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Abstract

Enhanced electron trapping using plasma density down ramps as a method for improving the

performance of laser injection schemes is proposed and analyzed. A decrease in density implies an

increase in plasma wavelength, which can shift a relativistic electron from the defocusing to the

focusing region of the accelerating wakefield, and a decrease in wake phase velocity, which lowers the

trapping threshold. The specific method of two-pulse colliding pulse injector was examined using a

three-dimensional test particle tracking code. A density down-ramp with a change of density on the

order of tens of percent over distances greater than the plasma wavelength led to an enhancement

of charge by two orders in magnitude or more, up to the limits imposed by beam loading. The

accelerated bunches are ultrashort (fraction of the plasma wavelength, e.g., ∼ 5 fs), high charge

(> 20 pC at modest injection laser intensity ∼ 1017 W/cm2), with a relative energy spread of a

few percent at a mean energy of ∼ 25 MeV, and a normalized root-mean square emittance on the

order 0.5 mm mrad.
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I. INTRODUCTION

Compared to standard radio-frequency (RF) linear accelerators, advanced accelerators

using plasmas can produce much higher acceleration gradients, in excess of 10 GeV/m

without the limitation of breakdown. In a plasma, the wavelength of the acceleration field

is the plasma wavelength, λp = 2πc/ωp, or λp[m] ' 3.3 × 104 (n0[cm
−3])−1/2, where n0 is

the plasma density, c is the speed of light, ωp = (4πn0e
2/me)

1/2
is the plasma frequency, me

the electron mass and −e the electron charge. For example, a laser wakefield accelerator

(LWFA) [1] in the standard regime typically has a density on the order of n0 ' 1018 cm−3

and a plasma wavelength on the order of λp ' 30 µm. If a mono-energetic electron bunch is

injected into a wakefield such that it is accelerated while maintaining a small energy spread,

then it is necessary for the bunch to occupy a small fraction of the wake period, on the order

of a few femtoseconds. This requires truly femtosecond accuracy in the injection process,

which is beyond the current state-of-the-art performance of photocathode radio-frequency

electron guns.

Several injection mechanisms of plasma electrons into the accelerating wake have been

described that rely on self-trapping. In a homogeneous plasma, self-trapping can occur by

driving the wake to the wavebreaking limit in the self-modulated LWFA regime [2, 3], in the

highly-nonlinear blow-out or bubble regime [4, 5], or in the two-dimensional wavebreaking

regime [6]. In an inhomogeneous plasma, a gradual density down-ramp will eventually lead

to wavebreaking some distance behind the drive beam, due to decrease in the wake phase

velocity on the ramp [7, 8]. Alternatively, a strong drive pulse can lead to trapping at a

sudden discontinuity in the plasma density [9].

In an effort to improve the trapped bunch quality over single-beam methods, several

injection methods have been proposed that utilize additional injection laser pulses. The

motivation behind using additional injection pulses is to have more control over the injection

process, provided the drive pulse does not create a wake of sufficient amplitude to self-

trap background plasma electrons (so called dark current free powering of plasmas has

recently been observed in a channel guided LWFA [10]). The injection pulse can be used

to turn on and off the injection process, e.g., injection only occurs when the injection pulse

intersects with the wake. The ponderomotive force associated with the envelope of a single

injection laser pulse can be used to boost the electron momentum and phase such that they
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become trapped in the wakefield [11, 12, 13]. Typically, ponderomotive injection methods

require high intensities I > 1018 W/cm2 (corresponding to a normalized laser strength

a ' 8.6× 10−10λ[µm]I1/2[W/cm2] > 1) in both the pump and injection laser pulses.

Alternatively, the slow phase velocity beat wave (interference term) produced by the

collision of two counter-propagating (or intersecting at an angle) lasers can be used in either

a three-pulse [14, 15] or two-pulse [16, 17, 18, 19] configuration. In the original colliding pulse

injector (CPI) concept, three short laser pulses were used for electron injection [14, 15]. The

pump pulse generates a plasma wake through its ponderomotive force, as in the standard

laser wakefield accelerator (LWFA). The two injection lasers, one pulse propagating in the

forward direction behind the pump laser pulse and the other in the backward direction,

collide at a predetermined phase of the plasma wake. During this collision, the beating of

the injection laser pulses generates a beat wave with a slow phase velocity that kicks a subset

of the background plasma electrons which can be trapped and accelerated. A simplified CPI

configuration was proposed and analyzed by Fubiani et al. [16, 17, 19] that uses only two

laser pulses with parallel polarizations: an intense pump pulse for wakefield generation and

a single counterpropagating (or propagating at a finite angle) injection pulse. Injection is

the result of the laser beat wave produced when the backward injection pulse collides with

the trailing portion of the pump pulse. This configuration has the advantages of being easier

to implement in comparison to the three-pulse CPI scheme, and of requiring less intensity

in the injection pulse compared to the ponderomotive injection scheme, since injection is

the result of the laser beat wave as opposed to the ponderomotive force of a single injection

pulse.

