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Introduction

“In the deathless boredom of the sidereal calm we
cry with regret for a lost sun ...”
Jean de la Ville de Mirmont, L’Horizon Chimérique.

Compact stars—broadly grouped as neutron stars and white
dwarfs—are the ashes of luminous stars. One or the other is the
fate that awaits the cores of most stars after a lifetime of tens
to thousands of millions of years. Whichever of these objects is
formed at the end of the life of a particular luminous star, the
compact object will live in many respects unchanged from the
state in which it was formed. Neutron stars themselves can take
several forms—hyperon, hybrid, or strange quark star. Likewise
white dwarfs take different forms though only in the dominant
nuclear species. A black hole is probably the fate of the most
massive stars, an inaccessible region of spacetime into which the
entire star, ashes and all, falls at the end of the luminous phase.

Neutron stars are the smallest, densest stars known. Like all
stars, neutron stars rotate—some as many as a few hundred
times a second. A star rotating at such a rate will experience an
enormous centrifugal force that must be balanced by gravity else
it will be ripped apart. The balance of the two forces informs us
of the lower limit on the stellar density. Neutron stars are 10
times denser than Earth. Some neutron stars are in binary orbit
with a companion. Application of orbital mechanics allows an
assessment of masses in some cases. The mass of a neutron star
is typically 1.5 solar masses. We can therefore infer their radii:
about ten kilometers. Into such a small object, the entire mass
of our sun and more, is compressed.

We infer the existence of neutron stars from the occurrence
of supernova explosions (the release of the gravitational binding
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of the neutron star) and observe them in the periodic emission
of pulsars. Just as neutron stars acquire high angular velocities
through conservation of angular momentum, they acquire strong
magnetic fields through conservation of magnetic flux during the
collapse of normal stars. The two attributes, rotation and strong
magnetic dipole field, are the principle means by which neutron
stars can be detected—the beamed periodic signal of pulsars.

The extreme characteristics of neutron stars set them apart
in the physical principles that are required for their understand-
ing. All other stars can be described in Newtonian gravity with
atomic and low-energy nuclear physics under conditions essen-
tially known in the laboratory'. Neutron stars in their several
forms push matter to such extremes of density that nuclear
and particle physics—pushed to their extremes—are essential
for their description. Further, the intense concentration of mat-
ter in neutron stars can be described only in General Relativity,
Einstein’s theory of gravity which alone describes the way the
weakest force in nature arranges the distribution of the mass
and constituents of the densest objects in the universe.

1.1 Compact Stars

Of what are compact stars made? The name “neutron star” is
suggestive and at the same time misleading. No doubt neutron
stars are made of baryons like nucleons and hyperons but also
likely contain cores of quark matter in some cases. We use “neu-
tron star” in a generic sense to refer to stars as compact as
described above. How does a star become so compact as neu-
tron stars and why is there little doubt that they are made of
baryons or quarks? The notion of a neutron star made from the
ashes of a luminous star at the end point of its evolution goes
back to 1934 and the study of supernova explosions by Baade
and Zwicky [1].

!Luminous stars evolve through thermonuclear reactions. These are nuclear
reactions induced by high temperatures but involving collision energies that are
small on the nuclear scale. In some cases the reaction cross-sections can be mea-
sured with nuclear accelerators, and in others, measured cross-sections must be
extrapolated to lower energy.
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During the luminous life of a star, part of the original hydrogen
is converted in fusion reactions to heavier elements by the heat
produced by gravitational compression. When sufficient iron—
the end point of exothermic fusion—is made, the core containing
this heaviest ingredient collapses and an enormous energy is re-
leased in the explosion of the star. Baade and Zwicky guessed
that the source of such a magnitude as makes these stellar ex-
plosions visible in daylight and for weeks thereafter must be
gravitational binding energy. This energy is released by the so-
lar mass core as the star collapses to densities high enough to
tear all nuclei apart into their constituents.

By a simple calculation one learns that the gravitational en-
ergy acquired by the collapsing core is more than enough to
power such explosions as Baade and Zwicky were detecting.
Their view as concerns the compactness of the residual star has
since been supported by many detailed calculations, and most
spectacularly by the supernova explosion of 1987 in the Large
Magellanic Cloud, a nearby minor galaxy visible in the south-
ern hemisphere. The pulse of neutrinos observed in several large
detectors carried the evidence for an integrated energy release
over 47 steradians of the expected magnitude.

The gravitational binding energy of a neutron star is about
10 percent of its mass. Compare this with the nuclear binding
energy of 9 MeV per nucleon in iron which is one percent of
the mass. We conclude that the release of gravitational binding
energy at the death of a massive star is of the order ten times
greater than the energy released by nuclear fusion reactions dur-
ing the entire luminous life of the star. The evidence that the
source of energy for a supernova is the binding energy of a com-
pact star—a neutron star—is compelling. How else could a tenth
of a solar mass of energy be generated and released in such a
short time?

Neutron stars are more dense than was thought possible by
physicists at the turn of the century. At that time astronomers
were grappling with the thought of white dwarfs whose densities
were inferred to be about a million times denser than the earth.
It was only following the discovery of the quantum theory and
Fermi-Dirac statistics that very dense cold matter—denser than
could be imagined on the basis of atomic sizes—was conceivable.



1. Introduction 5

Prior to the discovery of Fermi-Dirac statistics, the high den-
sity inferred for the white dwarf Sirius seemed to present a
dilemma. For while the high density was understood as arising
from the ionization of the atoms in the hot star making possible
their compaction by gravity, what would become of this dense
object when ultimately it had consumed its nuclear fuel? Cold
matter was known only in the atomic form it is on earth with
densities of a few grams per cubic centimeter. The great scientist
Sir Arthur Eddington surmised for a time that the star had “got
itself into an awkward fix”—that it must some how re-expand to
matter of familiar densities as it cooled, but it had no remaining
source of energy to do so.

The perplexing problem of how a hot dense body without a
source of energy could cool persisted until R. H. Fowler “came
to the rescue”? by showing that Fermi-Dirac degeneracy allowed
the star to cool by remaining comfortably in a previously un-
known state of cold matter, in this case a degenerate® electron
state. A little later Baade and Zwicky conceived of a similar de-
generate state as the final resting place for nucleons after the
supernova explosion of a luminous star.

The constituents of neutron stars — leptons, baryons and
quarks — are degenerate. They lie helplessly in the lowest energy
states available to them. They must. Fusion reactions in the orig-
inal star have reached the end point for energy release—the core
has collapsed, and the immense gravitational energy converted
to neutrinos has been carried away. The star has no remaining
source of energy to excite the fermions. Only the Fermi pressure
and the short-range repulsion of the nuclear force sustain the
neutron star against further gravitational collapse—sometimes.
At other times the mass is so concentrated that it falls into
a black hole, a dynamical object whose existence and external
properties can be understood in the Classical Theory of General
Relativity.

’Eddington in an address in 1936 at Harvard University.

3Nucleons and electrons obey the Pauli exclusion principle, according to which
each particle must occupy a different quantum state from the others. A degenerate
state refers to the complete occupation of the lowest available energy states. In
that event, no reaction and therefore no energy generation is possible—hence the
name —degenerate state.
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FIGURE 1.1. A section through a neutron star model that contains an in-
ner sphere of pure quark matter surrounded by a crystalline region of mixed
hadronic and quark matter. The mixed phase region consists of various geo-
metrical objects of the rare phase immersed in the dominant one labeled by
h(adronic) drops immersed in quark matter ... through to g(uark) drops im-
mersed in hadronic matter. The particle composition of these regions is quarks,
nucleons, hyperons, and leptons. A liquid of neutron star matter containing nu-
cleons and leptons surrounds the mixed phase. A thin crust of heavy ions forms
the stellar surface.[2]

1.2 Compact Stars and Relativistic Physics

Classical General Relativity is completely adequate for the de-
scription of neutron stars, white dwarfs, and for the most part,
the exterior region of black holes as well as some aspects of
the interior.* The first chapter is devoted to General Relativity.
The goal is to rigorously arrive at the equations that describe
the structure of relativistic stars—the Oppenheimer - Volkoff
equations—the form that Einstein’s equations take for spheri-
cal static stars. Two important facts emerge immediately. No

“The density at which quantum gravity would be relevant is 10”® higher than
found in neutron stars.
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form of matter whatsoever can support a relativistic star above
a certain mass called the limiting mass. Its value depends on
the nature of matter but the existence of the limit does not.
The implied fate of stars more massive than the limit is that
either mass is lost in great quantity during the evolution of the
star or it collapses to form a black hole.

