
Performance Evaluation of Plasma and
Astrophysics Applications on Modern Parallel

Vector Systems

Jonathan Carter, Leonid Oliker, and John Shalf

NERSC/CRD, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
{jtcarter,loliker,jshalf}@lbl.gov

Abstract. The last decade has witnessed a rapid proliferation of super-
scalar cache-based microprocessors to build high-end computing (HEC)
platforms, primarily because of their generality, scalability, and cost ef-
fectiveness. However, the growing gap between sustained and peak per-
formance for full-scale scientific applications on such platforms has be-
come major concern in high performance computing. The latest gener-
ation of custom-built parallel vector systems have the potential to ad-
dress this concern for numerical algorithms with sufficient regularity in
their computational structure. In this work, we explore two and three
dimensional implementations of a plasma physics application, as well
as a leading astrophysics package on some of today’s most powerful su-
percomputing platforms. Results compare performance between the the
vector-based Cray X1, Earth Simulator, and newly-released NEC SX-
8, with the commodity-based superscalar platforms of the IBM Power3,
Intel Itanium2, and AMD Opteron. Overall results show that the SX-8
attains unprecedented aggregate performance across our evaluated ap-
plications.

1 Introduction

The last decade has witnessed a rapid proliferation of superscalar cache-based
microprocessors to build high-end computing (HEC) platforms. This is primar-
ily because their generality, scalability, and cost effectiveness convinced com-
puter vendors and users that vector architectures hold little promise for future
large-scale supercomputing systems. However, the constant degradation of su-
perscalar sustained performance has become a well-known problem in the sci-
entific computing community. This trend has been widely attributed to the use
of superscalar-based commodity components whose architectural designs offer a
balance between memory performance, network capability, and execution rate,
that is poorly matched to the requirements of large-scale numerical computa-
tions. The latest generation of custom-built parallel vector systems are address-
ing these challenges for numerical algorithms amenable to vectorization.

Superscalar architectures are unable to efficiently exploit the large number of
floating-point units that can be potentially fabricated on a chip, due to the small



granularity of their instructions and the correspondingly complex control struc-
ture necessary to support it. Vector technology, on the other hand, provides an
efficient approach for controlling a large amount of computational resources pro-
vided that sufficient regularity in the computational structure can be discovered.
Vectors exploit these regularities to expedite uniform operations on independent
data elements, allowing memory latencies to be masked by overlapping pipelined
vector operations with memory fetches. Vector instructions specify a large num-
ber of identical operations that may execute in parallel, thus reducing control
complexity and efficiently controlling a large amount of computational resources.
However, when such operational parallelism cannot be found, the efficiency of the
vector architecture can suffer from the properties of Amdahl’s Law, where the
time taken by the portions of the code that are non-vectorizable easily dominate
the execution time.

In order to quantify what modern vector capabilities entail for the scien-
tific communities that rely on modeling and simulation, it is critical to evaluate
them in the context of demanding computational algorithms. This work com-
pares performance between the vector-based Cray X1, Earth Simulator (ES)
and newly-released NEC SX-8, with commodity-based superscalar platforms:
the IBM Power3, Intel Itanium2, and AMD Opteron. We study the behavior
of three scientific codes with the potential to run at ultra-scale, in the areas
of plasma physics (LBMHD2D and LBMHD3D), and astrophysics (CACTUS).
Our work builds on our previous efforts [1, 2] and makes the contribution of
adding recently acquired performance data for the SX-8, and the latest genera-
tion of superscalar processors. Additionally, we explore improved vectorization
techniques for 2LBMHD and Cactus boundary conditions. Overall results show
that the SX-8 attains unprecedented aggregate performance across our evaluated
applications, continuing the trend set by the ES in our previous performance
studies.

2 HEC Platforms and Evaluated Applications

In this section we briefly describe the computing platforms and scientific appli-
cations examined in our study. Tables 1 and 2 present an overview of the salient
features for the five parallel HEC architectures. Observe that the vector machines
have higher peak performance and better system balance than the superscalar
platforms. Additionally, the X1, ES, and SX-8 have high memory bandwidth
relative to peak CPU speed (bytes/flop), allowing them to more effectively feed
the arithmetic units. Finally, the vector platforms utilize interconnects that are
tightly integrated to the processing units, with high performance network buses
and low communication software overhead.

