensitive to pH and 

salinity. 

The effect of aqueous salt on swelling of ionic gels has been studied experimentally and 

theoretically. Most authors consider chemically-crosslinked polymethacrylate- 3-13 or 

polyvinylpyridine-based 14 gels. Ionic gels can swell more than neutral gels; the extent of 

swelling depends on the degree of ionization and on the ionic strength of the external solution. 

An increase of ionic strength leads to abrupt deswelling of swollen ionic gels such that the extent 

of swelling becomes similar to that of a nonionic gel. Depending on chemical composition and 

ionic charge of the gel, this deswelling may be observed at different salinities ranging from ca. 1 

to ca. 100 mM 3-14. At sufficiently large ionic strength, swelling is no longer sensitive to the 

polymer’s degree of ionization or to ionic strength. Further addition of salt to the external 

solution leads again to noticeable swelling of an ionic gel 6, 10. Swelling behavior is not sensitive 

to the nature of added monovalent cations 3, 13. Divalent 7, 13 and trivalent 11 cations have a 

stronger effect on swelling of a gel than the monovalent cations. An important factor is the nature 

of a multivalent ion 11. For weak polyelectrolyte gels, the ionization degree may depend 

substantially on pH and salinity of the surrounding solution. This effect, called charge regulation, 

may result in another region of gel deswelling at low salt concentration, e.g., at 0.01 - 0.1mM for 

gels considered in refs.10, 14. 

One of the key factors controlling the properties of a gel is its heterogeneous composition. 

Formation of nanodroplets and bicontinuous structures inside the gel may substantially affect its 

thermodynamic properties and phase behavior. Interest in gels having a well-developed 
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mesostructure and morphology has been growing within the last several years because 

morphological changes in response to variation of external conditions may provide a basis for 

developing new types of environmentally sensitive, intelligent materials. Extensive experimental 

work has been directed at producing new block-copolymer materials that are capable of 

assembling into a variety of mesostructures. Fascinating structures of ionic block-copolymer self-

assembling systems (physical gels in particular) have been described in the work of Eisenberg 

and his school 15-17. Block copolymers that are built by combining hydrophobic subchains and 

hydrophilic ionic subchains 18 may form a rich variety of mesostructures including vesicles, 

crew-cut or starlike micelles and gels of different morphology 19-22. These systems are often 

stimulus-responsive. Formation of a specific structure depends on the relative length of the ionic 

and nonionic parts of the molecules, solvent composition, temperature, salt content and pH.  An 

example of a mesostructure gel of particular relevance to biomedical applications such as contact 

lenses is a physical co-continuous oxyphilic-hydrophilic-lipophilic block-copolymer gel 23 that 

allows simultaneous permeation of water, oxygen and heptane via three cocontinuous channels. 

 The classical theory of Flory and Rehner 24, combined with that of Donnan, reflects the 

basic trends in swelling behavior of an ionic gel in 1:1-salt solutions. Ideal Donnan osmotic 

equilibria account for the deswelling of an ionic gel upon addition of salt 6, 7, 10-14. When the 

gel’s degree of ionization depends on the concentration of salt, introducing the gel ionization-

equilibrium constant accounts for deswelling of the gel at low salt concentration due to charge 

regulation 10, 14. However, this simple theory does not explain an upturn of swelling in the limit 

of high ionic strength 10. 

Classical theory describes the polymer gel in terms of average characteristics and does not 

reflect the gel’s structural inhomogeneity and morphology. However, considerable progress has 

been made in understanding the structure and properties of polyelectrolyte brushes 25 in salt 

solutions 26-30. Both annealed (with charge regulation) 27, 28 and quenched (carrying a fixed 
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charge) 29, 30 polyelectrolyte brushes immersed in salt solution have been considered using self-

consistent field theory 27, 31. The nonmonotonic dependence of average brush thickness on ionic 

strength 27, 28, 32 is similar to the nonmonotonic effect of salt on gel swelling. Different regimes 

controlling swelling and elastic behavior of polyelectrolyte brushes have been described using 

scaling relations 25, 33. The success in describing polymer brushes suggests a similar approach for 

polyelectrolyte mesostructured systems.  

Spherical and cylindrical ionic block copolymer micelles and bilayers have been modeled 

by Zhulina and Borisov 34, who combined the self-consistent field theory for a strongly stretched 

polymer brush with the Poisson-Boltzmann equation and with the local-electroneutrality 

assumption to model electrostatics. Two recent models of polyelectrolyte gels reflect 

characteristic features of the mesocsopic structure: the so called swiss-cheese structure of an ionic 

gel swollen in salt solution 35, and a sequence of self-assembling structures in a solution 

containing an associating, strongly segregated polyelectrolyte 36.  

In our previous publications 37, 38 we considered nonionic gels of different morphology 

swelling in a salt-free solvent. We proposed an analytical model based on self-consistent field 

theory in the strong-segregation limit. In this work we continue along the same line and discuss 

the properties of mesoscopic ionic gels (ionic gels having lamellar, bicontinuous, cylindrical or 

spherical domains) swollen in brine. The prototype for the system considered here is a copolymer 

gel used, for example, for fabricating extended-wear contact lenses: segregated silicone and 

hydrogel microphases may form nanodroplets and bicontinuous structures. Hydrophilic parts of 

the polymer chains that swell in tears are capable of immobilizing some charge at specific 

functional groups, e.g., positive charges bound to aminogroups. In this work we describe the 

effect of gel structure on the swelling behavior of an ionic gel. Electrostatic effects are taken into 

account by combining the self-consistent field theory for a swollen polyelectrolyte brush with the 

linearized Poisson-Boltzmann equation for polymer-free zones. The spatial distribution of 
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polymer segments and mobile ions and the free energy of the gel are expressed analytically in 

terms of the size of the microdomains inside the swollen gel. The microdomain size and 

equilibrium swelling are determined for different morphologies. We examine the effects of gel 

charge and ionic strength on equilibrium swelling. Our model is applied at conditions far beyond 

the range of ionic charges and salinities typical of physiological systems; we consider a weakly 

charged gel as well as a strongly charged gel in a solvent at low or high salt concentration. 

  

The Model 

We consider a diblock copolymer forming a swollen gel. The blocks are strongly segregated into 

the outer (B) and the inner (A) domains that may have lamellar, bicontinuous, cylindric, or 

shperical geometry (Fig.1). B-blocks are hydrophobic; swelling is due to the hydrophilic A-

blocks only. Each A-chain consists of AN  segments and each B-chain consists of BN  segments. 