Black holes—the most mysterious objects of the universe—
are treated at the classical level and only briefly. The peculiar
difference between time as measured at a distant point and on
an object falling into the hole is discussed. And it is shown that
in black holes there is no statics. Everything at all times must
approach the central singularity. Unlike neutron stars and white
dwarfs, the question of their internal constitution does not arise
at the classical level. They are enclosed within a horizon from
which no information can be received. The ultimate fate of black
holes is unknown.

B\

r/rS

FIGURE 1.2. The possible futures of any event at the vertex of each cone, lies
within the cone. Light propagates along the cone itself. On the scale of distance
relative to the Schwarzschild radius of the black hole, the cones narrow and are
tipped toward the black hole. At the critical radius, the outer edge of the cone
is vertical; not even light can escape. Within the black hole, light can propagate
only inward, as with anything else.

Luminous stars are known to rotate because of the Doppler
broadening of spectral lines. Therefore their collapsed cores,
spun up by conservation of angular momentum, may rotate
very rapidly. Consequently, no account of compact stars would
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be complete without a discussion of rotation, its effects on the
structure of the star and spacetime in the vicinity, the limits on
rotation imposed by mass loss at the equator and by gravita-
tional radiation, and the nature of compact stars that would be
implied by very rapid rotation.

Rotating relativistic stars set local inertial frames into rota-
tion with respect to the distant stars. An object falling from rest
at great distance toward a rotating star would fall-—not toward
its center but would acquire an ever larger angular velocity as it
approached. The effect of rotating stars on the fabric of space-
time acts back upon the structure of the stars and so is essential
to our understanding.

1.3 Compact Stars and Dense-Matter Physics

The physics of dense matter is not as simple as the final resting
place of stars imagined by Baade and Zwicky. The constitution
of matter at the high densities attained in a neutron star—the
particle types, abundances and their interactions—pose chal-
lenging problems in nuclear and particle physics. How should
matter at supernuclear densities be described? In addition to
nucleons, what exotic baryon species constitute it? Does a tran-
sition in phase from quarks confined in nucleons to the decon-
fined phase of quark matter occur in the density range of such
stars? And how is the transition to be calculated? What new
structure is introduced into the star? Do other phases like pion
or kaon condensates play a role in their constitution?

In Fig. 1.1 we show a computation of the possible constitu-
tion and interior crystalline structure of a neutron star near the
limiting mass of such stars. Only now are we beginning to ap-
preciate the complex and marvelous structure of these objects.
Surely the study of neutron stars and their astronomical realiza-
tion in pulsars will serve as a guide in the search for a solution to
some of the fundamental problems of dense many-body physics
both at the level of nuclear physics—the physics of baryons
and mesons—and ultimately at the level of their constituents—
quarks and gluons. And neutron stars may be the only objects
in which a Coulomb lattice structure (Fig. 1.1) formed from two
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phases of one and the same substance (hadronic matter) exists.

We do not know from experiment what the properties of su-
perdense matter are. However we can be guided by certain gen-
eral principles in our investigation of the possible forms that
compact stars may take. Some of the possibilities lead to quite
striking consequences that may in time be observable. The rate
of discovery of new pulsars, X-ray neutron stars and other high-
energy phenomena associated with neutron stars is astonishing,
and was unforeseen a dozen years ago.

White dwarfs are the cores of stars whose demise is less spec-
tacular than a supernova—a more quiescent thermal expansion
of the envelope of a low mass star into a planetary nebula.
White dwarf constituents are nuclei immersed in an electron
gas and therefore arranged in a Coulomb lattice. White dwarfs
are supported against collapse by Fermi pressure of degenerate
electrons—while neutron stars— are supported by the Fermi
pressure of degenerate nucleons. White dwarfs pose less severe
and less fundamental problems than neutron stars. The nuclei
will comprise varying proportions of helium, carbon, and oxygen,
and in some cases heavier elements like magnesium, depending
on how far in the chain of exothermic nuclear fusion reactions
the precursor star burned before it was disrupted by instabilities
leaving behind the dwarf. White dwarfs are barely relativistic.

Of a vastly different nature than neutron stars are strange
stars. Like neutron stars they are, if they exist, very dense, of the
same order as neutron stars. However their very existence hinges
on a hypothesis that at first sight seems absurd. According to
the hypothesis, sometimes referred to as the strange-matter hy-
pothesis, quark matter—consisting of an approximately equal
number of up, down and strange quarks—has an equilibrium
energy per nucleon that is lower than the mass of the nucleon
or the energy per nucleon of the most bound nucleus, iron. In
other words, under the hypothesis, strange quark matter is the
absolute ground state of the strong interaction.

We customarily find that systems, if not in their ground state,
readily decay to it. Of course this is not always so. Even in
well known objects like nuclei, there are certain excited states
whose structure is such that the transition to the ground state
is hindered. The first excited state of '8Ta has a half-life of
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10" years, five orders of magnitude longer than the age of the
universe! The strange-matter hypothesis is consistent with the
present universe—a long-lived excited state—if strange matter
is the ground state. The structure of strange stars is fascinating
as are some of their properties.



2

General Relativity

“Scarcely anyone who fully comprehends this the-
ory can escape its magic.”
A. FEinstein

“Beauty is truth, truth beauty—that is all
Ye know on earth, and all ye need to know.”
J. Keats

General Relativity—Einstein’s theory of gravity—is the most
beautiful and elegant of physical theories. Not only that; it is
the foundation for our understanding of compact stars. Neutron
stars and black holes owe their very existence to gravity as for-
mulated by Einstein [3, 4]. Dense objects like neutron stars could
also exist in Newton’s theory, but they would be very different
objects. Chandrasekhar found (in connection with white dwarfs)
that all degenerate stars have a maximum possible mass. In New-
ton’s theory such a maximum mass is attained asymptotically
when all fermions whose pressure supports the star are ultrarela-
tivistic. Under such conditions stars populated by heavy quarks
would exist. Such unphysical stars do not occur in Einstein’s
theory.

Perhaps the beauty of Einstein’s theory can be attributed to
the essentially simple but amazing answer it provides to a fun-
damental question: what meaning is attached to the absolute
equality of inertial and gravitational masses? If all bodies move
in gravitational fields in precisely the same way, no matter what
their constitution or binding forces, then this means that their
motion has nothing to do with their nature, but rather with the
nature of spacetime. And if spacetime determines the motion of
bodies, then according to the notion of action and reaction, this
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implies that spacetime in turn is shaped by bodies and their
motion.

Beautiful or not, the predictions of theory have to be tested.
The first three tests of General Relativity were proposed by Ein-
stein, the gravitational redshift, the deflection of light by massive
bodies and the perihelion shift of Mercury. The latter had al-
ready been measured. Einstein computed the anomalous part
of the precession to be 43 arcseconds per century compared to
the measurement of 42.98 + 0.04. A fourth test was suggested
by Shapiro in 1964—the time delay in the radar echo of a sig-
nal sent to a planet whose orbit is carrying it toward superior
conjunction! with the sun. Eventually agreement to 0.1 percent
with the prediction of Einstein’s theory was achieved in these dif-
ficult and remarkable experiments. It should be remarked that
all of the above tests involved weak gravitational fields.