Three superscalar commodity-based platforms are examined in our study.
The IBM Power3 experiments reported were conducted on the 380-node IBM
pSeries system, Seaborg, running AIX 5.2 (Xlf compiler 8.1.1) and located at
Lawrence Berkeley National Laboratory (LBNL). Each SMP node consists of
sixteen 375 MHz processors (1.5 Gflop/s peak) connected to main memory via



the Colony switch using an omega-type topology. The AMD Opteron system,
Jacquard, is also located at LBNL and contains 320 dual nodes, running Linux
2.6.5 (PathScale 2.0 compiler). Each node contains two 2.2 GHz Opteron proces-
sors (4.4 Gflop/s peak), interconnected via Infiniband fabric in a fat-tree config-
uration. Finally, the Intel Itanium experiments were performed on the Thunder
system, consisting of 1024 nodes, each containing four 1.4 GHz Itanium2 proces-
sors (5.6 Gflop/s peak) and running Linux Chaos 2.0 (Fortran version ifort 8.1).
The system is interconnected using Quadrics Elan4 in a fat-tree configuration,
and is located at Lawrence Livermore National Laboratory.

We also examine three state-of-the-art parallel vector systems. The Cray X1
is designed to combine traditional vector strengths with the generality and scal-
ability features of modern superscalar cache-based parallel systems. The compu-
tational core, called the single-streaming processor (SSP), contains two 32-stage
vector pipes running at 800 MHz. Each SSP contains 32 vector registers hold-
ing 64 double-precision words, and operates at 3.2 Gflop/s peak for 64-bit data.
The SSP also contains a two-way out-of-order superscalar processor running
at 400 MHz with two 16KB caches (instruction and data). Four SSP can be
combined into a logical computational unit called the multi-streaming processor
(MSP) with a peak of 12.8 Gflop/s. The four SSPs share a 2-way set associative
2MB data Ecache, a unique feature for vector architectures that allows extremely
high bandwidth (25–51 GB/s) for computations with temporal data locality. The
X1 node consists of four MSPs sharing a flat memory, and large system config-
uration are networked through a modified 2D torus interconnect. All reported
X1 experiments were performed on the 512-MSP system (several reserved for
system services) running UNICOS/mp 2.5.33 (5.3 programming environment)
and operated by Oak Ridge National Laboratory.

The vector processor of the ES uses a dramatically different architectural
approach than conventional cache-based systems. Vectorization exploits regular-
ities in the computational structure of scientific applications to expedite uniform
operations on independent data sets. The 500 MHz ES processor is an enhanced
NEC SX6, containing an 8-way replicated vector pipe with a peak performance
of 8.0 Gflop/s per CPU. The Earth Simulator is the world’s third most pow-
erful supercomputer [3], containing 640 ES nodes connected through a custom

Table 1. CPU overview of the Power3, Itanium2, Opteron, X1, ES, and SX-8 platforms.

CPU/ Clock Peak Mem BW Peak
Platform

Node (MHz) (GF/s) (GB/s) (Byte/Flop)

Power3 16 375 1.5 0.7 0.47

Itanium2 4 1400 5.6 6.4 1.1

Opteron 2 2200 4.4 6.4 1.5

X1 4 800 12.8 34.1 2.7

ES (Modified SX-6) 8 500 8.0 32.0 4.0

SX-8 8 2000 16.0 64.0 4.0



single-stage IN crossbar. The 5120-processor ES runs Super-UX, a 64-bit Unix
operating system based on System V-R3 with BSD4.2 communication features.
As remote ES access is not available, the reported experiments were performed
during the authors’ visit to the Earth Simulator Center located in Kanazawa-ku,
Yokohama, Japan in 2003 and 2004.