Some 1:1-salt is present in the A-domain and a known number of cations, ANα , is immobilized 

by binding to each A-chain29, 31, 39. The fractional charge α  is called the degree of ionization. 

Our model applies without change to the case where ionization of A-chains is caused by 

dissociation of ionic groups of the polymer. Assuming strongly stretched polymer chains, the 

Helmholtz energy of the gel ( gelF ) includes independent surface, mixing and chain-stretching 

contributions. The effective self-consistent field acting on polymer segments is parabolic in the 

distance from the A-B interface 29, 30, regardless of the type of intermolecular interactions in the 

system. In the free energy of mixing, the nonelectrostatic contribution ( mix
nonelF ) is considered 

separately from the electrostatic part ( ionF ) of the gel free energy. Thus 25, 31, 37, 38: 

ionmix
nonel

str
B

str
AAB

gel FFFFF ++++= Aσ      (1) 

where ABσ  is the bare interfacial tension (i.e., the tension of a flat A–B interface unperturbed by 

curvature effects or by presence of solvent) and A is the surface area of a sharp interface between 
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A- and B- domains; the stretching terms for A- and B-subchains, str
AF  and str

BF , are expressed as 

∫= dVcxBF pp
str
p

2 , where 22

2

8
3

Kp
p aN

B π
=  is the elasticity constant of a subchain p (p=A,B); aK is 

the Kuhn segment length, x is the distance from the interface, pc is the local polymer 

concentration, and the integration is over the gel volume; here and below the energies are given 

in kBT-units. The interfacial tension is estimated as ( ) 22/1 /6 KABAB aχσ = , where ABχ  is the 

Flory interaction parameter for segments A and B 40, 41.   

Analytical results can be obtained 29, 31 when we assume that the ions are point-charges 

and a dilute-gas expression for the local entropy terms: 

∫∫∫ +−+−=−= −−++ dVdVdVTSWF elelion ρρρρρ Ψ
2
1)1(ln)1(ln   (2) 

where +ρ  and −ρ  are the local concentrations of mobile charges; −+ −+= ρραρ pc  is the local 

charge density, and )/( Tke Bψ=Ψ  is the reduced electric potential ψ ; e  is the electron charge. 

The de Broglie thermal wavelength of the ions is immaterial in our derivation and therefore 

omitted from the logarithmic terms. Minimization of the free energy with respect to the spatial 

distribution of mobile charges and polymer segments gives the Boltzmann distribution of the 

mobile charges and an additional Euler-Lagrange equation that couples segment interactions to 

the elastic response of the chain 31: 

2xBconstcF Ap
mix

nonelI −=+ δδαΨ      (3) 

where IΨ  is the reduced electric potential inside the A-chain polymer brush; the elasticity 

constant of the A-chain, AB , has been defined after Equation (1). The functional derivative 

p
mix

nonel cF δδ  has the same units as mix
nonelF , and hence all terms of Equation (3) are in reduced units. 

Equation (3) has no ionic valence because we consider univalent electrolytes. However all 
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equations of this work can be easily generalized for z:z symmetric electrolytes. We assume that 

the nonelectrostatic part of the free energy is far less sensitive to the details of segment 

distribution and that the structure of the gel is primarily governed by the electrostatic interactions. 

Thus, we assume that 0≈p
mix

nonel cF δδ . We then obtain a parabolic form of the electric potential 

within the polymer brush 29-31, 42. This result implies a linear electric field inside the brush and 

some accumulated charge that must be compensated by a charge cloud in the solvent pool. 

 

Gel Geometry To take into account the geometry of the gel microdomains, we apply the Milner 

generic wedge construction 43, 44 neglecting the “packing frustration” 45. This method introduces 

one reduced spatial variable, y, to characterize the domain of a given geometry. In reduced units, 

the surface area and the volume at distance y from the origin are: 

νy
R
yya =≡

)(
)()(

A
A         (4) 

1

1
1

)(
)()(v +

+
=≡ ν

ν
y

RR
yVy

A
      (5) 

where R is the size of one structural unit of the gel (Fig.1); A(y) is the surface area, V(y) is the 

volume; and ν =0, ½ , 1, 2 for lamellar, bicontinuous, cylindric and spherical morphology, 

respectively. Unlike our previous work 37, Equation (4) gives a different expression for ν =½ that 

only approximates the surface area of the Gaussian saddle in our simple model of a bicontinuous 

structure. The surface areas given by Equation (4) for ν = ½ are in fair agreement with those 

obtained from the original expression for the surface area of a Gaussian saddle 44. The advantage 

of Equation (4) is that instead of the original expression, it provides a simpler form of the 

Poisson-Boltzmann equation. 

Electrostatic Potential in the Gels of Different Morphologies  The Boltzmann distribution 

for mobile charges can be obtained by variational minimization of the free energy given by 
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Equations (1) and (2) 31. For univalent ions considered in this work, in the A-brush (zone I) and 

in the solvent pool inside the gel (zone II) we have: 

zone I:    ++ =+ λρ IΨln  −− =− λρ IΨln     (6) 

zone II:    ++ =+ λρ IIΨln  −− =− λρ IIΨln     (7) 

where the Lagrange multipliers +λ  and −λ  do not change from zone to zone because the pool and 

the brush are in equilibrium. In a closed system, these multipliers are determined from the 

condition of conservation of particles; if the gel is in equilibrium with the outside salt solution of 

concentration b
sc , then b

scln== −+ λλ . 

The electric potential in the polymer brush is found from Equation (3): 

2)()()( yKy II −−= ββΨΨ        (8) 

where )(βIΨ  is the reduced potential at the A-B interface ( β=y ) and α/2
ABRK ≡ . The 

potential for the solvent pool is determined from the Poisson-Boltzmann equation: 

[ ]IIII eelBII
ΨΨΨ 002 4 −

−
+ −−=∇ ρρπ      (9) 

where Tke BIIII /ψ=Ψ  is the reduced potential for the solvent pool; )/(2 εTkel BB =  is the 

Bierrum length; 0
+ρ  and 0

−ρ  are local number densities of positive and negative ions at zero 

electric potential; hence ++ = λρ 0ln  and −− = λρ 0ln . Two boundary conditions are given, 

respectively, by the requirement of vanishing field at the center of the pool and by the Gauss law 

at the polymer-solvent pool boundary: 

0
0

=







∂

∂

=y

I

y
Ψ         (10) 

)(
)()(

)( γΣ
γ

γεε
γγ

R
Ra

RQ
yy y

I
I

y

II
II ==








∂

∂
=








∂

∂

== A
ΨΨ    (11) 
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where )(γQ  is the total charge accumulated inside the polymer brush; )(γΣ  is the surface charge 

density; IIε  and Iε  are the dielectric constants of the pool and of the swollen A-brush, 

respectively. Assuming that the dielectric constant does not change appreciably at the boundary 

between the solvent pool and the hydrophilic swollen brush, we write Equation (11) in the form: 

 
0

2
H
Rh

yy y

I

y

II =







∂

∂
=








∂

∂

== γγ

ΨΨ
      (12) 

where 0/)( HRh γβ −=  is the reduced thickness of the A-brush, and ( ) 2/1
0 ABH α=  is a 

characteristic length determined by the brush elasticity and fixed charge 29. 