The crowning achievement was the 20-year study by Taylor
and his colleagues of the Hulse-Taylor pulsar binary discovered
in 1974. Their work yielded a measurement of 4.22663 degrees
per year for the periastron shift of the orbit of the neutron star
binary and a measurement of the decay of the orbital period by
7.6040.03 x 1077 seconds per year. This rate of decay agrees to
less than 1% with careful calculations of the effect of energy loss
through gravitational radiation as predicted by Einstein’s theory
[5]. A fuller discussion of these experiments and other intricacies
involved in the tests of relativity can be found in the book by
Will [6]. Since these early experiments, more accurate tests are
being made by Dick Manchester and collaboraters at Parkes
Obsevatory in Ausralia, who have discovered a closer binary
pair of neutron stars — “We have verified GR to 0.1% already
in two years” — ten times better than the early experiment.”
(Private communication: R. N. Manchester, 6/15/2005).

The goal of this chapter is to provide a rigorous derivation of
the Oppenheimer—Volkoff equations that describe the structure
of relativistic stars. We start by briefly outlining the Special
Theory of Relativity for it is an essential ingredient of General
Relativity. Then we formulate the General Theory of Relativ-

!Superior conjunction refers to the situation when the Earth and the planet
are on opposite sides of the sun.
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ity and derive all parts of the theory that are necessary to our
goal.

2.1 Relativity

“The views of space and time which I wish to lay
before you have sprung from the soil of experimental
physics, and therein lies their strength. They are rad-
ical. Henceforth space by itself, and time by itself, are
doomed to fade away into mere shadows, and only a

kind of union of the two will preserve an independent
reality.” H. Minkowski [7|

The principle of relativity in physics goes back to Galileo who
asserted that the laws of nature are the same in all uniformly
moving laboratories. The relativity principle, stated in the nar-
row terms of reference frames in uniform motion, referred to
as inertial frames, implies the existence of an absolute space.
The notion of the absoluteness of time goes back to time im-
memorial. A Galilean transformation assumes the absoluteness
of space and time:

¥=x—a—vwt, Y=y, =z t=t-0b. (21)
Newton’s second law F, = m d*z/dt? is evidently invariant un-
der this transformation if one assumes that force and mass are
independent of the state of motion.

In contrast, Maxwell’s equations do not take on the same form
if subjected to a Galilean transformation whereas under a Lor-
entz transformation they do.? This fact led Einstein to the pos-
tulate that the speed of light is the same in all inertial systems
and consequently that the principle of relativity should hold
with respect to inertial frames connected by Lorentz transfor-
mations. That is the historical role that light speed played in the
discovery of Special Relativity, and the reason for the undoubted
influence that the Michelson-Morley experiment [9] had on the
early acceptance of the theory.

%See, for example, Ref. [8] for the Lorentz invariant form of Maxwell’s
equations.
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However, the underlying physics is quite different from how
it appears in the historical development of the Special The-
ory. The speed of light need not have been postulated as an
invariant. Minkowski realized soon after Einstein’s epochal dis-
covery in 1905 that the spacetime manifold of our world is not
Euclidean space in which events unfold in an absolute foliated
time3. Spacetime is a ‘Minkowski’ manifold having such a nature
that dr? = k%dt? — da? — dy? — dz? is invariant in the absence
of gravity. The constant £ is a conversion factor between length
and time. Voigt observed in 1887 that O¢ = 0 preserved its form
under a transformation that differed from the Lorentz transfor-
mation by only a scale factor [10]. In fact we will see shortly
that the d’Alembertian O is a Lorentz scalar. Consequently,

1 02 9
(e ~ V)0 =0

informs us that a disturbance described by a wave equation for
a massless particle in Minkowski spacetime propagates with ve-
locity k£ in vacuum as viewed from this and any other reference
frame connected to it by a Lorentz transformation. Hence, the
constant k of the spacetime manifold is determined empirically
by a measurement of the speed of light, c. In this way it is seen
that the constancy of the speed of light is a consequence of the
nature of the spacetime manifold in a gravity-free universe, or
in a sufficiently small region of our gravity-filled universe. It is
determined by the conversion factor between time and length of
the manifold.

That the constancy of the speed of light is a consequence of the
local spacetime manifold and not its determiner is most clearly
illustrated by a thought experiment proposed by Swiatecki [11].
He shows that the invariance of the differential interval between
spacetime events

dr? = k*dt? — da? — dy? — d2?

can be verified (at least in principle) without resort to propaga-
tion of light signals, but with only measuring rods and clocks.

3Foliated time refers to the time of events as being arranged as pages in a
book, one following the other, there never being a question of which preceded
another.
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And if it were technically feasible to perform the experiment
with sufficient accuracy, £ would be measured and its value
would be found to equal c.

Minkowski’s fundamental discovery of the nature of spacetime
in the absence of gravity was inspired by Einstein’s postulate of
the constancy of the speed of light. However, the constancy of
the speed of light is a consequence of the spacetime manifold of
our universe and its value (as for any massless particle) is equal
to the conversion factor between space and time, as we have seen.
The Minkowski invariant describes the nature of our spacetime
(in a suitably limited region); the speed of light and that of
any other massless particle is equal to the conversion factor k
between time and length, as emphasized by W. Swiatecki[11].
In other words, Special Relativity is a consequence of the local
spacetime manifold in which we live. The significance of the local
restriction will become clear as we follow the development of the
General Theory.

2.2 Lorentz Invariance

The Special Theory of Relativity, which holds in the absence
of gravity, plays a central role in physics. Even in the strongest
gravitational fields the laws of physics must conform to it in a
sufficiently small locality of any spacetime event. That was a fun-
damental insight of Einstein. Consequently, the Special Theory
plays a central role in the development of the General Theory
of Relativity and its applications.

2.2.1 LORENTZ TRANSFORMATIONS

The Lorentz transformation leaves invariant the proper time or
differential interval in Minkowski spacetime

dr? = dt* — dz® — dy* — d2*  (units ¢ = 1) (2.2)

as measured by observers in frames moving with constant rel-
ative velocity (called inertial frames because they move freely
under the action of no forces). The Minkowski manifold also im-
plies an absolute spacetime in which spacetime events that can
be connected by a Lorentz transformation lie within the cone
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defined by dr = 0. Absolute means unaffected by any physical
conditions. This was the same criticism that Einstein made of
Newton’s space and time, and the one that powered his search
for a new theory in which the expression of physical laws does
not depend on the frame of reference, but, nevertheless, in which
Lorentz invariance would remain a local property of spacetime.
We will develop the core of the General Theory which extends
the relativity principle to arbitrary frames and therefore to a
gravity-filled universe, not just unaccelerated frames in relative
uniform motion; but here we review briefly the Special Theory.

A pure Lorentz transformation is one without spatial rotation,
while a general Lorentz transformation is the product of a rota-
tion in space and a pure Lorentz transformation. We recall the
pure transformation, sometimes also referred to as a boost. For
convenience, define

=t z'=z 2*=y ==z (2.3)
(In spacetime a point such as that above is sometimes referred to

as an event.) The linear homogeneous transformation connecting
two reference frames can be written

o = AR gV (2.4)

(We shall use the convenient notation introduced by Einstein
whereby repeated indices are summed—Greek over time and
space, Roman over space.)