In this paper, a negative plasma density gradient is proposed and analyzed as a method

for enhancing the electron beam quality in laser injection schemes. If a laser injection scheme

is operated close to threshold, electrons will be injected into the region of the wake that is

accelerating but defocusing. To have a trapped electron bunch that is both accelerated and

focused, it is necessary to shift the bunch forward in phase. This can be accomplished with

a downward density ramp. As the density decreases, the plasma wavelength increases, thus

a relativistic electron will be shifted forward in phase relative to the wake. This can shift

an electron from the defocusing to the focusing region of the accelerating wake. In addition,

if injection occurs on the density down-ramp, the trapping can occur more readily since the

phase velocity of the wake is lowered on the down ramp. Numerical examples are given based
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on a three-dimensional (3D) particle tracking code for the specific case of the two-pulse CPI

method with density gradients.

The remainder of this paper is organized as follows. The general concept of using density

down-ramps is discussed in Sec. II. The analytical expressions for the wakefield driven on

a density ramp are derived in Sec. III. Section IV presents the numerical results, in which

the motion of test particles are tracked in 3D in the analytically specified fields of the laser

pulses and the wakes. A discussion of the results is given in Sec. V. Also included is an

Appendix that discusses beam loading.

II. DENSITY DOWN-RAMPS

A density down-ramp can enhance the number of trapped and focused electrons by two

effects: (1) A decrease in density shifts the position of an electron forward in phase with

respect to the wakefield and (2) a decrease in density decreases the phase velocity of the

wake, thus providing a lower threshold for injection. Consider a change in density from ni

to nf (ni > nf ) over a length Lt and assume that the electron and laser are all moving in

the forward direction (z) with velocity c. The phases of the electron before and after the

transition are given by ψi = kpiζ and ψf = kpfζ, respectively, assuming that the slippage

between the electron and the drive laser pulse is small over Lt (ζ is approximately constant),

where ζ = z − ct is the position of the electron behind the drive pulse (ζ < 0 behind the

drive pulse), and kpi = ωpi/c and kpf = ωpf/c are the plasma wavenumbers evaluated at

ni and nf , respectively. The change in phase of the electron after the density transition is

∆ψ = ψi − ψf , i.e.,

∆ψ = ψi

[
1− (nf/ni)

1/2
]
' ψi (∆n/2ni) , (1)

assuming ∆n = ni − nf � ni. Hence, the change in density required to shift an electron

forward in phase by a small amount (e.g., ∆ψ ∼ π/4) is ∆n/ni = 2(∆ψ/ψi) = 2(∆ψ/kpiζ).

Note that rephasing becomes easier (a smaller ∆n/ni is required) with increasing distance

behind the driver (larger |ζ|). Hence, rephasing is more efficient for the three-pulse CPI

configuration than for two-pulse CPI, assuming the injection point for three-pulse CPI is

behind the first wake period.

If the injection (pulse collision) point was to occur on the down-ramp (as opposed to

prior to it), then trapping could be further enhanced due to the decrease in phase velocity
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of the wake on the down-ramp. The wake phase velocity vp can be calculated from the wake

phase ψ = kp(z)(z − ct) via vp/c = −(∂ψ/∂ct)/(∂ψ/∂z). This gives

vp/c = 1/(1 + k−1
p ζdkp/dz), (2)

where dkp/dz = (kp/2n)dn/dz. Since ζ < 0 behind the drive pulse, the phase velocity

decreases on a density down-ramp (dn/dz < 0). Note that this effect becomes more pro-

nounced the larger the distance behind the driver. Thus, the reduction in phase velocity due

to the down-ramp is potentially more effective for three-pulse CPI than for two-pulse CPI.

Eventually, even in the absence of an injection pulse, the down-ramp leads to wavebreaking

and injection for a sufficiently large distance behind the pump pulse [7], assuming that the

wake amplitude does not damp.

III. PLASMA RESPONSE

The cold fluid equations, describing the evolution of the plasma density n, the normalized

electron fluid momentum u = p/mc, the normalized electrostatic potential φ = eΦ/mc2,

and the normalized vector potential a = eA/mc2, are given by

∂n/∂ct+∇ · (nu/γ) = 0, (3)

∂(u− a)/∂ct = ∇(φ− γ), (4)

∇2φ = k2
p0[n/n00 − n0(z)], (5)

(∇2 − ∂2/∂ct2)a = k2
p0(n/n00)u/γ +∇∂φ/∂ct, (6)

where γ = (1 + u2)1/2, n0(z) is the initial density profile, kp0 = (4πn00e
2/mc2)1/2 is the

plasma wavenumber evaluated at the constant density n00 = n0(0), and ∇× (u−a) = 0 has

been assumed along with the gauge condition ∇ · a = 0.

