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We present the results of a search for anomalous resonant production of tau lepton pairs with
large invariant mass, the first such search using the CDF II Detector in Run II of the Tevatron
pp̄ collider. Such anomalous production could arise from various new physics processes. In a data
sample corresponding to 195 pb−1 of integrated luminosity we predict 2.8±0.5 events from Standard
Model background processes and observe 4. We use this result to set limits on the production of
heavy scalar and vector particles decaying to tau lepton pairs.

PACS numbers: 12.60.Cn, 12.60.Fr,14.60.Fg,14.60.St,14.80.Cp

At the Fermilab Tevatron pp̄ collider, a number of non–
Standard-Model physics processes can lead to events with
high-mass tau lepton pairs in the final state. Exam-
ples include the resonant production of Higgs scalars in
two-Higgs-doublet models [1] at large tanβ, the ratio of
the vacuum expectation value of the two doublets. Two
Higgs doublets are required, for example, in the minimal
supersymmetric standard model [2], a favored candidate
for extending the Standard Model. The heavy scalar and
pseudoscalar Higgs bosons in this theory would decay to
tau pairs about 9% of the time. Also, in supersymme-
try, if R-parity is not conserved, heavy scalar neutrino
production could have tau pair decay modes [3]. If there
are heavy Z ′ bosons, these could also produce high mass
tau pairs in the final state, possibly even with enhanced
tau couplings [4]. With the large new data sample from
Run II of the Tevatron it is thus of great interest to per-
form a generic search for high-mass tau pairs.

This Letter presents the results of a search for high-
mass tau pairs performed using CDF II, the upgraded
Collider Detector at Fermilab (CDF) [5]. In 2002 and
2003 CDF recorded a data sample corresponding to
195 pb−1 of integrated luminosity of pp̄ collisions at a
center of mass energy of 1.96 TeV. This is the first such
search with the new high-statistics data sample [6] and
new tau identification techniques.

Since the tau lepton decays to lighter leptons (e or µ)
about 35% of the time, and to low-multiplicity hadronic
states the rest of the time, this analysis selects events
with one identified hadronic tau decay (τh) and one other
tau decay in the final state. Thus, there are three dis-
tinct final states, which we denote eτh, µτh, and τhτh.
The main background to this search comes from Drell-
Yan (DY) Z/γ∗ → τ+τ− production. Since we seek new
particles with mass much larger than that of the Z, we
use the observed rate for this background (at smaller tau
pair masses) as a control sample, and define the signal
region as that where the tau pairs have large visible in-
variant mass, with missing energy due to the neutrinos
from the tau decays.

CDF II is a large general purpose detector with an
overall cylindrical geometry surrounding the pp̄ inter-
action region [7]. The three-dimensional trajectories of
charged particles produced in pp̄ collisions are measured
starting at radii of 1.5 cm with multiple layers of sil-
icon microstrip detectors, and are measured at outer
radii with an axial/stereo wire drift chamber (COT).
The tracking system lies inside a uniform 1.4-T mag-
netic field produced by a superconducting solenoid, with

the field oriented along the beam direction. Outside
the solenoid lie the electromagnetic calorimeter and the
hadronic calorimeters, which are segmented in pseudo-
rapidity (η) [8] and azimuth in a projective “tower” ge-
ometry. A set of strip/wire chambers (CES) located at
a depth of six radiation lengths aids in reconstructing
photons and electrons from the shower shape. Muons
are identified by a system of drift chambers placed out-
side the calorimeter steel, which acts as an absorber for
hadrons. The integrated luminosity of the pp̄ collisions is
measured to an accuracy of 6% using the Cerenkov Lumi-
nosity Counters situated in the far forward and backward
regions [9].

The eτh and µτh events of interest are recorded us-
ing triggers designed to select “lepton plus track” events:
those with an e or µ with transverse momentum (pT )
greater than 8 GeV/c and another charged track with
pT > 5 GeV/c identified by the eXtremely Fast Tracker
(XFT) portion of the trigger electronics [10] which recon-
structs charged tracks in the COT. The efficiency of this
trigger is measured using leptons from Z boson decays,
the Υ resonance, and photon conversions [11].

For selecting τhτh events we use a trigger designed
to select at least one hadronically decaying tau with
ET > 20 GeV accompanied by at least 25 GeV miss-
ing energy in the plane transverse to the beam direction
( /ET ). The tau is identified by matching an XFT track
with pT > 5 GeV/c to a calorimeter cluster. Data used
from this trigger come from a sample corresponding to
the first 72 pb−1 of integrated luminosity recorded; this
is less than that of the rest of the data used because of
subsequent changes due to rate limitations.