Any set of four quantities A* (u = 0,1,2,3) that transforms
under a change of reference frame in the same way as the coor-
dinates is a contravariant Lorentz four-vector,

A = AR AY (2.5)

The invariant interval (also variously called the proper time,
the line element, or the separation formula) can be written

dr* = n,, dz* dz” | (2.6)

where 7, is the Minkowski metric which in rectilinear coordi-
nates is

2.7)

0
. -1 0 O
Nuw = 0

SO O
=)
I
—
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The condition of the invariance of dr? is
Nag dz® da’ = 1, de™ dz" = 1, A" " dz® dz” . (2.8)

Since this holds for any dz®, dz® we conclude that the A*, must
satisfy the fundamental relationship assuring invariance of the
proper time:

Nap = Muw NG N5 - (2.9)

Transformations that leave dr? invariant leave the speed of
light the same in all inertial systems, because if d7 = 0 in one
system, it is true in all, and the content of dr = 0 is that dx/dt =
1.

Let us find the transformation matrix A*, for the special case
of a boost along the z-axis. In this case it is clear that

z? =22 2" =23, (2.10)
and, moreover, that z'° and 2’ cannot involve z? and z3. So,

l"o — AOO$O +A01.’L'1

o = Alya® + ALt (2.11)

with the remaining A elements zero. So the above quadratic form
in A yields the three equations,

I = (AOO)2 - (Alo)2
-1 = (A%)”—(A)? (2.12)
To get a fourth equation, suppose that the origins of the two
frames in uniform motion coincide at ¢ = 0 and the primed z-
axis z'! is moving along x! with velocity v. That is, 2! = vt is
the equation of the primed origin as it moves along the unprimed
x-axis. The equation for the primed coordinate is

0=2a"=Ap®+ Al 2" = (A + AYo)t (2.13)
or

Ay =—AYw. (2.14)
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The four equations can now be solved with the result,

Ay=AY =7
Ay =A% = —vy (2.15)
A% =A% =1,

where
y=(1-v*)"Y2=coshf, wy=sinhf, v =tanhf(2.16)
So
2% = 2% cosh § — ' sinh 0
2 = —2%sinh  + z' cosh § (2.17)

2? = 22, 2 = 23,

The combination of two boosts in the same direction, say v; and
vy, corresponds to # = 01 + 6,. A boost in an arbitrary direction
with the primed axis having velocity v = (v, v?, v?) relative to
the unprimed is
A% =~ _ _
A% =Ny =—vly | (2.18)
Ny =N =6 + (v — Dolvk /v2.
For a spatial rotation, say in the x-y plane, the transformation
for a positive rotation about the common z-axis is

2" = zlcosw + z?sinw
? = —x'sinw + 2? cos w (2.19)
20 =10 g8 =g3

Transformation of vectors according to either of the above, or
a product of them, preserves the invariance of the interval dr2.
For convenience they can be written in matrix form as

coshf —sinh® 0 0

| —sinh® coshf® 0 0
A= 0 0 10 (2.20)
0 0 0 1
1 0 0 0
| 0 cosw sinw 0
k= 0 —sinw cosw 0 (2'21)
0 0 0 1
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2.2.2 COVARIANT VECTORS
Two contravariant Lorentz vectors such as
A= (A% A, A% AP (2.22)
and B* may be used to create a scalar product (Lorentz scalar)
A" B =1, A"B" = n, AN N3A*B = n,,A°B’ = A - B2.23)
Because of the minus signs in the Minkowski metric we have
A-B=A°B"-A-B, (2.24)
and the covariant Lorentz vector is defined by
A, = (A% A —A% - A7), (2.25)

uw=

A covariant Lorentz vector is obtained from its contravariant
dual by the process of lowering indices with the metric tensor,

A, =nwA”. (2.26)
Conversely, raising of indices is achieved by
At =nA, . (2.27)

It is straightforward to show that

0" New = 1}y = 0, , (2.28)
where
1 ifpu=v
b
0, = { 0 otherwise (2.29)

is the Kroneker delta. It follows that
Ny = . (2.30)

The Lorentz transformation for a covariant vector is written
in analogy with that of a contravariant vector:

AL =ASA,. (2.31)
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To obtain the elements of A u” we write the above in two different
ways,

Nus\°,A* = 1,z AP = A, =ANSA, = AN neAY. (2.32)
This holds for arbitrary A* so
AL = Nuan™ . (2.33)
Using (2.28) in the above we get the inverse relationship
AMI/ = nuaAaﬂ’r]ﬁV - (234)

Multiplying (2.33) by A* , summing on p, and employing the
fundamental condition of invariance of the proper time (2.9) we
find

AP AT =67 (2.35)

We can now invert (2.4) and find that A ” is the inverse Lorentz
transformation,

zt = A g (2.36)

The elements of the inverse transformation are given in terms

of (2.15) or (2.18) by (2.33). We have

AO0 = A11 =7,
A=A =vy, (2.37)
AZ=Ap=1.

A boost in an arbitrary direction with the primed axis having

velocity v = (v1,v2 v®) relative to the unprimed is

AO(? =7,
AfF =N =6+ (v — Dolvk/v2.

The four-velocity is a vector of particular interest and defined
as
u
dt

(2.39)
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Because dr is an invariant scalar and dz* is a vector, u* is ob-
viously a contravariant vector. From the expression for the in-
variant interval we have

dr =v1—-v2%dt, v= % (2.40)

with r = (2!, 22, 23); it therefore follows that

0

. drt dxtdt ;
u ! TS vy, (2.41)

dr — dt dr

dt
a4
dr "

or

ut =y(1,04,0%,0%), w, = (1, =t —v?, =0?), w'u, = 1.(2.42)

The transformation of a tensor under a Lorentz transformation
follows from (2.5) and (2.31) according to the position of the
indices; for example,

T = A" N,T . (2.43)

We note that according to (2.9), the Minkowski metric n*” is a
tensor; moreover, it has the same constant form in every Lorentz
frame.

2.2.3 ENERGY AND MOMENTUM

The relativistic analogue of Newton’s law F' = ma is

d?zH
FH = 2.44
m dr ( )
and the four-momentum is
dz*
P =m—" 2.45
P mn dr ( )
Hence, from (2.39) and (2.40)
P’ =E=my

p=myv. (2.46)
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2.2.4 ENERGY-MOMENTUM TENSOR OF A PERFECT FLUID

A perfect fluid is a medium in which the pressure is isotropic in
the rest frame of each fluid element, and shear stresses and heat
transport are absent. If at a certain point the velocity of the
fluid is v, an observer with this velocity will observe the fluid
in the neighborhood as isotropic with an energy density e and
pressure p. In this local frame the energy-momentum tensor is

e 000
T = 810’23 (2.47)
000 p

As viewed from an arbitrary frame, say the laboratory system,
let this fluid element be observed to have velocity v. According
to (2.36) we obtain the transformation

T = AJFAST . (2.48)

The elements of the transformation are given by (2.37) in the
case that the fluid element is moving with velocity v along the
laboratory x-axis, or by (2.38) if it has the general velocity v. It
is easy to check that in the arbitrary frame

T = —pn*” + (p + €)utu” (2.49)

and reduces to the diagonal form above when v = 0. We have
used the four-velocity defined above by (2.41). Relative to the
laboratory frame it is the four-velocity of the fluid element.

2.2.5 LIGHT CONE

For vanishing proper time intervals, dr = 0 given by (2.2) defines
a cone (figure 1.2) in the four-dimensional space z# with the
time axis as the axis of the cone. Events separated from the
vertex event for which the proper time, (or invariant interval)
vanishes (dr = 0), are said to have null separation. They can be
connected to the event at the vertex by a light signal. Events
separated from the vertex by a real interval d7? > 0 can be
connected by a subluminal signal—a material particle can travel
from one event to the other. An event for which d7? < 0 refers
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to an event outside the two cones; a light signal cannot join the
vertex event to such an event. Therefore, events in the cone with
t greater than that of the vertex of the cone lie in the future of
the event at the vertex, while events in the other cone lie in its
past. Events lying outside the cone are not causally connected
to the vertex event.