Finally, we examine the newly-released NEC SX-8, the world’s most pow-
erful vector processor. The SX-8 architecture operates at 2 GHz, and contains
four replicated vector pipes for a peak performance of 16 Gflop/s per processor.
The SX-8 architecture has several enhancements compared with the ES/SX6
predecessor, including improved divide performance, hardware square root func-
tionality, and in-memory caching for reducing bank conflict overheads. However,
the SX-8 in our study uses commodity DDR-SDRAM; thus, we expect higher
memory overhead for irregular accesses when compared with the specialized
high-speed FPLRAM (Full Pipelined RAM) of the ES. Both the ES and SX-8
processors contain 72 vector registers each holding 256 doubles, and utilize scalar
units operating at the half the peak of their vector counterparts. All reported
SX-8 results were run on the 36 node (72 soon to be available) system located at
High Performance Computer Center (HLRS) in Stuttgart, Germany. This HLRS
SX-8 is interconnected with the NEC Custom IXS network and runs Super-UX
(Fortran Version 2.0 Rev.313). All missing performance results will appear in
the final paper version.

2.1 Scientific Applications

The application domains from from scientific computing were chosen to compare
the performance of the vector-based X1, ES, and SX-8 with the superscalar-
based Power3, Itanium2, and Opteron systems. We examine LBMHD2D and
LBMHD3D, two- and three-dimensional implementations of a plasma physics
applications that use the Lattice-Boltzmann method to study magneto-hydrody-
namics; and CACTUS, a modular framework supporting a wide variety of multi-
physics applications [4], using the Arnowitt-Deser-Misner (ADM) Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) [5] method for simulation of black holes. An
overview of the applications is presented in Table 3.

Table 2. Interconnect performance of the Power3, Itanium2, Opteron, X1, ES, and
SX-8 platforms.

MPI Lat MPI BW Bisect BW Network
Platform Network

(µsec) (GB/s/CPU) (Byte/Flop) Topology

Power3 Colony 16.3 0.13 0.09 Fat-tree

Itanium2 Quadrics 3.0 0.25 0.04 Fat-tree

Opteron InfiniBand 6.0 0.59 0.11 Fat-tree

X1 Custom 7.3 6.3 0.09 2D-torus

ES (Modified SX-6) Custom (IN) 5.6 1.5 0.19 Crossbar

SX-8 IXS 5.0 2.0 0.13 Crossbar



Table 3. Overview of scientific applications examined in our study.

Name Lines Discipline Methods Structure

LBMHD2D 1,500 Plasma Physics Magneto-Hydrodynamics,
Lattice Boltzmann

Grid/Lattice

LBMHD3D 2,500 Plasma Physics Magneto-Hydrodynamics,
Lattice Boltzmann

Grid/Lattice

CACTUS 84,000 Astrophysics Einstein Theory of GR, ADM-
BSSN, Method of Lines

Grid

These codes represent candidate ultra-scale applications that have the po-
tential to fully utilize leadership-class computing systems. Performance results,
presented in Gflop/s per processor and percentage of peak, are used to compare
the relative time to solution of our evaluated computing systems. When differ-
ent algorithmic approaches are used for the vector and scalar implementations,
this value is computed by dividing a valid baseline flop-count by the measured
wall-clock time of each platform. Missing results will be presented in the final
paper.

3 Magneto-Hydrodynamic Turbulence Simulation

Lattice Boltzmann methods (LBM) have proved a good alternative to conven-
tional numerical approaches for simulating fluid flows and modeling physics in
fluids [6]. The basic idea of the LBM is to develop a simplified kinetic model that
incorporates the essential physics, and reproduces correct macroscopic averaged
properties. Recently, several groups have applied the LBM to the problem of
magneto-hydrodynamics (MHD) [7, 8] with promising results. We use two LB
MHD codes, an previously used 2D code [9, 1] and a more recently developed
3D code. In both cases, the codes simulate the behavior of a conducting fluid
evolving from simple initial conditions through the onset of turbulence. Figure 1
shows a slice through the xy-plane in the (left) 2D and right (3D) simulation,
where the vorticity profile has considerably distorted after several hundred time
steps as computed by LBMHD. In the 2D case, the square spatial grid is cou-
pled to an octagonal streaming lattice and block distributed over a 2D processor
grid. The 3D spatial grid is coupled via a 3DQ27 streaming lattice and block dis-
tributed over a 3D Cartesian processor grid. Each grid point is associated with
a set of mesoscopic variables, whose values are stored in vectors proportional to
the number of streaming directions — in this case 9 and 27 (8 and 26 plus the
null vector).