We now write the Laplacian as: 









∂
∂

∂
∂

≡∇
y

ya
yyaR

)(
)(

1
2

2
= 








∂
∂

∂
∂

+
∂
∂

yy
ya

yR
)(ln1

2

2

2    (13) 

which is an exact expression for lamellae, cylinders, and spheres, and an approximation for the 

bicontinuous morphology. With this Laplacian, we use a linearized version of the Poisson-

Boltzmann equation giving )(yIIΨ  for all these geometries in terms of modified Bessel functions 

(see Appendix 1). The use of the linearized version of the Poisson-Boltzmann equation imposes a 

limitation on the model’s range of applicability: low electric potentials in the solvent pool. 

However, the potential may be substantial in the swollen polyelectrolyte brush where we use the 

non-linearized Poisson-Boltzmann equation. 

The potential drop within the swollen brush depends on a number of factors such as 

degree of chain ionization, its elasticity, length, the uptake of solvent and the salt content of the 

gel. Rigorous analysis of the validity of the linear Poisson-Boltzmann equation for the pool is a 

nontrivial issue and deserves a separate study. Strictly speaking, the linearized model is not valid 

in the limit of vanishing external salt. In this work we check the validity of the linear 
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approximation by calculating the values of electric potential at the solvent pool – polymer brush 

boundary. Our calculations show that even at low external solution salinities of 0.1-1mM, 

screening of electrostatic interactions within the brush is often sufficient to result in low electric 

potentials in the pool, suggesting that our approach is reliable. 

Gel Free Energy The equilibrium thermodynamic potential of the gel is found by substituting the 

equilibrium profiles and potentials into Equations (1,2). After some algebra we obtain:  

 +−+−=
+

∫∫ −−++

ββ

ρλρλ
00

)()()1()()()1(
)(

dyyaydyyay
RR
FF str

A
ion

A
 

)(
)()()(

RR
Wdyyayc

el

pI A
−+ ∫

β

γ

αβΨ   (14) 

where the first two integrals give the total amount of positive and negative mobile charge in the 

brush. Applying Green’s theorem to calculate the electrostatic energy, elW , we see that the 

surface integrals vanish, leading to: 

( ) ( )∫∫ ∇+∇=
γβ

γ ππ 0

22 )(
8

1)(
8

1
)(

dyya
l

dyya
lRR

W
II

B
I

B

el
ΨΨ

A
.   (15) 

Both integrals can be solved analytically. Upon performing some lengthy algebra we obtain: 













+







−= +−+ ),(

)(
)()(

1
22

1
)( 2

0

2

2
111

2

2
0

γβ
κγ

κγγ
γ

π
ν

A
z

zz

B

el
I

H
R

RI
RIRκIh

HlRR
W
A

 (16) 

where )( yRI z κ  is the modified Bessel function of order z where 2)1( += νz , 

[ ]002 4 −+ += ρρπκ Bl  is the Debye screening parameter, and ),( γβAI  is the integral from the 

Hookian elasticity of the polymer chain 37, 38: 

=−= ∫ dyyayI A )()(),( 2
β

γ

βγβ         
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







+

+
+

−
+

−
+++

= +
+

)1()2(
2

)3()3)(2)(1(
2 22

1
3

ν
β

ν
βγ

ν
γγ

ννν
β ν

ν

.  (17) 

For a planar geometry (ν =0), this integral leads to the same contribution to the free energy 

(∼ 33h− )  as that from a corresponding term of Equation (40) of ref. 31.  

Equilibrium elW  gives the coupled electrostatic-energy and elasticity contributions to the 

gel free energy. At small κγR , the square bracket of Equation (16) goes to )3(2 +ν . Provided 

that the solvent pool is also small compared to the size of the domain shown in Figure 1, γ <<1, 

Equation (16) is dominated by the second term in parentheses. 

For κγR >>1, corresponding to a gel with large solvent pools at nonvanishing external 

salinity, Equation (16) can be expanded in powers of ( ) 1−κγR : 

( ) 











+










 +
−= ),(1

8
)2(1

22
1

)( 2
0

2

2

2

2
0

γβ
κγ

ννγ
κπ

ν
A

B

el
I

H
R

RR
h

HlRR
W
A

.  (18) 

For nonplanar geometries, this equation represents the curvature expansion of elW . At large R, 

this equation is also dominated by the second term in parentheses.  

Putting together different contributions to the free energy, Equations (1, 14, 16), we 

finally write for the equilibrium Helmholtz energy: 

 ++=
)(

)(
)( RR

F
R

a
RR

F mix
nonel

AB

gel

AA
βσ [ ] +−+−− −+ )v()1()v()1( βλβαλ sps ccc  

3

2 )(
)(

)v()(
K

BB
el

pI a
IBR

RR
Wc

β
βαβ +−+

A
Ψ     (19) 

where mix
nonelF  is calculated from the Flory-Huggins expression; sc  is the average concentration of 

salt; and pc  is the average concentration of polymer within the A-domain of the gel: 
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dyyaycs )()(
)(v

1

0
∫ −=
β

ρ
β

      (20) 

dyyaycc pp )()(
)(v

1

0
∫=
β

β
.      (21) 

The integral )(βBI  in Equation (19) describes the elastic response of B-blocks 37, 38: 

)1)(2)(3(
2

)1()2(
2

)3(
1)()()(

321
2

+++
−

+
+

+
−

+
=−=

+

∫ ννν
β

ν
β

ν
β

ν
ββ

ν

β

dyyayI B . (22) 

The electric potential at the A-B interface, )(βIΨ , is found from the condition of continuity of 

the potential at the free end of the swollen brush ( γ=y ): 

( ) ( )
)(
)(2 1

0

22

κγ
γ

κ
γβ

RI
RκI

H
hhh

z

z
III

−+=+= ΨΨ .   (23) 

In the derivation of this equation, the potential zero has been chosen in the bulk solution 

( b
scln== −+ λλ ). For a strongly swollen gel, Equation (23) reduces to (see Appendix 1): 