2.3 Scalars, Vectors, and Tensors in Curvilinear
Coordinates

In the last section we dealt with inertial frames of reference
in flat spacetime. We now wish to allow for curvilinear coordi-
nates. Our scalars, vectors, and tensors now refer to a point in
spacetime. Their components refer to the reference frame at that
point.

A scalar field S(x) is a function of position, but its value does
not depend on the coordinate system. An example is the tem-
perature as registered on thermometers located in various rooms
in a house. Each registered temperature may be different, and
therefore is a function of position, but independent of the coor-
dinates used to specify the locations:

S'(z") = S(z). (2.50)

A vector is a quantity whose components change under a
coordinate transformation. One important vector is the displace-
ment vector between adjacent points. Near the point x* we con-
sider another, z* + dz*. The four displacements dz* are the
components of a vector. Choose units so that time and distance
are measured in the same units (¢ = 1). In Cartesian coordinates
we can write the invariant interval dr of the Special Theory of
Relativity, sometimes called the proper time, as

dr? = (d2°)? — (dz')? — (dz?)? — (dz*)*. (2.51)

Under a coordinate transformation from these rectilinear coor-
dinates to arbitrary coordinates, x* — z'#, we have (from the
rules of partial differentiation)

ox'™

d.’L‘Iu = wdi‘y (252)
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As before, repeated indices are summed. We can also write the
inverse of the above equation and substitute for the spacetime
differentials in the invariant interval to obtain an equation of
the form

dr? = g, dz"dz” (2.53)

where the g,, are defined in terms of products of the partial
derivatives of the coordinate transformation.

Depending on the nature of the coordinate system, say rectilin-
ear, oblique, or curvilinear, or on the presence of a gravitational
field, the invariant interval may involve bilinear products of dif-
ferent dz*, and the g,, will be functions of position and time.
The g,, are field quantities—the components of a tensor called
the metric tensor. Because the g,, appear in a quadratic form
(2.53), we may take them to be symmetric:

Guv = Gup - (2.54)

In regions of spacetime for which the rectilinear system of the
Special Theory of Relativity holds, the metric tensor g, is equal
to the Minkowski tensor (2.7). In fact, as we shall see, Special
Relativity holds locally anywhere at any time. We shall refer to
reference frames in which the metric is given by the Minkowski
tensor as Lorentz frames.

The invariant interval or proper time d7 is real for a timelike
interval and imaginary for a spacelike. The notation proper
time is seen to be appropriate because, when two events occur
at the same space point, what remains of the invariant interval
is dt.

Any four quantities A* that transform as dx* comprise a con-
travariant vector

oz'*

m v
and

GuArAY = A? (2.56)

“The opposite convention ds? = —dr? could also be employed. The interval ds

is often referred to as the line element.
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is its invariant squared length. It is obviously invariant under
the same transformations that leave (2.51) invariant because the
four quantities A* form a four-vector like dz*.

A covariant vector can be obtained through the process of
lowering indices with the metric tensor:

Ay = guA” . (2.57)

In terms of this vector, the magnitude equation (2.56) can be
written as

A AR = A2 (2.58)

Let A* and B* be distinct contravariant vectors. Then so is
A* + AB* for all finite X\. The quantity

9u(A* + AB*)(A” + AB”)

is the invariant squared length. Because this is true for all A, the
coefficient of each power of X is also an invariant; for the linear
term we find

guw(A¥B” + B*A") = 2¢,, A"B", (2.59)

where we have used the symmetry of g,,. Thus, we obtain the
invariant scalar product of two vectors:

guwA'B” = A,B* =A-B (2.60)

To derive the transformation law for a covariant vector use the
fact, just proven, that A,B* is a scalar. Then using the law of
transformation of a contravariant vector (2.55), we have

ox® B
(6% 6_{5’” 7
where AL is the same vector as A, but referred to the primed
reference frame. From the above equation it follows that

(4, - 92" 4 )B" =0 (2.62)
S - )
Because B* is any vector, the quantity in brackets must vanish;
thus we have the law of transformation of a covariant vector,
0 ox”

B Qg

Al B" = A,B* = A (2.61)

(2.63)



2. General Relativity 26

Compare this transformation law with that of (2.55).
Let the determinant of g,, be g,

g = det|g,| - (2.64)

As long as g does not vanish, the equations (2.57) can be in-
verted. Let the coefficients of the inverse be called ¢g*”. Then
find

A =g"™MA,. (2.65)
Multiply (2.57) by ¢g** and sum on p with the result
A% =g™A, = g"g9, A", (2.66)
or
(g™ gu —60)A" =0, (2.67)

where ¢ is the Kroneker delta. Because this equation holds for
any vector, we have

95 = 9™ gus = 65 - (2.68)

The two g¢’s, one with subscripts, the other with superscripts,
are inverses. In the same way as g, can be used to lower an
index, g" can be used to raise one. Both are symmetric;

Juv = Gupu, g;w = gup . (269)

The derivative of a scalar field S(z) = S’(2') with respect
to the components of a contravariant position vector yields a
covariant vector field and, vice versa:

0S  0x” S

= ) 2.
ox'™  Ox'™ Oz (2.70)
Accordingly, we shall sometimes use the abbreviations
0 0
= — = _— 2.7
Oy oy and O oz, (2.71)

especially in writing Lagrangians of fields. In relativity it is also
useful to have an even more compact notation for the coordinate
derivative—the “comma subscript”:

_ a8

7“ —_ @ . (2.72)
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The d’Alembertian,
0= 9,0", (2.73)

is manifestly a scalar.

Tensors are similar to vectors, but with more than one index.
A simple tensor is one formed from the product of the compo-
nents of two vectors, A*B". But this is special because of the
relationships between its components. A general tensor of the
second rank can be formed by a sum of such products:

TH = A*BY + C*D" + - - -. (2.74)

The superscripts can be lowered as with a vector, either one
index, or both,

Tuy = Gua T, Tuu =T"ay, T = guaguﬂTaﬂ . (2.75)

Similarly, we may have tensors of higher rank, either contravari-
ant with respect to all indices, or covariant, or mixed. The po-
sition of the indices on the mixed tensor (the lower to the left
or right of the upper) refers to the position of the index that
was lowered. If T#” is symmetric, then T =T * and it is unim-
portant to keep track of the position of the index that has been
lowered (or raised). But if T#” is antisymmetric, then the two
orderings differ by a sign.

If two of the indices on a tensor, one a superscript the other a
subscript, are set equal and summed, the rank is reduced by two.
This process is called contraction. If it is done on a second-rank
mixed tensor, the result is a scalar,

S=TH =T,1" (2.76)

When TH” is antisymmetric, the contractions 7,* and T%, are
identically zero.

The test of tensor character is whether the object in question
transforms under a coordinate transformation in the obvious
generalization of a vector. For example,

o' ozP

T,NV = 8?83;“/Tﬁ (277)

1s a tensor.
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In general, we deal with curved spacetime in General Relativ-
ity. We must therefore deal with curvilinear coordinates. Vectors
and tensors at a point in such a spacetime have components re-
ferring to the axis at that point. The components will change
according to the above laws, depending on the way the axes
change at that point. Therefore, the metric tensors g, g* can-
not be constants. They are field quantities which vary from point
to point. As we shall see, they can be referred to collectively as
the gravitational field. Because the formalism of this section is
expressed by local equations, it holds in curved spacetime, for
curved spacetime is flat in a sufficiently small locality.

Because the derivative of a scalar field is a vector (2.70), one
might have thought that the derivative of a vector field is a
tensor. However, by checking the transformation properties one
finds that this supposition is not true.