The simulation proceeds by a sequence of collision and stream steps. A col-
lision step involves data local only to that spatial point, allowing concurrent,
dependence-free point updates; the mesoscopic variables at each point are up-
dated through a complex algebraic expression originally derived from appro-
priate conservation laws. A stream step evolves the mesoscopic variables along



Fig. 1. Contour plot of xy-plane showing the evolution of vorticity from well-defined
tube-like structures into turbulent structures using (left) LBMHD2D and (right)
LBMHD3D.

the streaming lattice, necessitating communication between processors for grid
points at the boundaries of the blocks.

Additionally, for the 2D case, an interpolation step is required between the
spatial and streaming lattices since they do not match. This interpolation is
folded into the stream step. For the 3D case, a key optimization described by
Wellein and co-workers [10] was implemented, saving on the work required by
the stream step. They noticed that the two phases of the simulation could be
combined, so that either the newly calculated particle distribution function could
be scattered to the correct neighbor as soon as it was calculated, or equivalently,
data could be gathered from adjacent cells to calculate the updated value for
the current cell. Using this strategy, only the points on cell boundaries require
copying.

3.1 Vectorization details

The basic computational structure consists of two or three nested loops over
spatial grid points (typically 1000s iterations) with inner loops over velocity
streaming vectors and magnetic field streaming vectors (typically 10-30 itera-
tions), performing various algebraic expressions. Although the two codes have
kernels which are quite similar, our experiences in optimizing were somewhat
different.

For the 2D case, in our earlier work on the ES, attempts to make the compiler
vectorize the inner gridpoint loops rather than the streaming loops failed. The
inner grid point loop was manually taken inside the streaming loops, which were
hand unrolled twice in the case of small loop bodies. In addition, the array
temporaries added were padded to reduce bank conflicts. With the hindsight of



our later 3D code experience, this strategy is clearly not optimal. Since more
work can be inserted into the vectorized loop by unrolling the streaming loops
completely, this will give better utilization of the multiple vector pipes. We
have verified that this strategy does indeed give better performance than the
original algorithm on both the ES and SX-8, and show results that illustrate
this in the next section. Turning to the X1, the compiler did an excellent job,
multi-streaming the outer grid point loop and vectorizing the inner grid point
loop after unrolling the stream loops without any user code restructuring. For
the superscalar architectures some effort was made to tune for better cache use.
First, the inner gridpoint loop was blocked and inserted into the streaming loops
to provide stride-one access in the innermost loops. The streaming loops were
then partially unrolled.

For the 3D case, on both the ES and SX-8, the innermost loops were unrolled
via compiler directives and the (now) innermost grid point loop was vectorized.
This proved a very effective strategy, and was also followed on the X1. In the
case of the X1, however, the compiler needed more coercing via directives to
multi-stream the outer grid point loop and vectorize the inner grid point loop
once the streaming loops had been unrolled. The difference in behavior is clearly
related to the size of the unrolled loop body, the 3D case being a factor of
approximately three more complicated. In a multi-streamed code the number of
vector registers available for a vectorized loop is limited and for complex loop
bodies register spilling will occur. However, in this case, the strategy pays off
as shown experimental results section below. For the superscalar architectures,
we utilized a data layout that has been previously shown to be optimal on
cache-based machines [10], but did not explicitly tune for the cache size on any
machine.

Interprocessor communication was implemented using the MPI library, by
copying the non-contiguous mesoscopic variables data into temporary buffers,
thereby reducing the required number of send/receive messages.

3.2 Experimental Results

Tables 4 and 5 and present the performance of both LBMHD applications across
the five architectures evaluated in our study. Cases where the memory required
exceeded that available as indicated with a dash. For LBMHD2D we show the
performance of both vector algorithms (first strip-mined as used in the original
ES experiment, and second the new unrolled inner) for the SX-8. In accordance
with the discussion in the previous section, the new algorithm clearly outper-
forms the old.