κ
β

0

2 2)(
H

hhI +≅Ψ .       (24) 

Distribution of Ions and an Equation for the A-Brush Thickness 

The distribution of mobile charges within the polymer brush is given by: 

2)()()( yKb
s eecy I −−

+ = ββρ Ψ       (25) 

2)()()( yKb
s eecy I −−

− = ββρ Ψ       (26) 

and the profile of the polymer concentration is: 









−

−
−−= +− 1

2
1)()()( 2

0

νβ
π

ρρα
y

y
Hl

yyyc
B

A .    (27) 

The A-brush thickness, h, is obtained by calculating the total charge accumulated in the 

brush. From the Poisson equation we have: 
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π
ρ

β

γ

β
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−
=∇−= ∫∫ Ψ .   (28) 

On the other hand, from the material balance and Boltzmann distribution of mobile charges: 

 =∫
β

γ

ρ dyyay )()(            

∫∫∫ −−
−

−−
+ −+=

β

γ

ββ
β

γ
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β

γ
ρρα dyyaeedyyaeedyyayc yKyK
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22 )()(0)()(0 ΨΨ . (29) 

Taking into account Equation (23), Equations (28) and (29) together give: 

[ ]−+−− −+= ν
γ

ν
γκ

γ JeeJee
RHH

ha IIII hh )()(
2

00 22

4
)( ΨΨ

Λ
   (30) 

where 
pAB nNl

RA
απ2

)(
=Λ  is the Guoy-Chapmann length corresponding to the fixed charge of the 

brush, AN  is the number of segments in the A-subchain; App NRRAcn )()(v β=  is the number 

of polymer chains; and the integrals 

∫ −±± ≡
β

γ

νβ
ν dyyeJ yK 2)(

       (31) 

come from the distribution of the positive and negative mobile charges (Equations (25),(26)) 

inside the polymer brush. These integrals are related to the Dawson integral and to the error-

function integral for a planar case; they can also be estimated for other geometries (see Appendix 

2). For the planar case (ν =0), Equation (30) can be compared with the result obtained from the 

non-linear Poisson-Boltzmann equation by Zhulina et al., 29, 30 for a polyelectrolyte brush 

immersed in a salt solution. For a very large solvent pool, we may use Equation (24). For small 

potentials, where the linear approximation to the Poisson-Boltzmann equation is valid, h is small. 

An expansion of the exponential in Equation (30) in powers of h and a similar expansion of 

Equation (18) of reference 29 lead to identical series up to O(h3). 
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 Equation (30), the result of electroneutrality, is similar to the Donnan relation because it 

also incorporates the Boltzmann distribution of the mobile charges. However, it is somewhat 

different from the classical Donnan relation because it incorporates not only the charges 

immobilized on the polymer chains, but also the total charge of the brush that is determined by 

the parabolic electric potential within the brush. 

 

Swelling Equilibrium 

When the gel is in equilibrium with an outside solution with respect to the distribution of 

mobile ions, it is convenient to use the semigrand thermodynamic potential defined by: 

bulkbulkgelgel nnF −−++ −−≡ µµΩ ,      (32) 

where +n  is the total number of positive and −n  is the total number of negative mobile ions in 

the gel and bulk
+µ , bulk

−µ  are their equilibrium chemical potentials. We use the same reference 

chemical potential for an ion in the gel and in the outside solution, consistent with the assumption 

that the dielectric constants of these two media are the same. Applying excess quantities, we 

write +λ  instead of bulk
+µ  and −λ  instead of bulk

−µ . To find the equilibrium structure of the gel, 

more specifically, the equilibrium size R of the domains of a given morphology, we seek a 

minimum of gelΩ  per unit volume with respect to R. The minimum desired is at fixed +λ , −λ  and 

at fixed swelling expressed as average fraction of solvent in the gel. The equilibrium swelling is 

found by equating the osmotic pressure inside the gel to that in the outside solution: 

bulk

nT

gel
gel

p
V

ΠΩΠ
λλ

=








∂
∂

−≡
−+ ,,,

.     (33) 

For an incompressible system (and point-charge ions), Equation (33) coincides with the 

requirement of the equality of the solvent chemical potential because 
sK naV ∂

∂
=

∂
∂

3
1  at 
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constn p = , where sn  is the number of solvent molecules 24. We now turn to the derivation of 

equations that determine the internal (domain size) and the external (swelling) equilibria of the 

gel. 

 The gel free energy depends on domain size R, and on the positions of boundaries γ and β 

(see Equations (16), (19), (23) and (32)). The dependence on the extent of swelling can also be 

expressed via β. If, for example, sϕ  is the average volume fraction of solvent in the gel, then: 

 11)1( +−=− νβϕ sBf        (34) 

where )(1 ABBAB NNNff +=−=  gives the composition asymmetry of the block-copolymer 

chain. At fixed swelling (β), the domain size (R) and the pool size (γ) are related through 

Equation (30) that incorporates the electroneutrality condition. Hence we have a constrained 

minimization problem when searching for the equilibrium size: 

{ }
( )γ,min Rg gel

R
       (35) 

where 
)(RR
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=  and R is related to γ by Equation (30). The necessary condition of the 

minimum is: 
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Using Equations (19, 32), Equation (36) can be rewritten as: 
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where 
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is determined by the total number of mobile charges in the gel and elW  is given by Equation 

(16). All terms in Equation (37) are expressed analytically (Appendix 3). The derivative R∂∂γ  

is found from a linear equation that is obtained by differentiating Equation (30) with respect to R.  

At a given solvent fraction inside the gel (extent of swelling β), the equilibrium domain 

size (R) and solvent-pool boundary (γ) are determined by solving Equations (37) and (30) 

simultaneously. The equilibrium swelling is then found by searching for the solvent fraction that 

satisfies Equation (33). For the 1:1 salt considered in this work, the osmotic pressure outside the 

gel is given by: 

b
s

bulk c2=Π .        (39) 

The osmotic pressure inside the gel is expressed analytically as a sum of several 

contributions: 

γΠΠΠΠΠΠΠΠ ++++++= str
B

mobpolyelmix
nonel

surfgel .  (40) 

A similar expression for the chemical potential gel
K

I
solv a Πµ 3−=  is given in Appendix 4. The 

first six terms in the right-hand side of Equation (40) come directly from the dependence on the 

solvent uptake of different contributions to the gel free energy. Analytical expressions for these 

terms are given in Appendix 5. The first two terms of Equation (40), surfΠ  and mix
nonelΠ , describe 

the contributions to the osmotic pressure from the bare interface between the A- and B- 

microdomains and from the mixing of A-subchains with solvent, respectively. The electrostatic 

effects coupled with the elasticity of the swollen A-brush are reflected by elΠ , polyΠ  and 

mobΠ , where elΠ  contains contributions from weighted electrostatic and elastic energy; polyΠ  
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is determined by the electric potential at the boundary between the hydrophobic and hydrophilic 

copolymer domains, and mobΠ  describes the contribution of the mobile ions inside the gel to 

osmotic pressure. str
BΠ  is determined by the elasticity of the hydrophobic B-subchains. The last 

term, γΠ , comes from the dependence of the gel free energy on the size of the solvent pool γ 

that depends, in turn, on the solvent uptake. γΠ  is defined in Appendix 4 by Equations 

(A4.3),(A4.4) and contains electrostatic and mixing contributions. The derivatives that enter these 

latter equations are calculated analytically as explained in Appendix 3 (Equations (A3.2), (A3.5), 

(A3.8), (A3.12) and (A3.14)). 