We have referred invariably to the g,, as tensors. Now we
show that this is so. Let A*, B” be arbitrary vector fields, and
consider two coordinate systems such that the same point P has
the coordinates z# and z'# when referred to the two systems,
respectively. Then we have

o Y ozt doz¥ .,
gIaﬁAl AP = g/u/AuA = Guv ax_'a WA, A8 (278)
Because this holds for arbitrary vectors, we find
Oox* Oz

Gos = Gy 55 (2.79)
which, by comparison with (2.63), shows that g,, is a covariant
tensor. Similarly ¢”” is a contravariant tensor:

s _ g 90 0 (2.80)
T =9 gpn o ’

These are called the fundamental tensors. Of course, the above

tensor character of the metric is precisely what is required to

make the square of the interval dr? of (2.53) an invariant, as is
trivially verified.

Mixed tensors of arbitrary rank transform, for each index, ac-

cording to the transformation laws (2.55, 2.63) depending on
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whether the index is a superscript or a subscript, as can be de-
rived in obvious analogy to the above manipulations.

Tensors and tensor algebra are very powerful techniques for
carrying the consequences discovered in one frame to another.
That the linear combination of tensors of the same rank and
arrangement, of upper and lower indices is also a tensor; that
the direct product of two tensors of the same or different rank
and arrangement of indices, A% BY" = Tk ™ is also a tensor;
and that contraction (defined above) of a pair of indices, one
upper, one lower produces a tensor of rank reduced by two—are
all easy theorems that we do not need to prove, but only note
in passing. Of particular note, if the difference of two tensors
of the same transformation rule vanishes in one frame, then it
vanishes in all (i.e., the two tensors are equal in all frames).

2.4 Principle of Equivalence of Inertia and
Gravitation

“The possibility of explaining the numerical equal-
ity of inertia and gravitation by the unity of their na-
ture gives to the general theory of relativity, according
to my conviction, such a superiority over the concep-
tions of classical mechanics, that all the difficulties en-
countered in development must be considered as small
in comparison.” A. Einstein [4]

Eo6tvos established that all bodies have the same ratio of iner-
tial to gravitational mass with high precision [12]. With an ap-
propriate choice of units, the two masses are equal for all bodies
to the accuracy established for the ratio. One might have ex-
pected such conceptually different properties, one having to do
with inertia to motion (my), the other with “charge” (m¢), in an
expression of mutual attraction between bodies, to be entirely
different. The relation between the force exerted by the gravi-
tational attraction of a body of mass M at a distance R upon
the object, and the acceleration imparted to it are expressed
by Newton’s equation, valid for weak fields and small material



2. General Relativity 30

velocities:
mGM

R2
Einstein reasoned that the near equality of two such different
properties must be more than mere coincidence and that inertial
and gravitational masses must be exactly equal: m; = mg = m.
The mass drops out! In that case all bodies experience precisely
the same acceleration in a gravitational field, as was presaged by
Galileo’s experiments centuries earlier. For all other forces that
we know, the acceleration is inverse to the mass.

The equivalence of inertial and gravitational mass is estab-
lished to high accuracy for atomic and nuclear binding energies.®
Moreover, as a result of very careful lunar laser-ranging exper-
iments, the earth and moon are found to fall with equal accel-
eration toward the sun to a precision of almost 1 part in 103,
better than the most accurate E6tvos-type experiments on labo-
ratory bodies. This exceedingly important test involving bodies
of different gravitational binding was conceived by Nordtvedt
[13]. The essentially null result establishes the so-called strong
statement of equivalence of inertial and gravitational mass: Free
bodies—no matter their nature or constituents, nor how much or
little those constituents are bound, nor by what force—all move
in the spacetime of an arbitrary gravitational field as if they
were identical test particles! Because their motion has nothing
to do with their nature, it evidently has to do with the nature
of spacetime.

Einstein felt certain that a deep meaning was attached to the
equivalence; “The experimentally known matter independence
of the acceleration of fall is .... a powerful argument for the
fact that the relativity postulate has to be extended to coord-
inate systems which, relative to each other, are in non-uniform
motion” [14]. This conviction led him to the formulation of the
equivalence principle. The equivalence principle provides the link
between the physical laws as we discern them in our laboratories
and their form under any circumstance in the universe—more

mra =G (2.81)

SE6tvos’ experiments on such diverse media as wood, platinum, copper, glass,
and other materials involve different molecular, atomic, and nuclear binding en-
ergies and different ratios of neutrons and protons.
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precisely, in arbitrarily strong and varying gravitational fields.
It also provides a tool for the development of the theory of grav-
itation itself, as we shall see throughout the sequel.

The universe is populated by massive objects moving relative
to one another. The gravitational field may be arbitrarily chang-
ing in time and space. However, the presence of gravity cannot
be detected in a sufficiently small reference frame falling freely
with a particle under no influence other than gravity. The parti-
cle will remain at rest in such a frame. It is a local inertial frame.
A local inertial frame and a local Lorentz frame are synonymous.
The laws of Special Relativity hold in inertial frames and there-
fore in the neighborhood of a freely falling frame. In this way the
relativity principle is extended to arbitrary gravitational fields.

Associated with a given spacetime event there are an infinity
of locally inertial frames related by Lorentz transformations. All
are equivalent for the description of physical phenomena in a
sufficiently small region of spacetime. So we arrive at a state-
ment of the equivalence principle: At every spacetime point in
an arbitrary gravitational field (meaning anytime and anywhere
in the universe), a local inertial (Lorentz) frame can be chosen
so that the laws of physics take on the form they have in Special
Relativity. This is the meaning of the equality of inertial and
gravitational masses that Einstein sought. The restricted valid-
ity of inertial frames to small localities of any event suggested
the very fruitful analogy with local flatness on a curved surface.

Einstein went further than the above statement of the equiv-
alence principle. He spoke of the laws of nature rather than just
the laws of physics. It seems entirely plausible that the extension
is true, but we deal here only with physics.

The equivalence principle has great power. It is the instru-
ment by which all the special relativistic laws of physics—valid
in a gravity-free universe—can be generalized to a gravity-filled
universe. We shall see how Einstein was able to give dynamic
meaning to the spacetime continuum as an integral part of the
physical world quite unlike the conception of an absolute space-
time in which the rest of physical processes take place.
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2.4.1 PHOTON IN A GRAVITATIONAL FIELD

Employing the conservation of energy and Newtonian physics,
Einstein reasoned that the gravitational field acts on photons.
Let a photon be emitted from z; vertically to z;, and only for
simplicity, let the field be uniform. A device located at zy con-
verts its energy on arrival to a particle of mass m with per-
fect efficiency. The particle drops to z; where its energy is now
m + mgh, where g is the acceleration due to the uniform field.
A device at z; converts it into a photon of the same energy as
possessed by the particle. The photon again is directed to zy. If
the original (and each succeeding photon) does not lose energy
(hv)gh in climbing the gravitational field equal to the energy
gained by the particle in dropping in the field, we would have a
device that creates energy. By the law of conservation of energy
Einstein discovered the gravitational redshift, commonly desig-
nated by the factor z and equal in this case to gh. The shift
in energy of a photon by falling (in this case blue-shifted) in
the earth’s gravitational field has been directly confirmed in an
experiment performed by Pound and Rebka [15].

In the above discussion the equivalence principle entered when
the photon’s inertial mass (hr) was used also as its gravitational
mass in computing the gravitational work. One can also see the
role of the equivalence principle by considering a pulse of light
emitted over a distance h along the axis of a spaceship in uni-
form acceleration g in outer space. The time taken for the light
to reach the detector is ¢ = h (we use units G = ¢ = 1). The
difference in velocity of the detector acquired during the light
travel time is v = gt = gh, the Doppler shift z in the detected
light. This experiment, carried out in the gravity-free environ-
ment of a spaceship whose rockets produce an acceleration g,
must yield the same result for the energy shift of the photon in
a uniform gravitational field g according to the equivalence prin-
ciple. The Pound-Rebka experiment can therefore be regarded
as an experimental proof of the equivalence principle.