Observe that the vector architectures clearly outperform the scalar systems
by a significant factor. Across these architectures, the LB applications exhibit
an average vector length (AVL) very close to the maximum and a very high vec-
tor operation ratio (VOR). In absolute terms, the SX-8 is the leader by a wide
margin, achieving the highest per processor performance to date for LBMHD3D.
The ES, however, sustains the highest fraction of peak across all architectures



Table 4. LBMHD2D performance in GFlop/s (per processor) across the studied ar-
chitectures for a range of concurrencies and grid sizes. The original and optimized
algorithms are shown for the ES and SX-8. Percentage of peak is shown in parenthesis.

original optimized original optimized
P Size Power3 Itanium2 Opteron X1 ES ES SX-8 SX-8

16 40962 0.11 (7) 0.40 (7) 0.83 (19) 4.32 (34) 4.62 (58) 5.00 (63) 6.33 (40) 7.45 (47)
64 40962 0.14 (9) 0.42 (7) 0.81 (18) 4.35 (34) 4.29 (54) 4.36 (55) 4.75 (30) 6.28 (39)
64 81922 0.11 (7) 0.40 (7) 0.81 (18) 4.48 (35) 4.64 (58) 5.01 (62) 6.01 (38) 7.03 (44)

256 81922 0.12 (8) 0.38 (6) 2.70 (21) 4.26 (53) 4.43 (55) 4.44 (28) 5.51 (34)

Table 5. LBMHD3D performance in GFlop/s (per processor) across the studied ar-
chitectures for a range of concurrencies and grid sizes. Percentage of peak is shown in
parenthesis.

P Size Power3 Itanium2 Opteron X1 ES SX-8

16 2563 0.14 (9) 0.26 (5) 0.70 (16) 5.19 (41) 5.50 (69) 7.89 (49)
64 2563 0.15 (10) 0.35 (6) 0.68 (15) 5.24 (41) 5.25 (66) 8.10 (51)

256 5123 0.14 (9) 0.32 (6) 0.60 (14) 5.26 (41) 5.45 (68) 9.66 (60)
512 5123 0.14 (9) 0.35 (6) 0.59 (13) — 5.21 (65) —

— 65% even at the highest 512-processor concurrency. Examining the X1 be-
havior, we see that in MSP mode absolute performance is similar to the ES.
The high performance of the X1 is gratifying since we noted several outputed
warnings concerning vector register spilling during the optimization of the colli-
sion routine. Because the X1 has fewer vector registers than the ES/SX-8 (32 vs
72), vectorizing these complex loops will exhaust the hardware limits and force
spilling to memory. That we see no performance penalty is probably due to the
spilled registers being effectively cached.

Turning to the superscalar architectures, the Opteron cluster outperforms the
Itanium2 system by almost a factor of 2X. One source of this disparity is that
the Opteron achieves stream memory bandwidth [11] of more than twice that of
the Itanium2. Another possible source of this degradation are the relatively high
cost of inner-loop register spills on the Itanium2, since the floating point values
cannot be stored in the first level of cache. Given the age and specifications,
the Power3 does quite reasonably, obtaining a higher percent of peak that the
Itanium2, but falling behind the Opteron.

Although the SX-8 achieves the highest absolute performance, the percentage
of peak is somewhat lower than that of ES. We believe that this is related
to the memory subsystem and use of DDR-SDRAM. In order to try to test
this hypothesis, we recorded the time due to memory bank conflicts for both
applications on the ES and SX-8 using the ftrace tool, and present it in Table 6.



Table 6. LBMHD2D and LBMHD3D bank conflict time (as percentage of real time)
shown for a range of concurrencies and grid sizes on ES and SX-8.

Grid ES SX-8
Code P

Size BC (%) BC (%)

2D 64 81922 0.3 16.6
2D 256 81922 0.3 10.7
3D 64 2563 >0.01 1.1
3D 256 5123 >0.01 1.2

Most obviously in the case of the 2D code, the amount of time spent due to
bank conflicts is appreciably larger for the SX-8. Efforts to reduce the amount
of time for bank conflicts for the 2D 64 processor benchmark produced a slight
improvement to 13%. In the case of the 3D code, the effects of bank conflicts are
very minimal.