Events selected by the triggers were recorded and
processed later to reconstruct charged particle tracks,
calorimeter clusters, and to identify electrons, muons,
photons, jets, and /ET . Electrons and muons are recon-
structed using algorithms described in Ref. [7]. Identifi-
cation of hadronic decays of taus employs a novel “shrink-
ing cone” algorithm based on high-pT charged tracks in
the silicon/COT system, and π0 candidates identified us-
ing the CES.

The τh identification algorithm begins with a list of
“seed tracks” ranked in pT , not yet used for another tau
candidate, and having pT > 6 GeV/c. Then it finds the
number of other tracks and π0 candidates whose momen-
tum vector makes an angle of less than α with the seed
track. The angle α is a function of Eclu, the energy in the
calorimeter cluster associated with the seed track. The
value of α is 10◦ or (5 GeV)/Eclu radians, whichever is
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less. To allow for resolution effects, the value of α is not
less than 100 mrad for π0 candidates, or 50 mrad for
charged tracks. If any other tracks or π0 candidates have
an angle greater than α but less than 30◦ to the seed
track, or if the invariant mass calculated from the sum of
all charged track and π0 candidate four-momenta exceeds
1.8 GeV/c2, the τh candidate is rejected. Candidates
with momentum having an angle of less than 10◦ with
that of of a previously identified e or µ are rejected. The
algorithm then considers further possible seed tracks, re-
peating the process until none remain.

The main challenge comes from the large production
rate of hadronic jets, which can be misidentified as τh.
Using the selection described above, Figure 1 shows the
efficiency for real hadronically decaying taus with |η| < 1
to be reconstructed as τh, using the simulation discussed
below. The figure also shows the jet → τh “fake” prob-
ability that hadronic jets are misidentified as hadronic
tau decays. These jets, reconstructed in a cone size
of ∆R =

√

(∆η)2 + (∆φ)2 = 0.7, come from events
recorded with triggers requiring various thresholds for
calorimeter cluster energy.

To discriminate against background, for the eτh (µτh)
channel the electron (muon) must have a transverse en-
ergy of at least 10 GeV, the τh must have ET > 25 GeV,
and the event must have /ET >15 GeV. For the τhτh

channel, one τh must have ET greater than 25 GeV, and
the other must have at least 10 GeV. The azimuthal
angle between the /ET vector and the e or µ (in eτh or
µτh events) or the less-energetic of the two in τhτh events
must be less than 30◦.

For all events selected by the above cuts we calculate
the “visible mass” (mvis) by adding the measured four-
momenta of the two identified tau decay products in the
event to the missing transverse energy four-momentum
(for which the z component is taken as zero), and then
calculating the invariant mass of the sum. This quantity
efficiently distinguishes between lower-mass production
of tau pairs (mainly from Z boson decays) and high-
mass tau pairs from possible new massive resonant par-
ticle production.

The main source of events expected in the selected
sample is DY production of Z/γ∗ decaying to lepton
pair final states, and of these, tau pair production pre-
dominates. The production cross section times branch-
ing ratio to pairs of each charged lepton species for DY
Z/γ∗ is assumed to be 250 pb [12] in the mass range
66-116 GeV/c2. For the DY process and for the pos-
sible new physics processes discussed below, we simu-
late the production and decay using the PYTHIA 6.215
Monte Carlo program [13] with CTEQ5L parton distribu-
tion functions (PDF’s) [14], with tau decays simulated by
TAUOLA [15]. Acceptance and resolution effects come
from the full CDF II detector simulation.

The second largest source of events passing our selec-
tion criteria is hadronic jets which are misidentified as a
τh, for example from events with a W boson decaying to
a charged lepton and a neutrino plus a jet which passes

FIG. 1: Identification efficiency (top) and jet→ τh probability
(bottom) as a function of tau visible decay product energy and
jet energy, respectively. The top plot, based on simulation,
shows the probability that true hadronically decaying taus are
identified as τh using the selection in the text. The lower plot
shows the probability that hadronic jets in the range |η| < 1
are misidentified as τh, as a function of jet calorimeter cluster
energy. The error bars indicate the statistical uncertainties.

the τh identification criteria. The estimated number of
expected events comes from applying the jet → τh “fake”
rates to jets in events passing the trigger and other re-
quirements, excluding the τh identification.

Various systematic uncertainties affect the predicted
number of signal and background events. The largest is
due to imperfect modeling of the tau identification effi-
ciency. We perform a cross check of this efficiency using
W → τν events recorded in the first 72 pb−1. Assuming
a production cross section times branching ratio to τν of
2688 pb [12], this check yields a multiplicative factor of
0.97±0.10, which is incorporated into the acceptance cal-
culation in the simulation. The 10% uncertainty in this
factor, which affects each identified τh in the selected
sample, includes the trigger efficiency uncertainty.

The uncertainties in the e and µ identification and trig-
ger efficiency, of 4% for e and 5.5% for µ, come from
studies described elsewhere [5].