We may regard a radiating atom as a clock, with each wave
crest regarded as a tick of the clock. Imagine two identical atoms
situated one at some height above the other in the gravitational
field of the earth. Since, by dropping in the gravitational field,
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the light is blue-shifted when compared to the radiation of an
identical atom (clock) at the bottom, the clock at the top is seen
to be running faster than the one at the bottom. Therefore, iden-
tical clocks, stationary with respect to the earth, run at different
rates according to their different heights above the earth. Time
flows at different rates in different gravitational fields.

The trajectory of photons is also bent by the gravitational
field. Imagine a freely falling elevator in a constant gravitational
field. Its walls constitute an inertial frame as guaranteed by the
equivalence principle. Therefore, a photon (as for a free particle)
directed from one wall to the opposite along a path parallel
to the floor will arrive at the other wall at the same height
from which it started. But relative to the earth, the elevator has
fallen during the traversal time. Therefore the photon has been
deflected toward the earth and follows a curved path as observed
from a frame fixed on the earth.

2.4.2 TIDAL GRAVITY

Einstein predicted that a clock near a massive body would run
more slowly than an identical distant clock. In doing so he ar-
rived at a hint of the deep connection of the structure of space-
time and gravity. Two parallel straight lines never meet in the
gravity-free, flat spacetime of Minkowski. A single inertial frame
would suffice to describe all of spacetime. In formulating the
equivalence principle (knowing that gravitational fields are not
uniform and constant but depend on the motion of gravitating
bodies and the position where gravitational effects are experi-
enced), Einstein understood that only in a suitably small locality
of spacetime do the laws of Special Relativity hold. Gravitational
effects will be observed on a larger scale. Tidal gravity refers to
the deviation from uniformity of the gravitational field at nearby
points.

These considerations led Einstein to the notion of spacetime
curvature. Whatever the motion of a free body in an arbitrary
gravitational field, it will follow a straight-line trajectory over
any small locality as guaranteed by the equivalence principle.
And in a gravity-endowed universe, free particles whose trajec-
tories are parallel in a local inertial frame, will not remain paral-
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lel over a large region of spacetime. This has a striking analogy
with the surface of a sphere on which two straight lines that are
parallel over a small region do meet and cross. What if in fact
the particles are freely falling in curved spacetime? In this way
of thinking, the law that free particles move in straight lines re-
mains true in an arbitrary gravitational field, thus obeying the
principle of relativity in a larger sense. Any sufficiently small
region of curved spacetime is locally flat. The paths in curved
spacetime that have the property of being locally straight are
called geodesics.

2.4.3 CURVATURE OF SPACETIME

Let us now consider a thought experiment. Two nearby bod-
ies released from rest above the earth follow parallel trajecto-
ries over a small region of their trajectories, as we know from
the equivalence principle. But if holes were drilled in the earth
through which the bodies could fall, the bodies would meet and
cross at the earth’s center. So there is clearly no single Min-
kowski spacetime that covers a large region or the whole region
containing a massive body.

Einstein’s view was that spacetime curvature caused the bod-
ies to cross, bodies that in this curved spacetime were following
straight line paths in every small locality, just as they would have
done in the whole of Minkowski (flat) spacetime in the absence
of gravitational bodies. The presence of gravitating bodies de-
nies the existence of a global inertial frame. Spacetime can be flat
everywhere only if there exists such a global frame. Hence, space-
time is curved by massive bodies. In their presence a test particle
follows a geodesic path, one that is always locally straight. The
concept of a “gravitational force” has been replaced by the cur-
vature of spacetime, and the natural free motions of particles in
it are defined by geodesics.

2.4.4 ENERGY CONSERVATION AND CURVATURE

Interestingly, the conservation of energy can also be used to in-
form us that spacetime is curved. Consider a static gravitational
field. Let us conjecture that spacetime is flat so that the Min-
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kowski metric holds; we will arrive at a contradiction.

Imagine the following experiment performed by observers and
their apparatus at rest with respect to the gravitational field
and their chosen Lorentz frame in the supposed flat spacetime of
Minkowski. At a height z; in the field, let a monochromatic light
signal be emitted upward a height A to zo = 21 +h. Let the pulse
be emitted for a specific time d¢; during which N wavelengths
(or photons) are emitted. Let the time during which they are
received at zp be measured as di,. (Because the spacetime is
assumed to be described by the Minkowski metric and the source
and receiver are at rest in the chosen frame, the proper times
and coordinate times are equal.)

Because the field in the above experiment is static, the path in
the z-t plane will have the same shape for both the beginning and
ending of the pulse (as for each photon) as they trace their path
in the Minkowski space we postulate to hold. The trajectories
will not be lines at 45 degrees because of the field, but the curved
paths will be congruent; a translation in time will make the paths
lie one upon the other. Therefore dm = dty = dt; = dr; will be
measured at the stationary detector if spacetime is Minkowskian.
In this case, the frequency (and hence the energy received at
29) is the same as that sent from z;. But this cannot be. The
photons comprising the signal must lose energy in climbing the
gravitational field (see Section 2.4.1).

The conjecture that spacetime in the presence of a gravita-
tional field is Minkowskian must therefore be false. We conclude
that the presence of the gravitational field has caused spacetime
to be curved. Such a line of reasoning was first conceived by
Schild [16, 17, 18].
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2.5  Gravity

“I was sitting in a chair at the patent office at Bern
when all of a sudden a thought occurred to me: ‘If a
person falls freely he will not feel his own weight.’ I was
startled. This simple thought had a deep impression on
me. It impelled me toward a theory of gravitation.” A.
Einstein [19]

Massive bodies generate curvature. Galaxies, stars, and other
bodies are in motion; therefore the curvature of spacetime is
everywhere changing. For this reason there is no “prior geome-
try”. There are no immutable reference frames to which events
in spacetime can be referred. Indeed, the changing geometry of
spacetime and of the motion and arrangement of mass-energy
in spacetime are inseparable parts of the description of phys-
ical processes. This is a very different idea of space and time
from that of Newton and even of the Special Theory of Relativ-
ity. We now take up the unified discussion of gravitating matter
and motion.

The power of the equivalence principle in informing us so sim-
ply that spacetime must be curved by the presence of massive
bodies in the universe suggests a fruitful way of beginning. Fol-
lowing Weinberg [20], or indeed, following the notion expressed
by Einstein in the quotation above, we seek the connection be-
tween an arbitrary reference frame and a reference frame that is
freely falling with a particle that is moving only under the influ-
ence of an arbitrary gravitational field. In this freely falling and
therefore locally inertial frame, the particle moves in a straight
line. Denote the coordinates by £*. The equations of motion are

d2£a
dr? 0,

and the invariant interval (or proper time) between two neigh-
boring spacetime events expressed in this frame, from (2.6), is

dr? = napdedes. (2.83)

(2.82)

The freely falling coordinates may be regarded as functions of
the coordinates x* of any arbitrary reference frame—curvilinear,
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accelerated, or rotating. We seek the connection between the
equations of motion in the freely falling frame and the arbitrary
one which, for example, might be the laboratory frame. From
the chain rule for differentiation we can rewrite (2.82) as
d (8§a dxt )
dr \Ox* dr
0 d?z+ 0%€*  dz* dxv
Ozt dr?2  OxMOz¥ dr dr
Multiply by dz*/0£%, and use the chain rule again to obtain
dz*  0z* 9™
drt O~ dxm
The equation of motion of the particle in an arbitrary frame

when the particle is moving in an arbitrary gravitational field
therefore is

0 =

(2.84)

d?z*  _, dztdz”
— =0. 2.85
dr? Wodr dr ( )
Here I}, defined by
ax)\ 82504
A —
U = Sa Gurng (2.86)

is called the affine connection. The affine connection is symmet-
ric in its lower indices.