4 CACTUS

One of the most challenging problems in astrophysics is the numerical solution
of Einstein’s equations following from the Theory of General Relativity (GR):
a set of coupled nonlinear hyperbolic and elliptic equations containing thou-
sands of terms when fully expanded. The Cactus Computational ToolKit [12,
5] is designed to evolve Einstein’s equations stably in 3D on supercomputers to
simulate astrophysical phenomena with high gravitational fluxes – such as the
collision of two black holes and the gravitational waves radiating from that event.
While Cactus is a modular framework supporting a wide variety of multi-physics
applications [4], this study focuses exclusively on the GR solver, which im-
plements the Arnowitt-Deser-Misner (ADM) Baumgarte-Shapiro-Shibata-Nak-
amura (BSSN) [5] method for stable evolutions of black holes. Figure 2 presents
a visualization of one of the first simulations of the grazing collision of two black
holes computed by the Cactus code. The merging black holes are enveloped by
their “apparent horizon”, which is colorized by its Gaussian curvature. The con-
centric surfaces that surround the black holes are equipotential surfaces of the
gravitational flux of the outgoing gravity wave generated by the collision.

The Cactus General Relativity components solve Einstein’s equations as an
initial value problem that evolves partial differential equations on a regular grid
using the method of finite differences. The core of the General Relativity solver
uses the ADM formalism, also known also as the 3+1 form. For the purpose
of solving Einstein’s equations, the ADM solver decomposes the solution into
3D spatial hypersurfaces that represent different slices of space along the time
dimension. In this formalism, the equations are written as four constraint equa-
tions and 12 evolution equations. Additional stability is provided by the BSSN
modifications to the standard ADM method [5]. The evolution equations can
be solved using a number of different numerical approaches, including staggered



Fig. 2. Visualization of grazing collision of two black holes as computed by Cactus1.

leapfrog, McCormack, Lax-Wendroff, and iterative Crank-Nicholson schemes. A
“lapse” function describes the time slicing between hypersurfaces for each step
in the evolution. A “shift metric” is used to move the coordinate system at each
step to avoid being drawn into a singularity. The four constraint equations are
used to select different lapse functions and the related shift vectors. For parallel
computation, the grid is block domain decomposed so that each processor has a
section of the global grid. The standard MPI driver for Cactus solves the PDE on
a local grid section and then updates the values at the ghost zones by exchanging
data on the faces of its topological neighbors in the domain decomposition.

4.1 Vectorization Details

For the superscalar systems, the computations on the 3D grid are blocked in
order to improve cache locality. Blocking is accomplished through the use of
temporary ‘slice buffers’, which improve cache reuse while modestly increasing
the computational overhead. On vector architectures these blocking optimiza-
tions were disabled, since they reduced the vector length and inhibited perfor-
mance. The ES compiler misidentified some of the temporary variables in the
most compute-intensive loop of the ADM-BSSN algorithm as having inter-loop
dependencies. When attempts to force the loop to vectorize failed, a temporary
array was created to break the phantom dependency.

Another performance bottleneck that arose on the vector systems was the
cost of calculating radiation boundary conditions. The cost of boundary condi-
tion enforcement is inconsequential on the microprocessor based systems, how-
ever they unexpectedly accounted for up to 20% of the ES runtime and over
30% of the X1 overhead. The boundary conditions were vectorized using very

1 Visualization by Werner Benger (AEI/ZIB) using Amira [13]



lightweight modifications such as inline expansion of subroutine calls and repli-
cation of loops to hoist conditional statements outside of the loop. Although
the boundaries were vectorized via these transformations, the effective AVL re-
mained infinitesimally small. Obtaining longer vector lengths would have re-
quired more drastic modifications that were deemed impractical due the amount
of the Cactus code that would be affected by the changes. This modification was
very effective on the X1 because the loops could be multistreamed. Multistream-
ing enabled an easy 3x performance improvement in the boundary calculations
that reduced their runtime contribution from the most expensive part of the
calculation to just under 9% of the overall wallclock time. These same modifica-
tions produced no net benefit for the ES or SX-8, however, because the extremely
short vector lengths.