The jet → τh fake background estimate has a 20%
uncertainty reflecting the variation in the fake rate among
the different trigger samples.

A 6% uncertainty due to imperfect modeling of the
/ET comes from studies of transverse energy balancing in
events with high energy jets recoiling against high energy
photons.

Imperfect knowledge of the PDF’s leads to an 8% un-
certainty in the DY and any new physics signal accep-
tances. The uncertainty is estimated from the variation
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TABLE I: Mean expected numbers of events in the control
region (mvis < 120 GeV/c2), compared with the numbers
observed. The uncertainties listed include both statistical and
systematic effects.

source eτh µτh τhτh total
Z/γ∗ → e+e− 0.1±0.1 - - 0.1±0.1
Z/γ∗ → µ+µ− - 0.5±0.3 - 0.5±0.3
Z/γ∗ → τ+τ− 45±7 38±6 4.2±0.8 88±12

jet → τh 4±1 4±1 3.2±0.6 11±2
total expected 49±7 43±6 7.4±1.0 99±13

observed 46 36 8 90

TABLE II: Mean expected numbers of events in the signal
region (mvis > 120 GeV/c2), compared with the numbers
observed. The uncertainties listed include both statistical and
systematic effects.

source eτh µτh τhτh total
Z/γ∗ → e+e− 0.2±0.1 - - 0.2±0.1
Z/γ∗ → µ+µ− - 0.5±0.3 - 0.5±0.3
Z/γ∗ → τ+τ− 0.6±0.1 0.5±0.1 0.4±0.1 1.4±0.3

jet → τh 0.3±0.1 0.2±0.1 0.3±0.1 0.8±0.2
total expected 1.0±0.2 1.2±0.3 0.6±0.1 2.8±0.5

observed 4 0 0 4

of the acceptance using different PDF sets.
Table I summarizes the expected numbers of events by

source for each channel, and shows the observed num-
ber of events in each search channel, for the control re-
gion dominated by Z boson decay (mvis < 120 GeV/c2).
The observed number is in good agreement with that
expected. This gives confidence that the estimated effi-
ciencies and background rates are well understood, and
we proceed to examine the signal region.

Table II shows, for each search channel, the numbers of
events expected and the uncertainty for each background
source in the signal region (mvis > 120 GeV/c2). We ob-
serve four eτh events, and no µτh or τhτh events. Given
the uncertainties shown in the table, the observed num-
ber of events is in good agreement with that expected.

Figure 2 shows the distribution of visible mass in the
signal and control regions, for the observed events and the
predicted background. The distribution of the masses of
the four events in the signal region is consistent with that
expected from background.

Since we observe no significant excess rate of high-
mass tau pair production, we determine upper bounds
on the production cross section times branching ratio to
tau pairs of hypothetical scalar and vector particles. As
a general model for the acceptance for scalar particle pro-
duction we use pseudoscalar Higgs boson (A) production,
and for vector particle production we use a Z ′ boson. The
acceptance for both increases from near zero at masses
of 100 GeV/c2 to about 4% at high masses (500 GeV/c2

or more).
To determine the upper bounds on the cross section

times branching ratio we form a likelihood from the joint

FIG. 2: Distribution of visible mass (mvis) for data (points)
and predicted backgrounds (shaded histograms) in the signal
and control regions. The dashed histogram shows the distri-
bution expected for a pseudoscalar Higgs A, with mA = 250
GeV/c2 and tanβ = 20, with the normalization increased by
1000. There are no observed events with mvis >200 GeV/c2.

Poisson probability of all search channel results, and use a
Bayesian method to incorporate the effects of systematic
uncertainties, which are represented by truncated gaus-
sian prior probability densities, including correlations.
The likelihood is converted to a posterior probability den-
sity in the signal cross section using Bayes Theorem, as-
suming a prior in the signal rate which is uniform up to
some high cutoff. The 95% CL upper limit comes from
the integral of the posterior density.

Figure 3 shows the 95% CL upper bound on the cross
section times branching ratio to tau pairs for scalar and
vector particle production. Table III shows the upper
limits on the production rate of scalar and vector parti-
cles as a function of mass. As an example of the sensi-
tivity, these results would rule out a Z ′ with Standard
Model couplings having a mass less than 399 GeV/c2,
as indicated by the curve of cross section times branch-
ing ratio in the figure. The figure also shows the case
of R-parity-violating scalar neutrino production and de-
cay to tau pairs; this analysis, as an example, excludes a
377 GeV/c2 scalar neutrino having coupling λ′ to dd̄ and
branching ratio B to tau pairs such that λ′2B =0.01. In
general the limits are readily interpreted within the con-
text of new physics models in which new scalar or vector
particles decay to tau pairs.
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FIG. 3: Upper limits at 95% CL on the production cross
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