 

 

Calculated results 

Our model gives thermodynamic functions for a swollen ionic gel in terms of modified 

Bessel functions and special functions ±
νJ  that can be evaluated readily (Appendix 2). In 

addition to the molecular parameters for a non-ionic gel 37, 38 (chain length N , flexibility Ka , 

copolymer composition Af , polymer-polymer and polymer-solvent interaction parameters ABχ , 

ASχ ), the gel degree of ionization α  should be specified. The dimensionless size of the pool 

inside the microdomains (γ ) is found from the electroneutrality condition, Equation (30). The 

microdomain spacing (R) is obtained from the condition of internal equilibrium, Equation (37). 

Equilibrium of the gel with the outside solution of salt is expressed by Equation (33). However, 

an attempt to find equilibrium swelling shows that the gel has an infinite tendency to swell for all 

morphologies considered in this work. This is a natural consequence of the repulsion of 

overlapping electrical double layers inside the solvent pools. Within the proposed model, 

equilibrium swelling can only be found if we require that upon forming microdomains of a given 
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morphology at certain solvent content, the gel does not reassemble freely. Starting from this 

specified solvent fraction *
sϕ  (e.g., from the microphase transition point or some other *

sϕ ), the 

size of the microdomain is determined by how much solvent is added. This is equivalent to 

considering entanglements of polymer chains (or some effective cross-links) that prevent the 

polymer chains from leaving a microdomain and accumulating in another one. The fraction of 

solvent in the gel, *
sϕ ,  at the point where we last allow free self-assembly of the gel can be 

considered as the solvent fraction at preparation. For *
ss ϕϕ >  we no longer minimize the gel free 

energy with respect to R. Instead, R is calculated from an additional packing constraint, Equation 

(A3.4) that assumes constancy of the number of chains per unit area in the lamellae, per unit 

length of the long axis in the cylinders and per one domain in the spheres. Hence at *
ss ϕϕ >  the 

derivative of the gel free energy with respect to R is no longer equal to zero leading to additional 

terms in the expressions for the chemical potential (See Appendix 4 for details). As a result, finite 

equilibrium swelling is predicted by the model for gels of bicontinuous, cylindrical and spherical 

morphologies. For a lamellar gel, addition of solvent leads to saturation of the hydrophilic brush; 

upon reaching saturation, the thickness of an A- or B- lamellar layers does not change and all 

added solvent goes to the pool. Similar behavior has been predicted in modeling nonionic 

lamellar gels 37, 38. However, for an ionic lamellar gel, electrostatic repulsion results in infinite 

equilibrium swelling. Because the compensating action of dispersion forces across the solvent 

pool is not included in our model, it always predicts spontaneous breakup for an ionic lamellar 

gel in the outside solution. 

Figures 2 and 3 give structural details calculated for a swollen gel: the distribution of 

mobile ions, the fixed charge, and the electrical potential within the microdomain. Figure 2 shows 

screening of the brush charge at high salt concentration. The solution inside the pool is almost 

identical to the bulk solution. Figure 3 is for low salt concentration. The coions fail to penetrate 
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the polymer brush. At the same time, the charge imbalance inside the brush is stronger for the 

low-salt case. The solvent pool feels the presence of the charged brush, and the ionic composition 

of the pool deviates from that in the bulk solution. In both Figure2 and Figure 3 the electric 

potential at the polymer-solvent pool boundary is less than 25mV, justifying application of the 

linearized Poisson-Boltzmann equation for the pool.  

Comparison with experimental results  Numerous data on equilibrium swelling 6-9, 12,13 are 

available reflecting the effects of salt, crosslinking density, fraction at preparation and ionic 

charge of the gel. Microphase-separated ionic gels have also been studied 9. Unfortunately, to the 

best of our knowledge, there are no sufficiently detailed data for simultaneous comparison of 

thermodynamic properties and structural characteristics of microphase-separated diblock-

copolymer ionic gels of different morphologies. Therefore, our comparison is limited to a 

discussion of general trends. 

Calculation of equilibrium swelling is illustrated in Figure 4. This figure gives the 

chemical potential of solvent in the gel in excess of that in the outside solution versus solvent 

uptake. Equilibrium uptake corresponds to the zero of the excess chemical potential. For 

=≤ *
ss ϕϕ 0.91 free self-assembly of the gel is allowed and the excess chemical potential is 

calculated with the aid of Equation (40) as explained in Appendix 4, case I, using expressions of 

Appendix 5 for different terms of the osmotic pressure. For >sϕ 0.91 frozen entanglements 

become effective and extra terms are added to the excess chemical potential as explained in 

Appendix 4, case II. Before continuing to discuss the results of Figure 4 we report some of our 

general observations on equilibrium swelling. 

According to our calculations, an increase of ionic charge of the gel leads to increased 

swelling. Thus ionic gels swell more than nonionic gels 37, 38 composed of similar polymer 

chains, in agreement with experiment. Equilibrium swelling for ionic gels of different 
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morphology changes in the sequence: lamellae (gel breakup) > bicontinuous > cylinders > 

spheres. The same trend for swelling is predicted by the model for nonionic gels with swollen 

inner domains and no pools 38. The difference in equilibrium swelling for different shapes is 

substantial, particularly at low salt concentrations. Addition of salt screens interaction between 

the electrical double layers in the pool and diminishes the effect of shape on equilibrium swelling 

as illustrated in Figure 4. Unusual results are obtained for lamellar gels that have infinite 

tendency for swelling. At high salt concentration, screening can be so strong that the excess 

negative value of the solvent chemical potential becomes vanishingly small at a moderate solvent 

uptake (while remaining negative at all solvent contents of the gel). This situation is illustrated in 

Figure 4 for a weakly charged gel. Thermal fluctuations may prevent a lamellar ionic gel from 

reaching true equilibrium in a finite time; at high salt concentrations, this gel may behave similar 

to a nonionic lamellar gel that has finite swelling. Thus our model suggests that the swelling 

observed for an ionic lamellar gel (e.g., in overnight swelling) may well be less than that for 

spherical or cylindrical gels. 