4.2 Experimental Results

The full-fledged production version of the Cactus ADM-BSSN application was
run on each of the architectures with results for two grid sizes shown in Table 7.
The problem size was scaled with the number of processors to keep the compu-
tational load the same (weak scaling). Cactus problems are typically scaled in
this manner because their science requires the highest-possible resolutions.

For the vector systems, Cactus achieves almost perfect VOR (over 99%)
while the AVL is dependent on the x-dimension size of the local computational
domain. Consequently, the larger problem size (250x64x64) executed with far
higher efficiency on both vector machines than the smaller test case (AVL =
248 vs. 92), achieving 34% of peak on the ES. The oddly shaped domains for
the larger test case were required because the ES does not have enough memory
per node to support a 2503 domain. This rectangular grid configuration had
no adverse effect on scaling efficiency despite the worse surface-to-volume ratio.
Additional performance gains could be realized if the compiler was able to fuse
the X and Y loop nests to form larger effective vector lengths. Also, note that
for the Cactus simulations, bank conflict overheads are negligible for the chosen
(not power of two) grid sizes.

Recall that the boundary condition enforcement was not vectorized on the
ES and accounts for up to 20% of the execution time, compared with less than

Table 7. Cactus performance in GFlop/s (per processor) on 80x80x80 and 250x64x64
grids shown for a range of concurrencies. Percentage of peak is shown in parenthesis.

P Size Power3 Itanium2 Opteron X1 ES SX-8

16 803 0.31 (21) 0.60 (11) 0.96 (22) 0.54 (4) 1.47 (18) 1.86 (12)
64 803 0.22 (14) 0.58 (10) 0.43 (3) 1.36 (17)

256 803 0.22 (14) 0.58 (10) 0.41 (3) 1.35 (17) 1.75 (11)
16 250x642 0.10 (6) 0.58 (10) 0.96 (22) 0.81 (6) 2.83 (35) 4.27 (27)
64 250x642 0.08 (6) 0.57 (10) 0.72 (6) 2.70 (34)

256 250x642 0.07 (5) 0.55 (10) 0.68 (5) 2.70 (34) 3.87 (24)



5% on the superscalar systems. This demonstrates a a different dimension of ar-
chitectural balance that is specific to vector architectures: seemingly minor code
portions that fail to vectorize can quickly dominate the overall execution time.
The architectural imbalance between vector and scalar performance was partic-
ularly acute of the X1, which suffered a much greater impact from unvectorized
code than the ES. On the SX-8, the boundary conditions occupy approximately
the same percentage of the execution time as it did on the ES, which is consistent
with the fact that the performance improvements in the SX8 scalar execution
unit have scaled proportionally with the vector performance improvements. The
decreased execution efficiency is primarily reflected in lower efficiency in the
vector execution.

The microprocessor based systems offered lower peak performance and gen-
erally lower efficiency than the NEC vector systems. The Opteron, however,
offered impressive efficiency as well as peak performance in comparison to the
Power3 and the Itanium2. Unlike the Power3, the Opteron maintains its perfor-
mance even for the larger problem size. The relatively low scalar performance on
the microprocessor-based systems is partially due to register spilling, which is
caused by the large number of variables in the main loop of the BSSN calculation.
However, the much lower memory latency of the Opteron and higher effective
memory bandwidth relative to its peak performance allow it to maintain higher
efficiency than the Itanium2 or the Power3 processor.

In terms of communication overhead, the ES and Itanium2 systems spend
less than 13% of the overall wallclock time in MPI communication compared
with 23% on the Power3; highlighting the superior architectural balance of the
network design of the crossbar used for the ES and Quadrics QSNet which is
used on the Itanium2 system. The final paper version will contain the complete
set of Opteron/InfiniBand scaling results and corresponding analysis.

5 Conclusions

This study examined three scientific codes on the parallel vector architectures of
the X1, ES and SX-8, and three superscalar platforms, Power3, Itanium2, and

Fig. 3. Summary comparison of (left) raw performance and (right) percentage of peak
across our set of evaluated applications and architectures.