These equations will be solved order by order with respect to the small parameter |aL| �

1, which is the normalized amplitude of the laser field. To first order, all quantities are small

except for u1 ' aL. The first order quantities are given by

∂n1/∂ct+∇ · (n0u1) = 0, (7)

∂(u1 − aL)/∂ct = ∇φ1, (8)

∇2φ1 = k2
p0n1/n00, (9)
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which can be combined to yield

∇2∂2φ1/∂ct
2 +∇ · [k2

p(∇φ1 + ∂aL/∂ct)] = 0, (10)

where k2
p = k2

p0n0(z)/n00. Since the primary contributions to the first order quantities are on

the fast time scale, i.e., φ1 ∼ exp[ik(z−ct)], where k is the laser wavenumber, the first order

quantities scale as φ1 ∼ k2
paL/(k

4r0Lt), n1/n00 ∼ aL/(k
2r0Lt), (u1 − aL)z ∼ k2

paL/(k
4r0Lt),

and (u1− aL)⊥ ∼ k2
paL/(k

5r2
0Lt), where Lt is the scale length of the axial density transition,

∂k2
p/∂z ∼ k2

p/Lt, and r0 is the scale length of the transverse gradient. Since k/kp � 1,

kLt � 1, and kr0 � 1, all first order quantities will be neglected except for u1 ' aL.

To second order,

∂n2/∂ct+∇ · (n0u2) = 0, (11)

∂(u2 − a2)/∂ct = ∇(φ2 − a2
L/2), (12)

∇2φ2 = k2
p0n2/n00, (13)

(∇2 − ∂2/∂ct2)a2 = k2
p(z)u2 +∇∂φ2/∂ct, (14)

along with ∇ · a2 = 0. These equations can be combined to yield

(∂2/∂ct2 + k2
p)∇φ2 − k2

p∇a2
L/2 = (∇2 − ∂2/∂ct2 − k2

p)∂a2/∂ct. (15)

In both the uniform plasma limit (k2
p = k2

p0) and the 1D limit (∇⊥ = 0), a2 = 0.

The above equation can be solved in the limits kpLt � 1 and kpr0 � 1 by assuming an

ordering |φ2| � |a⊥2| > |az2|. As is shown below, these terms scale as a⊥2 ∼ φ2/(k
2
pr0Lt)

and az2 ∼ φ2/(k
3
pr

2
0Lt). This last scaling follows from ∇ · a2 = 0, i.e., az2 ∼ a⊥2/(kpr0).

In the following, an averaging over the fast laser frequency is assumed such that the time

and axial derivatives scale as ∂/∂ct ∼ ∂/∂z ∼ kp. Taking the axial component of the above

equation yields to leading order(
∂2

∂ct2
+ k2

p

)
∂φ2

∂z
' k2

p(z)
∂

∂z

(
a2

L

2

)
, (16)

where a term of order k3
paz2 ∼ φ2/r

2
0Lt has been neglected. This determines the axial

wakefield Ez ∼ ∂φ2/∂z, neglecting terms of order 1/(k2
pr0Lt) or higher. To determine the

electromagnetic contribution to the wake (a⊥2), the transverse component of Eq. (15) is

operated on by ∂/∂z, which yields

∂

∂z

[(
∇2 − ∂2

∂ct2
− k2

p

)
∂ax2

∂ct

]
=

(
∂k2

p

∂z

)
∂

∂x

(
φ2 −

a2
L

2

)
. (17)
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Scaling the operators in the above equation implies ax2 ∼ φ2/(k
2
pr0Lt). Hence, the transverse

electron field of the wake is given to leading order by Ex ∼ ∂φ2/∂x, where terms of order

1/(kpLt) or higher are neglected.

Consider the wakefields being driven by a forward-going pump laser pulse (i = 0) and

a backward-going injection laser pulse (i = 1), the fields of which are described by the

normalized vector potentials ai = eAi/mec
2. The wake driven by the beating of the pump

and injection pulse will be neglected, as discussed in Ref. [16, 17]. The transverse laser field

(linearly polarized in the x-direction and propagating along the z-axis) is given by [20]

axi(r, ζi) = âi(r, ζi) cosψi , (18)

with

âi(r, ζi) = ai(ri/rsi) exp
(
−r2/r2

si

)
sin (πζi/Li) , (19)

for −Li < ζi < 0 and zero otherwise, where ζ0 = z − βg0ct (forward comoving coordinate),

ζ1 = −z − βg1ct (backward comoving coordinate), βgi = ηi is the linear group velocity,

βφi = η−1
i is the linear phase velocity, ηi = (1− ω2

p/ω
2
i − 4/k2

i r
2
i )

1/2 is the plasma index of

refraction, ψi = ki(z − βφict) + αi r
2/r2

si + αi − tan−1 αi is the phase, ki = ωi/(βφic) is the

wavenumber, ωi is the frequency in vacuum, rsi(z) = ri[1 + αi(z)]
1/2 is the spot size, ri is the

spot size at waist (here chosen to be z = Zfi
), αi(z) = (z−Zfi

)2/Z2
Ri

, ZRi
= kiηi r

2
i /2 is the

Rayleigh length, Li is the pulse length, and a constant has been omitted in the definition of