 Figure 5 shows the effects of ionic charge and assumed shape of the gel microdomains on 

the calculated swelling pressure. The swelling pressure is equal to the osmotic pressure in the gel 

in excess of that in the outside solution. It is calculated as explained in Appendix 4, case II, using 

equations of Appendix 5. For all solvent uptakes given in Figure 5, *
ss ϕϕ > . Zero swelling 

pressure corresponds to equilibrium swelling of the gel. To estimate the magnitude and scaling of 

swelling pressure with a solvent uptake typical of hydrogels, experimental data on a chemically 

crosslinked sodium polyacrylate hydrogel 12 are also shown in Figure 5.  

Figure 6 shows predicted equilibrium swelling versus salt content of the bulk solution. 

Also shown are results obtained by combining the Flory-Rehner theory with that of Donnan. In 

applying this classical combination, all mixing, electrostatic, and chain-stretching effects are 
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attributed to the A-domains of the gel. The solvophobic B-domains are assumed to play the role 

of effective cross-links. Thus equilibrium swelling is calculated from: 
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where Aφ  is the average volume fraction of A-chains in the swollen A-domain; *
Aφ  is this fraction 

at preparation of the gel and cN  is the number of elastically active segments in the chain, a key 

parameter of the theory. At high salt concentration the last bracket of Equation (41) reduces to a 

term that is quadratic in Aφ  and the only effect of electrostatic interactions is to change the 

effective value of the Flory-Huggins parameter to 







− b

sK
AS ca3

2

4
αχ  47. To compare the effect of 

salt on equilibrium swelling predicted by our model with that predicted by Equation (41), 

parameter cN  has been adjusted to reproduce approximately the equilibrium swelling of gels 

calculated with the aid of our model in the limit of high salt concentration; see Figure 6. At low 

salt concentration and high ionic charge, the equilibrium swelling given by the classical theory 

lies between the results calculated using our model for cylindrical and bicontinuous gels. For 

weakly charged gels, the sequence of predicted curves changes, as shown in Figure 6. We 

demonstrate the effects that can be reproduced by the classical Flory-Rehner+Donnan theory, 10, 

14 viz., an increase of swelling with the ionic charge of the gel and shrinking of the gel upon 

addition of salt. Similar to the classical Flory-Rehner+Donnan theory, our model does not predict 

an upturn of swelling upon further increase of salt concentration. However, we show a new 

feature of our model: equilibrium swelling substantially depends on the morphology of a 

microphase-separated gel. Thus, in this work we derived a simplified analytical model that 

accounts for the effect of gel mesostructure on its swelling behavior. Because in this work we do 
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not take into account charge regulation, we do not account for shrinking of the gel at very low 

salt concentration. Introduction of an ionization-equilibrium constant would give shrinkage as 

given in the classical theory. 

 

 Conclusion 

We have developed a model for the equilibrium properties of a diblock copolymer ionic 

gel swollen in a univalent salt solution using self-consistent field theory. We made a number of 

simplifying assumptions: strong segregation of block-copolymer fragments; dominance of 

electrostatics in determining the structural arrangement of polymer subchains; neglect of the 

packing frustration. These simplifications lead to analytical results for gels of lamellar, 

bicontinuous, cylindrical and spherical morphologies. The model gives explicit expressions for 

the gel free energy and for the osmotic pressure in terms of modified Bessel functions, some 

other special functions related to the Dawson integral and to the error-function integral, and the 

characteristic size of the microdomains.  

The gel molecules are characterized by specifying the chain composition, length, 

flexibility, the degree of ionization, and by effective polymer-polymer and polymer-solvent 

interaction parameters. The solvent fraction at preparation of the gel is introduced as the solvent 

fraction at which the polymer chains freely self-assemble and form microdomains of equilibrium 

size. 

A preliminary test of the model for gels of varying ionic charge swollen in solutions of 

varying salinity indicates promising results. The model describes a number of complex effects on 

gel-swelling behavior including those from ionic charge, salt concentration, gel morphology, 

solvent fraction at preparation of the gel, copolymer chain flexibility and gel composition. Apart 

from the well-known increase of swelling with ionic charge and the shrinking of a gel upon 

addition of salt, the model describes the dependence of gel behavior on its morphology. In 
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comparison with classical Flory-Rehner theory, this prediction is a novelty. The model gives 

reasonable microdomain spacing and details of gel structure, including spatial distribution of 

mobile ions and polymer segments, and the electrical potential across the microdomains. 

The model expressions can be extended in a straightforward manner to symmetric z:z 

electrolytes. 
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Appendix 1  

Solution of the linearized Poisson-Boltzmann equation for the polymer-free zone inside the 

swollen gel 

Solutions of the Poisson-Boltzmann equation for a double electric layer of planar, spherical and 

cylindrical symmetry are well known 39, 48-53. However, to the best of our knowledge, 

bicontinuous structures have not previously been considered. 

Linearizing the Poisson-Boltzmann equation for the solvent pool, Equation (9), and 

expressing the Laplacian by Equations (13, 4), we obtain: 
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ΨΨ 22
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    (A1.1) 

where [ ]002 4 −+ += ρρπκ Bl , [ ] [ ]0000
+−+− +−= ρρρρC  and ν =0, ½, 1, 2 for lamellar, 

bicontinuous, cylindrical and spherical morphology, respectively.  

Constant C can be set equal to zero by setting the potential equal to zero in the bulk phase, 

whence b
sc== +−

00 ρρ  where b
sc is the concentration of 1:1 salt in the bulk solution. Then 1−κ  is 

equal to the usual Debye screening length: b
sBclπκ 82 = .  Equation (A1.1) becomes 

homogeneous; using a substitution IIy Ψ2/νθ = , it can be rewritten as: 

0
2

1
2

1 22
2 =








−






 −+′′ θκννθ R

y
.     (A1.2) 

This equation is solved by the Frobenius power-series technique (see 54, page 519) where the 

solution of the indicial equation ( 2/k ν= ) has been chosen to satisfy the boundary condition at 

the center of the pool; the potential must be a symmetric function of y. This leads to a potential of 

the form: 
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where 2)1( += νz ; )(zΓ  is the gamma function and )(1 yRI z κ−  is the modified Bessel 

function of order z-1 (see 54, page 708). 