Opteron. A summary of the results for the largest comparable problem size and
concurrency is shown in Figure 3, for both (left) raw performance and (right)
percentages of peak. Overall results show that the SX-8 achieved the highest
performance of any architecture tested to date, demonstrating the tremendous
potential of modern parallel vector systems. However, the SX-8 could not match
the sustained performance of the ES, due in part, to a relatively higher memory
latency overhead for irregular data accesses. Both the SX-8 and ES also con-
sistently achieved a significantly higher fraction of peak than the X1, due to
superior scalar processor performance, memory bandwidth, and network bisec-
tion bandwidth relative to the peak vector flop rate. Finally, a comparison of
the superscalar platforms shows that the Opteron consistently outperformed the
Itanium2 and Power3, both in terms of raw speed and efficiency - due, in part,
to its on-chip memory controller and (unlike the Itanium2) the ability to store
floating point data in the L1 cache. The Itanium2 exceeds the performance of
the (relatively old) Power3 processor, however its obtained percentage of peak
falls further behind. Future work will expand our study to include additional
areas of computational sciences, while examining the latest generation of super-
computing platforms, including BG/L, X1E, and XT3.

Acknowledgments

The authors would like to thank the staff of the Earth Simulator Center, espe-
cially Dr. T. Sato, S. Kitawaki and Y. Tsuda, for their assistance during our
visit. We are also grateful for the early SX-8 system access provided by HLRS,
Germany. This research used resources of the National Energy Research Sci-
entific Computing Center, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC03-76SF00098. This re-
search used resources of the Lawrence Livermore National Laboratory, which
is supported by the Office of Science of the U.S. Department of Energy un-
der contract No. W-7405-Eng-48. This research used resources of the Center
for Computational Sciences at Oak Ridge National Laboratory, which is sup-
ported by the Office of Science of the Department of Energy under Contract
DE-AC05-00OR22725. LBNL authors were supported by the Office of Advanced
Scientific Computing Research in the Department of Energy Office of Science
under contract number DE-AC03-76SF00098.

References

1. Oliker, L., Canning, A., Carter, J., Shalf, J., Ethier, S.: Scientific computations on
modern parallel vector systems. In: Proc. SC2004: High performance computing,
networking, and storage conference. (2004)

2. Oliker, L., et al.: Evaluation of cache-based superscalar and cacheless vector ar-
chitectures for scientific computations. In: Proc. SC2003: High performance com-
puting, networking, and storage conference. (2003)

3. Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: Top500 Supercomputer Sites.
(http://www.top500.org)



4. Font, J.A., Miller, M., Suen, W.M., Tobias, M.: Three dimensional numerical
general relativistic hydrodynamics: Formulations, methods, and code tests. Phys.
Rev. D Phys.Rev. D61 (2000)

5. Alcubierre, M., Allen, G., Brgmann, B., Seidel, E., Suen, W.M.: Towards an un-
derstanding of the stability properties of the 3+1 evolution equations in general
relativity. Phys. Rev. D (gr-qc/9908079) (2000)

6. Succi, S.: The lattice boltzmann equation for fluids and beyond. Oxford Science
Publ. (2001)

7. Dellar, P.: Lattice kinetic schemes for magnetohydrodynamics. J. Comput. Phys.
79 (2002)

8. Macnab, A., Vahala, G., Pavlo, P., , Vahala, L., Soe, M.: Lattice boltzmann model
for dissipative incompressible MHD. In: Proc. 28th EPS Conference on Controlled
Fusion and Plasma Physics. Volume 25A. (2001)

9. Macnab, A., Vahala, G., Vahala, L., Pavlo, P.: Lattice boltzmann model for dis-
sipative MHD. In: Proc. 29th EPS Conference on Controlled Fusion and Plasma
Physics. Volume 26B., Montreux, Switzerland (June 17-21, 2002)

10. Wellein, G., Zeiser, T., Donath, S., Hager, G.: On the single processor performance
of simple lattice bolzmann kernels. Computers and Fluids (To appear)

11. STREAM: Sustainable memory bandwidth in high performance computers.
(http://www.cs.virginia.edu/stream)

12. Schnetter, E., et al.: Cactus Code Server. (http://www.cactuscode.org)
13. TGS Inc.: Amira - Advanced 3D Visualization and Volume Modeling.

(http://www.amiravis.com)