ψi that represents the initial position and phase of the laser pulse. The axial component of

the laser field is specified via ∇·ai = 0. Keeping only the leading order contributions gives

azi(r, ζi) ' 2x[âi(r, ζi)/(kir
2
si)] (sinψi − αi cosψi) . (20)

Included in the simulations presented below are the wakefields generated by both the

pump and injection laser pulses. For linear polarization and assuming kpr0 � 1 and kpLt �

1, i.e., a large laser spot and a slowly varying density transition, the normalized electric field

of the wakefield kp0Ei/E0 = −∇φ2i is given by[
∂2/∂ζ2

i + k2
p(z)

]
kp0Ei/E0 ' k2

p(z)∇â2
i /4 , (21)

where E0 = mc2kp0/e is the cold nonrelativistic wavebreaking field evaluated at fixed density

n00 and the independent variables ζi and z have been used. Note that a time-averaging has

been performed over the fast laser oscillation (laser frequency), i.e., 〈â2
i cos2 ψi〉 = â2

i /2. The
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axial component of Eq. (21) follows directly from Eq. (16), whereas the transverse component

represents the leading order contribution to E⊥, neglecting corrections of order 1/(kpLt) or

higher. Assuming that â2
i is a slowly varying function of z, i.e., |∂â2

i /∂ζi| � |∂â2
i /∂z|, the

solution to Eq. (21) is

Ei(r, ζi)/E0 = −(kp(z)/4kp0)

∫ ζi

0

dζ ′i sin[kp(z)(ζi − ζ ′i)](∂/∂ζ
′
i +∇⊥)â2

i (r, ζ
′
i), (22)

where a term proportional to ∂â2
i /∂z has been neglected inside the integrand, which neglects

additional terms of order Li/ZRi ∼ 1/(kkpr
2
0) � 1. Specifically, Eq. (21) yields the electric

field generated inside the pulse (−Li < ζi < 0)

Eri

E0

=
a2

i

2

r2
i r

kp0r4
si

e−2r2/r2
si

[
1 +

(4π2/k2
pL

2
i ) cos(kpζi)− cos(2πζi/Li)

(1− 4π2/k2
pL

2
i )

]
, (23)

Ezi

E0

=
kp

kp0

a2
i

8

r2
i

r2
si

e−2r2/r2
si

[
(4π2/k2

pL
2
i ) sin(kpζi)− sin(2πζi/Li)

(1− 4π2/k2
pL

2
i )

]
, (24)

and behind the pulse (ζi < −Li)

Eri

E0

= a2
i

r2
i r

kp0r4
si

e−2r2/r2
si

(
4π2

k2
pL

2
i

)
sin[kp(ζi + Li/2)] sin(kpLi/2)

(1− 4π2/k2
pL

2
i )

, (25)

Ezi

E0

= − kp

kp0

a2
i

4

r2
i

r2
si

e−2r2/r2
si

(
4π2

k2
pL

2
i

)
cos[kp(ζi + Li/2)] sin(kpLi/2)

(1− 4π2/k2
pL

2
i )

. (26)

For the resonant case Li = λp, which corresponds to a condition close to maximum wakefield

generation, inside the pulse

Eri

E0

=
a2

i

2

r2
i r

kp0r4
si

e−2r2/r2
si [1− cos(kpζi)− (kpζi/2) sin(kpζi)]) , (27)

Ezi

E0

= − kp

kp0

a2
i

8

r2
i

r2
si

e−2r2/r2
si [sin(kpζi)/2− (kpζi/2) cos(kpζi)]) , (28)

and behind the pulse,
Eri

E0

=
πa2

i

2

r2
i r

kp0r4
si

e−2r2/r2
si sin(kpζi) , (29)

Ezi

E0

= − kp

kp0

πa2
i

8

r2
i

r2
si

e−2r2/r2
si cos(kpζi) . (30)

Note that for high laser intensities (|ai| > 1), this model becomes inaccurate. To describe

the nonlinear regime in 3D, as well as other nonlinear effects such as beam loading, requires

self-consistent simulations (e.g., particle-in-cell codes), which is beyond the scope of this

paper.
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IV. SIMULATION RESULTS

The effect of density down-ramps on the bunch quality in the colliding pulse injector

was studied using a 3D particle tracking code, which evolves the motion of a group of test

particles in analytically specified fields. Included in the simulations are the electromagnetic

fields of the laser pulses, as determined from the vector potentials given by Eqs. (18)–(20).

The wakefields from the pump and injection laser pulses are given by Eqs. (23)–(26). The

ion density profile is assumed to be of the form

n0(z)

n00

= 1− τt
2

[
1 + tanh

(
z − zt

Lt

)]
, (31)

where n00 is the ion density before the density drop-off (z < zt), zt is the location of the

transition, and τt = ∆n0/n00 is the relative change of density.