For a planar geometry and for spheres, the y-dependence in the brackets of Equation 

(A1.2) vanishes and we obtain the well-known solutions expressed via the hyperbolic sine, 

plane
IIΨ ∼ ysinh , and sph

IIΨ ∼ y
y

sinh1
. 

Constant 0a  in Equation (A1.3) is determined from the second boundary condition, 

Equation (12), which gives: 
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For a highly swollen gel (large κγR ) the potential at the edge of the polymer brush, 

γ=y , can be found from the asymptotic expansions of the Bessel functions (see 54, page 718) 

giving: 









+






 +++== ...

)(
1

2
1

4
1

2
12)( 2

0 κγ
νν

κγ
ν

κ
γ

RRH
hyIIΨ . (A1.5) 

Equation (A1.5) represents the potential at the polymer surface as a power series in the curvature. 

The planar-case limit is )(2)( 0κγ HhyII →=Ψ  and corresponds to a large separation of 

lamellar brushes with non-overlapping double electric layers. 
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Because ( ) xxIxI xzz )1()()( 01 +→→− ν , the potential given by Equation (A1.4) 

diverges at small γ : 

κγ
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κ
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RH
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)1(2)(
0

+
→=Ψ       (A1.6) 

This divergence follows from the tacit assumption that there is always some uncompensated 

charge within the brush leading to repulsion between the brush edges and formation of the 

solvent pool. With the parabolic potential, the electric field at the edge of the brush never 

vanishes and requires the presence of a solvent pool with some compensating charge. 

 

Appendix 2  

Integration of the distribution of mobile charges within the brush 

We need to estimate integrals of the form: 

∫ −+ ≡
β

γ

νβ
ν dyyeJ yK 2)(

       (A2.1) 

and 

∫ −−− ≡
β

γ

νβ
ν dyyeJ yK 2)(

.      (A2.2) 

For ν =0,1,2 these integrals can be related to the error function and to the Dawson (see 

Appendices 6 and 8 of ref.25) integrals. However, for a bicontinuous structure we need the 

integrals at ν =1/2. For integer ν =0,1,2,… ±
νJ  are computed using the following integrals: 

∫ ±± ≡
h

t dtteI
0

2 ν
ν       (A2.3) 
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where 0/)( HRh γβ −= . At ν =0 these latter integrals are related to the Dawson integral, 
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At ν =1 straightforward integration of Equation (A2.3) gives: 

( )1
2
1 2

1 −±= ±± heI .      (A2.6) 

Integration of Equation (A2.3) by parts results in the following recursion relation for ν =2,3,4,…: 
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Following some algebra we find expressions for ±
νJ : 
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where ( )2
0/ HRK = . The coefficients in Equation (A2.8) come from the binomial series. Six 

integrals above suffice to calculate all thermodynamic properties and their deriatives for lamellae, 

cylinders and spheres. Cubic interpolation of the integrals (A2.8) has been used to estimate the 

integrals needed for bicontinuous structure, viz., ±
2/1J , ±

2/3J , and ±
2/5J . 

At low swelling, another robust technique for estimating (A2.1) and (A2.2) can be used. 

Integrating (A2.1) and (A2.2) by parts, we obtain the recursion relations between the integrals of 

consecutive order: 
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At large enough ν  we have 021 ≈≈ +
+

+
+ νν JJ  and 021 ≈≈ −

+
−
+ νν JJ , because 1<y . Fixing some 

large ν  and calculating ,...,,, 321
±
−

±
−

±
−

±
νννν JJJJ , by the recursion relations (A2.9-A2.10) we 

eventually obtain a numerical estimate for ±±±
012 ,, JJJ  or ±±±

2/12/32/5 ,, JJJ . This procedure has 

been tested by calculating the error function and the Dawson integral (starting from ν =120). Up 

to 7-9 significant figures, the results are identical to those obtained by standard routines from the 

Fortran-IMSL library.  As indicated by Equations (A2.1, A2.2), the integrals for noninteger ν  lie 

between consecutive integrals for the integers, e.g.: ±±± << 02/11 JJJ . Typically, the exponent 

)8()(3)( 222222
KAaNRK αγβπγβ −=−  is not large (∼ 11 −− αAN  for a Gaussian chain). 

When it becomes substantial for a fully-extended chain (∼ 1−α ), convergence becomes a problem. 

In this case the integrals ±
νJ  were estimated with the aid of Equations (A2.8). 
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Appendix 3 

Expressions for the derivatives in the condition of internal equilibrium of the gel, Equation 

(37) 

Expressions for the derivatives of the electric potential at the boundary are found from Equation 

(23): 
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where the derivatives of the modified Bessel functions with respect to κγRx =  are given by: 
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From Equation (16) we have: 
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Equation (38) gives: 
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where the derivatives of the integrals ±
νJ  are obtained from their definition, Equation (31): 
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Using the Flory-Huggins equation for nonelectrostatic contribution to the free energy, we 

have: 
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where [ ] [ ])(v)(v)(v)1(v γβγϕφ −−= s
A
s  is the average volume fraction of solvent inside the 

swollen A-brush, and sϕ  is the volume fraction of solvent in the gel. Differentiating Equation 

(A3.11) and performing algebra we obtain: 
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which is, essentially, the excess surface free energy at the boundary between the polymer brush 

and the pool, where there is a stepwise change of solvent fraction from 1 to its average value, A
sφ . 
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Equations (A3.1-A3.11) are analytical expressions in terms of the modified Bessel 

functions and ±
νJ . These expressions are substituted into Equation (37) for the equilibrium 

domain size. 

To find an expression for R∂∂γ  we differentiate Equation (30) with the result: 
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The expressions for the derivatives that appear in the right hand side of this equation are 

calculated by Equations (A3.1-A3.3) and (A3.9-A3.10). 

Similarly, for βγ ∂∂  (needed for calculating the solvent chemical potential, see 

Appendix 4) we obtain: 
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Equation (A3.2) and Equations (A5.7)-(A5.9) of Appendix 5 give explicit expressions for the 

derivatives in the right hand side of Equation (A3.14). 
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Appendix 4 

Derivation of the expressions for the solvent chemical potential in the gel 

We first express the solvent chemical potential in terms of the free energy (per unit volume) of 

the gel microdomain, gelg  (see Equation (35)): 
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gelg  itself is determined by Equations (19), (32) and (35) and the main difficulty is to obtain the 

derivative 



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s

gel

n
g . To do so recall that gelg  depends on the solvent content of the gel via β  

(see Equation (34)) and it also depends on two parameters describing the internal state of the gel: 

the microdomain spacing, R , and the size of solvent pool, γ . 