In the following simulations, the plasma was modeled by a group of test electrons initially

at rest and loaded randomly in a three dimensional spatial region of length λp and transverse

radius λp/2, uniformly about the z-axis, corresponding to a volume V0 = πλ3
p/4. This spatial

region was chosen to be ahead of the pump laser pulse, and timed with respect to the initial

position of the injection pulse such that when the two pulses collide, the test electrons fill

the entire region in which trapping may occur. After the collision, various properties of

the trapped electron bunch were monitored as function of propagation time, such as the

mean energy, the energy spread, the root-mean square (RMS) bunch length, RMS bunch

radius, and the trapping fraction. Here, the trapping fraction is defined as Nb/Ns, where

Nb is the number of test electrons in the bunch and Ns the total number of test electrons

in the simulation. A quasi-1D configuration with ri ' λp was chosen, such that most of

the injected electrons, although in a defocusing region of the accelerating wave, will only

slowly depart transversely from their initial on-axis location. A density down-ramp will then

rephase those electrons onto a trapped and focused orbit. This is shown in Fig. 1, where the

cold fluid orbit and trapped and focused orbit are both shown for an initial density n00 and

another density 30% smaller. Note that the focusing region has been extended farther behind

the pump pulse. The simulations were carried out for normalized laser-plasma parameters

a0 = 1, ω0/ωp0 = 50, L0 = λp0 or 9λp0/8, ω1/ωp0 = 50, and L1 = λp0/2. Parameter scans

were performed for the injection pulse normalized vector potential a1 and for the parameters

corresponding to the density ramp such as the length Lt, the center of the transition zt and

the relative change of density τt.
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Figure 2 shows the resulting electron beam characteristics produced in a uniform plasma

without the use of a plasma density gradient [16, 17]. The total charge in the bunch Q was

estimated from the trapping fraction ftr (the fraction of the initial electrons that remain on

trapped and focused orbits) by Q = en0ftrV0. The bunch density was calculated assuming

a square beam profile using the relationships between the length, radius, and corresponding

RMS quantities, e.g., Lb = 2
√

3σz is the full beam length, σz the RMS beam length, rb = 2σr

the beam radius and σr the beam RMS radius. For the configuration shown in Fig. 2, the

typical value of the charge injected is on the order ∼ 4 pC. Note also that for high bunch

charge, beam loading may become important [see the Appendix for further details]. For a

uniform beam profile nb(r, ζ) = nbΘ(rb−r)Θ(−ζ)Θ(ζ+Lb) of radius rb and length Lb, where

Θ is a step function, the amplitude of the perturbed density and the axial electric field of

the bunch-induced wake is found to be at the back of the bunch [16, 17, 21, 22],

δn/n0 ' − (kpLb)
2 (nb/n0) /2 , (32)

Ez/E0 ' kpLb (nb/n0)FR(r) , (33)

assuming kpLb � 1, δn/n0 � 1, and Ez/E0 � 1, where the radial profile function is

FR(r) = 1 − kprbK1(kprb)I0(kpr) for r < rb. Here I0 and K1 are modified Bessel functions.

For a narrow beam k2
pr

2
b � 1 and along the axis FR(r = 0) ' [0.308− 0.5 ln(kprb)]k

2
pr

2
b . For

kpLb(nb/n0) ' 1 the linear wake approximation becomes inaccurate and nonlinear methods

must be used. Another parameter of interest is a comparison of the wakefield intensity

produced by the laser pulse with respect to the wake induced by the beam itself. The latter

is required to be much smaller. Using Eq. (30) together with Eq. (33) yield an approximated

ratio,

αl '
8

π

kpLb

a2
0

nb

n0

FR(0) � 1 , (34)

which is valid for a laser beam close to the resonant condition L ' λp. For the case of Fig. 2

beam loading is a negligible effect.

Figure 3 shows the amount of charge in the trapped and focused region of the plasma

wave as a function of the density down ramp center zt for the laser-plasma parameters:

a0 = 1, ω0/ωp0 = 50, L0 = 9λp0/8, a1 = 0.5, ω1/ωp0 = 50, L1 = λp0/2, Lt = λp0, τt = 30%,

and ωp0t = 147 after injection. Here λp0 corresponds to the plasma wavelength prior to the

density transition. The total charge is increasing temporarily up to a plateau region reached

at about kp0zt = 4π. As mentioned above, Fig. 1 shows the phase shift of the trapped and

10



focused region after passing through the density transition [according to Eq. (1)] as well as a

typical orbit of an electron lying in the defocusing region. The latter electrons will circulate

along this path towards the high energy region and will cross the extended focusing region

of the plasma wave at some later time after injection. Delaying the density transition until

those electrons reach the phase ψf ' 2π will allow for rephasing of maximum amount of

charge. In Fig. 3, a charge per bunch enhancement by a factor of ∼ 50 is shown. In this

case beam loading may become important, e.g., the bunch induced wakefield Ez/E0 becomes

comparable to the wake generated by the drive laser pulse alone. Nonlinear beam loading

will most likely reduce the bunch quality (fraction trapped, average energy, etc.). Note that

the oscillation shown in Fig. 3 for the electric field Ez/E0 as well as for the beam density

kpLb(nb/n0) may be attributed to the extra focusing provided to the rephased electrons by

the plasma wave.

Figure 4 plots the parameter kpLb(nb/n0) (which is used as an indicator for the estimation

of the validity of the linear regime in the calculation of beam loading), the electric field

Ez/E0 induced by the electron beam alone and the charge trapped as a function of the

injection laser strength a1 for the same laser-plasma parameters as of Fig. 3 except for

kp0zt = 12π. The latter correspond to the region of Fig. 3 were maximum trapping is

achieved. Comparing Fig. 2 with Fig. 4 shows a lower trapping threshold as expected

(a1min ' 0.35 versus 0.15). The electron beam remains compact as shown in Fig. 5. The

RMS bunch radius σr and RMS bunch duration σz are on the order of a few percent of the

plasma wavelength λp0. For a plasma wavelength on the order of 10 µm, this implies that

< 1 fs (i.e, attosecond scale) bunches can be produced. The bunch normalized emittance

is approximated as ε⊥ = γ0β0

√
〈x2〉〈x′2〉 '

√
〈x2〉〈u2

x〉, where u0 = γ0β0 ' γ0 is the axial

momentum of the electron bunch. For the case of Fig. 5, the emittance is typically small,

e.g., λp0 = 40 µm (n00 = 6.9× 1017 cm−3), implies ε⊥ < 0.8 mm.mrad for an average kinetic

energy of ' 23 MeV. The energy spread ∆γ/γ is on the order of a few percent.

A 1D analysis of the dephasing length [1] (which is the typical length required for a

trapped electron to outrun the plasma wave, resulting in maximum energy gain) gives Ld '

γ2
pλp, where γp = (1−β2

p)
1/2 is the plasma wave relativistic factor and βp ' βg0 is the plasma

wave normalized phase velocity, which is approximately equal to the laser group velocity in

the linear regime. For an underdense plasma ωp/ω0 � 1, γp ' ω0/ωp which corresponds to

Ld ∼ 10 cm for n0 ∼ 7× 1017 cm−3. Furthermore, in 3D, the Rayleigh length ZR ' k0r
2
0/2
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(which is the characteristic distance for laser diffraction) must be compared to the dephasing

length and is found to be on the order 4 cm. The beam parameters shown in Fig. 5 are

evaluated only after a propagation distance on the order 1 mm. Therefore, the beam quality

is expected to improve over longer acceleration distances (increase of kinetic energy, lower

energy spread, etc.), up to the limits imposed by dephasing and/or diffraction.

Figure 6(a) plots the parameter kpLb(nb/n0), bunch charge Q, and bunch-induced axial

electric field Ez/E0 as a function of the density transition length Lt. Figure 6(a) shows a

small effect on the beam quality, e.g., the trapping fraction remains mainly unchanged. The

small increase in bunch radius together with the emittance [Fig 6(a)] can be explained by the

fact that a long density transition implies that the electron beam remains for a longer period

of time in a defocusing phase. The requirement on the transition length Lt is to be smaller

that the typical distance it takes an electron to outrun the plasma wave. For the laser-

plasma parameters used in this paper, ZR < Ld, and k−1
p � Lt � ZR. This demonstrates

the feasibility of using negative plasma density gradients in laboratory experiments as a

means for rephasing trapped but unfocused electrons.

Figure 7 shows the trapped bunch charge and corresponding beam loading parameters as

a function of the relative change of density τt for the laser-plasma parameters λ0 = 0.8 µm,

L0 = r0 = λp0 = 40 µm, a0 = 1, a1 = 0.2, zt = 240 µm, Lt = 40 µm, and ct = 147 k−1
p0 '

935 µm after injection. Note that a1 = 0.2 is found to be close to the trapping threshold

for τt ' 25%, and, by increasing τt, the trapped charge in the bunch became as high as

Q = 20 pC for τt = 60%. Consequently, for such values of τt, the trapping threshold is

lower than a1 = 0.2, which is order of magnitude smaller that the laser strength required

in ponderomotive injection schemes [11]. Another possible interesting regime would be to

lower the drive pulse strength instead of the injection pulse. Using kpL0 = kpr0 = kpr1 = 2π

along with a1 = 0.5 and kpL1 = 4π (a length far from the resonant condition in order to

minimize the injection wake which could interfere with the wake generated by the drive pulse

itself for the case of a modest value of a0), combined with a long taper length kpzt > 5π (to

allow maximum injection, e.g., see Fig. 3), and τt = 30%, may provide a threshold as low as

a0 = 0.8.
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V. CONCLUSION

Plasma density down-ramps have been proposed as a method for improving electron

bunch quality in laser injection schemes. A decrease in density implies an increase in plasma

wavelength, which can shift a relativistic electron from the defocusing to the focusing region

of the accelerating wakefield. Also, a decrease in density leads to a decrease in wake phase