Thus ( )γβ ,,Rgg gelgel =  and taking into account that β,R  and γ  are related by Equation (30) 

we may write: 
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We now divide both sides of Equation (A4.2) by snδ , write explicit expressions for the 

derivatives in the brackets, substitute the result into Equation (A4.1), and, upon performing all 

algebra, obtain the desired expression for the solvent chemical potential. There are two different 

cases however that we will treat separately. 

I. If the gel reaches internal equilibrium by adjusting the microdomain size, the first 

bracket in Equation (A4.2) is zero (see Equation (36)). 

From Equations (19), (32), (35) we find: 
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where the derivatives are given by Equations (A3.2), (A3.5), (A3.8), (A3.12). βγ ∂∂  is 

calculated from Equation (A3.14). Introducing 
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into Equations (A4.2), (A4.1) and performing very tedious algebra we get Equation (40) of 

the text for the osmotic pressure (expressions for the first six terms of Equation (40) are 

derived in Appendix 5). 

II. If some entanglements between copolymer chains prevent free redistribution of 

copolymer molecules between different microdomains, ( )γβ ,,Rgg gelgel =  is no 

longer at its minimum with respect to R , and there is a contribution to the chemical 

potential from the first bracket of Equation (A4.2). 

The solvent chemical potential inside the gel is given by: 
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I
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where I
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µ  is the solvent chemical potential in a freely assembled gel, as calculated for case 

I, and 
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The square bracket in this equation is identical to the left-hand side of Equations (36),(37). It 

is calculated explicitly using the equations of Appendix 3. When copolymer molecules do not 

redistribute between different microdomains of the gel, the microdomain volume is specified 

by the number of solvent molecules and we have: 
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Using an approximate relation dRRARdV )()( ≅  together with Equation (A4.7), we rewrite 

Equation (A4.6): 
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Case I corresponds to a totally free self-assembly of a mesoscopic gel, whereas case II 

corresponds to some frozen entanglements or effective crosslinks in the gel. The solvent fraction 

*
sϕ  at which such entanglements are first introduced, can be considered a solvent fraction at 

preparation of the gel. For a given solvent uptake, i.e., given β, minimization of the gel free 

energy with respect to the domain size, R, has different meanings for different gel morphologies. 

For a lamellar gel, variation of R affects the number of chains per unit area, [ ] ( )31 KB aNR β− . For 

a cylindrical gel, change of R changes the number of chains per unit length of the cylinder, 

[ ] ( )322 1 KB aNR βπ − . For a spherical structure, R uniquely defines the number of chains in the 

sphere, [ ] ( )333 1
3
4

KB aNR βπ − . When there is no self-assembly  ( *
sϕϕ > ), we calculate the 

microdomain spacing as we add solvent to gels of different geometries assuming constancy of the 

number of chains per unit area in the lamellae, per unit length of the long axis in the cylinders 

and per one domain in the spheres: 
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where *R  is the microdomain spacing at preparation of the gel that is found by solving Equation 

(37).  
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Appendix 5 

Expressions for contributions to osmotic pressure ( surfΠ , mix
nonelΠ , elΠ , polyΠ , mobΠ , 

str
BΠ ), Equation (40)  

The contribution from mixing solvent with polymer is calculated from the Flory-Huggins 

equation taking into account that the solvent pool does not contribute to mixing terms: 

( ) 



 −+−+








−−=

23 11ln
)1(v
)(v1 A

sAS
A
s

A
s

mix
nonelKa φχφφγΠ .   (A5.1) 

Here A
sφ  is the average volume fraction of solvent within the A-brush ( [ ]βγ ,∈y ). 

The surface contribution and the elasticity contribution from the B-brush that does not 

contain the solvent are calculated as discussed elsewhere 37: 
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The electrostatic contribution is coupled with the elasticity contribution from the A-brush 

that carries fixed charge. These contributions are given by: 
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where the last equation gives the contribution of the mobile ions inside the gel to osmotic 

pressure. 

In Equation (A5.6), the derivatives that are related to the distribution of the mobile charge 

are found from Equation (31): 
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and the derivative of the potential at the A-B boundary is obtained from Equation (23): 
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Calculation of contribution γΠ  to the osmotic pressure is explained in Appendix 4, Equation 

(A4.4). 
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Figure 1  Microdomain of a swollen diblock-copolymer hydrogel with an outer hydrophobic part 

on the periphery, an inner hydrophilic part containing solvent, mobile monovalent salt ions and 

fixed charges on the polymer chains. A solvent pool with mobile ions is in the microdomain 

center 
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γ β

Figure 2  A fragment of  the gel 

microdomain and calculated profiles of 

electric potential, mobile ions and charge 

fixed on the polymer chains. Calculations 

are performed for a strongly charged gel, 

α =0.5, at high salt concentration, 
b
sc =200mM, and sϕ =0.85. Model 

parameters are: 1000=+= BA NNN , 

31.0=Af , 68.0=== aaa BA nm, 

0228.00.33 −= TABχ , 0=ASχ , 

KT 16.298= . 
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Figure 3 Predicted distribution of electric potential, mobile ions and fixed charge across the 

microdomain shown in Figure 2. Low salt concentration: b
sc =1.7mM. α =0.05, sϕ =0.80, other 

parameters as in Figure 2. 
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Figure 4 Effect of salt concentration in external solution on the excess chemical potential (in units 

of kT) of solvent in the gel over that in the external solution for ionic gels of different 

morphologies. Equilibrium swelling of the gel corresponds to zero of the excess chemical 

potential. Fraction at preparation of the gel is *
sϕ =0.91, 460=+= BA NNN ; α =0.01; other 

model parameters as in Figure 2. 
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Figure 5 Effect of the assumed ionic charge and microdomain shape on the calculated swelling 

pressure (curves) and experimental data (points) for a sodium polyacrylate hydrogel 12 at 

CNaCl=40mM. Polymer fraction at preparation of the gel is ca. 0.3 vol.%. 460=+= BA NNN ; 

other model parameters as in Figure 2. 
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Figure 6 Calculated equilibrium swelling (ratio of swollen-to-dry gel volumes) versus salinity of 

the bulk solution for gels of different ionic charge and morphology. Model parameters as in 

Figure 2. Results of the classical Flory-Rehner+Donnan theory, Equation (41), are given for 
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cN =101. Points show experimental data 9 for a microphase-separated polyacryl-based hydrogels 

prepared at ca. 470-460mM polymer. 
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