velocity, which can lower the trapping threshold. The specific method of two-pulse CPI

was examined using a 3D test particle tracking code. Various properties of the trapped and

focused bunch were studied as a function of the ramp and laser parameters. For example,

it was found that a density down-ramp of 30% change in density with Lt = λp increased

the trapped and focused charge from 0 pC (no ramp) to 25 pC (with ramp) for an injection

pulse intensity of a1 = 0.3, and from < 2 pC to 100 pC (which is near the beam loading

limit) for a1 = 0.5. Furthermore, no degradation of overall bunch parameters was observed

compared to the uniform plasma case. The bunch duration was found to be typically on

the order of a few percent of the plasma wavelength, which implies formation of attosecond

electron bunches for short plasma wavelengths. The trapped bunch quality was found to

depend only weakly on the length of the ramp, indicating that the use of experimentally

feasible ramps with Lt � λp can be effective in enhancing the trapped bunch. Since the use

of down ramps increases the number of trapped and focused electrons, the overall trapping

threshold for electron injection into the plasma wave is lowered, which allows the production

of trapped bunches with lower intensity laser pulses.

One limitation of the approach used in this research is that it relies on test particle simula-

tions in which the fields (lasers and wakes) were specified analytically. Specifically, analytical

expressions were used for the wakefield valid to second order in the normalized laser field a2
i .

This model becomes inaccurate as a2
i approaches and exceeds unity and self-consistent sim-

ulations, such as using particle-in-cell or fluids codes, are required in this nonlinear regime.

A second approximation used in the test particle simulations is the neglection of the wake

generated by the trapped bunch, i.e., neglection of beam loading. These test particle simu-

lations indicate that the colliding pulse trapping mechanism is rather robust, i.e., it is easy

to trap electrons up to beam loading limit. Again, to fully assess the utility of the colliding

pulse injection in the high-charge limit, self-consistent simulations are required.

It should be noted that although this study was restricted to the two-pulse colliding-
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pulse configuration, rephasing and enhancement of the trapped bunch quality by using

density transitions is a general method that can be applied to a wide variety of plasma-based

accelerators. In general, the relative phase of the bunch in the wake can be repositioned

by adjusting the plasma density. As discussed above, the change in density required to

shift an electron forward in phase by a small amount is ∆n/ni = 2(∆ψ/kpiζ). Note that

rephasing becomes easier (a smaller ∆n/ni is required) with increasing distance behind the

driver (larger |ζ|). Hence, rephasing is more efficient for the bunches trapped in buckets

further behind the driver. Typically, only a small change of density is required to shift the

phase a significant fraction of a plasma period. Since the wake amplitude is a relatively

weak function of density, rephasing can be accomplished by small changes in the density

without significantly degrading the accelerating field of the wake. Furthermore, provided

that the plasma density transition occurs over a length (or time) that is short compared to

the dephasing length of the electron in the wake (or the synchrotron period for a trapped

electron in the wake), the rephasing (shifting of the wake relative to the electron) occurs

virtually instantaneously with respect to the electron dynamics. Since the dephasing length

of a relativistic electron in a plasma wake is relatively long, Ldp ' λ3
p/λ, experimentally

producing a density transition with Lt � Ldp is readily achievable, which in turn leads to a

near-instantaneous rephasing of the electrons in the wake.
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APPENDIX A: BEAM LOADING CONSIDERATIONS

Beam loading, whereby the trapped electron bunch significantly alters the accelerating

wakefield, can degrade the quality of the electron bunch. Beam loading is neglected in the

particle tracking code. To estimate the effects of beam loading, the wakefield generated by
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the trapped electron bunch propagating in an initially uniform plasma can be calculated and

compared to the wakefield driven by the pump laser pulse. Using linear wakefield theory, the

normalized density perturbation δn/n0 � 1 and normalized axial electric field Ez/E0 � 1

driven in an initially uniform plasma by a short electron bunch (nb/n0 drive term) is given

by [16, 17, 21, 22] (
∂2

∂ζ2
+ k2

p

)
δn

n0

= −k2
p

nb

n0

, (A1)(
∇2
⊥ − k2

p

) Ez

E0

= −kp
∂

∂ζ

δn

n0

, (A2)

where the drive bunch and the resulting wakefields are assumed to be functions of only the

variables ζ = z − ct and r⊥. Solving the system of equations (A1)-(A2) for a cylindrically-

symmetric drive nb yields

δn

n0

= kp

∫ ζ

0

dζ ′ sin[kp(ζ − ζ ′)]
nb(ζ

′)

n0

, (A3)

Ez

E0

= k3
p

∫ ζ

∞
dζ ′

∫ ∞

0

dr′r′ cos[kp(ζ − ζ ′)]I0 (kpr<)K0 (kpr>)
nb(r

′, ζ ′)

n0

, (A4)

where I0 and K0 are the zeroth-order modified Bessel functions of the second kind, and

r< (r>) denote the smaller (larger) of r and r′ respectively. For a uniform beam profile

nb(r, ζ) = nbΘ(rb − r)Θ(−ζ)Θ(ζ +L) of radius rb and length L, where Θ is a step function,

the profile of the perturbed density and the axial wakefield are inside the bunch −L ≤ ζ ≤ 0

δn/n0 = −2(nb/n0) sin2 (kpζ/2) , (A5)

Ez/E0 = −(nb/n0)FR(r) sin kpζ , (A6)

and behind ζ < −L

δn/n0 = −2(nb/n0) sin (kpL/2) sin kp (ζ + L/2) , (A7)

Ez/E0 = −(nb/n0)FR(r) [sin kpζ − sin kp (ζ − L)] , (A8)

where the radial profile function is

FR(r) =

1− kprbK1(kprb)I0(kpr) , for r < rb

kprbI1(kprb)K0(kpr) , for r > rb

(A9)
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with I1 and K1 the first-order modified Bessel functions. Assuming kpL � 1 yields at the

back of the bunch,

δn/n0 ' − (kpL)2 (nb/n0) /2 , (A10)

Ez/E0 ' kpL (nb/n0)FR(r) . (A11)
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FIG. 1: (Color) Phase space plot showing cold fluid orbit for n0/n00 = 1 (blue solid line), n0/n00 =

0.7 (blue dot-dashed line), trapped and focused orbit for n0/n00 = 1 (red solid line), n0/n00 = 0.7

(red dot-dashed line), and orbit of an electron in a trapped but defocusing region of the wakefield

for n0/n00 = 1 (black solid line), with laser parameters: L0 = λp0 and a0 = 1.
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FIG. 2: (Color) Bunch charge Q in pC (right vertical axis, stars), kpLb(nb/n0) (left vertical axis,

squares), and normalized axial electric field Ez/E0 (left vertical axis, points) generated by the

electron bunch alone (here the laser contribution is not included) versus a1 with λ0 = 0.8 µm,

L0 = 9λp0/4, r0 = λp0 = 40 µm, a0 = 1, homogeneous plasma, e.g., no density ramp and

ct = 47 k−1
p0 ' 300 µm after injection.
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FIG. 3: (Color) Bunch charge Q in pC (right vertical axis, stars), kpLb(nb/n0) (left vertical axis,

squares), and normalized axial electric field Ez/E0 (left vertical axis, points) generated by the

electron bunch alone versus zt with λ0 = 0.8 µm, L0 = 9λp0/4, r0 = λp0 = 40 µm, a0 = 1, a1 = 0.5,

Lt = λp0, τt = 30% and ct = 147 k−1
p0 ' 935 µm after injection.
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FIG. 4: (Color) Bunch charge Q in pC (right vertical axis, stars), kpLb(nb/n0) (left vertical axis,

squares) and normalized axial electric field Ez/E0 (left vertical axis, points) generated by the

electron bunch alone versus a1 with λ0 = 0.8 µm, L0 = 9λp0/4, r0 = λp0 = 40 µm, a0 = 1,

zt = 240 µm, Lt = λp0, τt = 30%, and ct = 147 k−1
p0 ' 935 µm after injection.
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FIG. 5: (Color) Trapped bunch parameters versus a1 (for two collinear, counterpropagating laser

pulses with equal polarization, a0 = 1, ω0/ωp0 = 50, L0 = 9λp0/8, ω1/ωp0 = 50, L1 = λp0/2,

kp0zt = 12π, kp0Lt = 2π, τt = 30%, and ct = 147 k−1
p0 ). (a) Trapping fraction ftr (right vertical

axis) and relative energy spread ∆γ/γ (left vertical axis). (b) Bunch length σz/λp0 (left vertical

axis), RMS radius σr/λp0 (left vertical axis), and normalized transverse RMS emittance ε⊥/λp0

(right vertical axis).
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FIG. 6: (Color) (a) Bunch charge Q in pC (right vertical axis, stars), kpLb(nb/n0) (left vertical

axis, squares), and normalized axial electric field Ez/E0 (left vertical axis, points) generated by

the electron bunch alone. (b) Bunch length σz/λp0 (left vertical axis), RMS radius σr/λp0 (left

vertical axis), and normalized transverse RMS emittance ε⊥/λp0 (right vertical axis) versus Lt for

the laser-plasma parameters: λ0 = 0.8 µm, L0 = 9λp0/4, r0 = λp0 = 40 µm, a0 = 1, a1 = 0.5,

zt = 280 µm, τt = 30% and ct = 147 k−1
p0 ' 935 µm after injection.
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FIG. 7: (Color) Bunch charge Q in pC (right vertical axis, stars), kpLb(nb/n0) (left vertical axis,

squares) and normalized axial electric field Ez/E0 (left vertical axis, points) generated by the

electron bunch alone versus τt with λ0 = 0.8 µm, L0 = r0 = λp0 = 40 µm, a0 = 1, a1 = 0.2,

zt = 240 µm, Lt = 40 µm, and ct = 147 k−1
p0 ' 935 µm after injection.
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