The path defined by equation (2.85) is called a geodesic, the
extremal path in the spacetime of an arbitrary gravitational
field. We do not see here that it is an extremal, but this is
hinted at inasmuch as it defines the same path of (2.82), the
straight-line path of a free particle as observed from its freely
falling frame. In the next section we will see that a geodesic path
is locally a straight line.

The invariant interval (2.83) can also be expressed in the ar-
bitrary frame by writing dé® = (9£*/0z*)dz* so that

dr® = g, da*dz” (2.87)
with
_0g~ 9gP

v = —"Nas - 2.88
gM aiu axyn B ( )
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In the new and arbitrary reference frame, the second term of
(2.85) causes a deviation from a straight-line motion of the par-
ticle in this frame. Therefore, the second term represents the
effect of the gravitational field. (To be sure, the connection co-
efficients also represent any other noninertial effects that may
have been introduced by the choice of reference frame, such as
rotation.)

The affine connection (2.86) appearing in the geodesic equa-
tion clearly plays an important role in gravity, and we study it
further. We first show that the affine connection is a nontensor,
and then show how it can be expressed in terms of the met-
ric tensor and its derivatives. In this sense the metric behaves as
the gravitational potential and the affine connection as the force.
Write I',, expressed in (2.86) in another coordinate system '
and use the chain rule several times to rewrite it:
0z 0xf 0 ,0x° O™
oxP 0> Ox' (8x’” 83:")
0z OxP [0x° Oz 0%*¢” 0%x° &
oxP 0 [&E’” Ox'™ 0x™0x°  Ox'MOx' Ox°

A T o A 2
_ 0x" 0x™ Ox e +8x oz’ . (2.89)

OxP Ox'm Ox™ ™ OxP Ox'MOx"
According to the transformation laws of tensors developed in
Section 2.3, the second term on the right spoils the transforma-
tion law of the affine connection. It is therefore a nontensor.

Let us now obtain the expression of the affine connection in

terms of the derivatives of the metric tensor. Form the derivative
of (2.79):

I\
r e

0 r 0 ( ox? 6%0)
or's gNV _ ox'k gpaaxlu ox'v

Take the derivatives and form the following combination and
find that it is equal to the above derivative:

09y | 99 09y, _ 0x" Oxf Oz° (3907 0gpr 3gpa)
ozxP o0x° ox™

ozt dx  Ox's Ozt x't OV
0x® 0%xP

+29p0 ox't Ox'oxv -
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Multiply this equation by % and then multiply the left and right
sides by the left and right sides, respectively, of the law of trans-
formation (2.80), namely,

glAn _ gaﬁ aT/)\ axm
Or® Ozf
Use the chain rule and rename several dummy indices to obtain

{)\ }’ B oz 0x™ 0x° { p} or™  02%xP
pvf — 9ze dx'm oz \To OxP Ox'™og ’

where the prime on {} means that it is evaluated in the z'* frame
and the symbol stands for

A 1 ,\,g|:8.gm/ O0Gru agw]
= = — ) 2.91
{,UV} 29 oxh + oz’ oxk (2.91)

This is called a Christoffel symbol of the second kind. It is seen
to transform in exactly the same way as the affine connection
(2.89). Subtract the two to obtain

A AMN] 0z 0z" dx° p
[F“” - {uv}] ~ Oxr Ox' Oz [ng N {m}] . (292)

This shows that the difference is a tensor. According to the
equivalence principle, at anyplace and anytime there is a local
inertial frame £% in which the effects of gravitation are absent,
the metric is given by (2.7), and T',, vanishes (compare (2.82)
and (2.85)). Because the first derivatives of the metric tensor
vanish in such a local inertial system, the Christoffel symbol also
vanishes. Because the difference of the affine connection and the
Christoffel symbol is a tensor which vanishes in this frame, the
difference vanishes in all reference frames. So everywhere we find

(2.90)

A p
F/AW - {MV} - %g)‘ (g'ﬂ’au + Grpy — guv,n) : (2.93)

We use the “comma subscript” notation introduced earlier to
denote differentiation (2.72).

Sometimes it is useful to have the superscript lowered on the
affine connection

Toww = gual, - (2.94)
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It is equal to the Christoffel symbol of the first kind

K
Fnuu = |:/—“/:| - %(gnu,u + Okpy — g;w,n) . (295)
The above formulas provide a means of computing the affine
connection from the derivatives of the metric tensor and will
prove very useful. It is trivial from the above to prove that

FK]/.UJ + F[,LK,I/ = g[uﬁ,l/ . (2'96)

2.5.1 MATHEMATICAL DEFINITION OF LOCAL LORENTZ
FRAMES

Spacetime is curved globally by the massive bodies in the uni-
verse. Therefore, we need to define mathematically the meaning
of “local Lorentz frame”. In a rectilinear Lorentz frame the met-
ric tensor is 7, (2.7). Therefore, in the local region around an
event P (a point in the four-dimensional spacetime continuum),
the metric tensor, its coordinate derivatives, and the affine con-
nection have the following values:

gMU(P) = nw/a guu,a(P) = 0, FQV(P) = 0 . (297)

The third of these equations follows from the second and from
(2.93). All local effects of gravitation disappear in such a frame.
The geodesic equation (2.85) defining the path followed by a
free particle in an arbitrary gravitational field becomes locally
the equation of a uniform straight line, in accord with the equiv-
alence principle.

Of course, physical measurements are always subject to the
precision of the measuring devices. The extent of the local region
around P, in which the above equations will hold and in which
spacetime is said to be flat, will depend on the accuracy of the
devices and therefore their ability to detect deviations from the
above conditions as one measures further from P.

2.5.2 GEODESICS

In the Special Theory of Relativity a free particle remains at rest
or moves with constant velocity in a straight line. A straight
line is the shortest distance between two points in Euclidean
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three-dimensional space. In Minkowski spacetime a straight line
is the longest interval between two events, as we shall shortly
see. Both situations are covered by saying that a straight line
is an extremal path between two points. We shall show that
in an arbitrary gravitational field, a particle moving under the
influence of only gravity, follows a path that is, in the sense that
we shall define, the straightest line possible in curved spacetime.

We first show that a straight-line path between two events in
Minkowski spacetime maximizes the proper time. This is easily
proved. Orient the axis so that the two events marking the ends
of the path, A and B, lie on the t-axis with coordinates (0, 0, 0, 0)
and (7,0,0,0), and consider an alternate path in the t-x plane
that consists of two straight-line segments that pass from A to
B through (7'/2,R/2,0,0). The proper time as measured on the
second path is

T=2/(T/2)? - (R/2)?=VT? - R?. (2.98)

For any finite R, 7 is smaller than the proper time along the
straight-line path from A to B, namely, T'. Therefore, a straight-
line path is a maximum in proper time.

We have referred to the equation of motion of a particle mov-
ing freely in an arbitrary gravitational field (2.85) as a geodesic
equation. In general, a geodesic that is not null (a null geodesic,
as is the case for a light particle, has dr = 0), is the extremal
path of

/A Cdr (2.99)

where A and B refer to spacetime events on the geodesic. To
prove this result, let x#(7) denote the coordinates along the
geodesic path, parameterized by the proper time, and let z#(7)+
dz#(7) denote a neighboring path with the same end points, A
to B. From

dr? = g, dz"dz” (2.100)
we have to first order in the variation,

2dr é(dr) = ég,datdz” + 2g,,dz"6(dz")
= da"dz” g 02> + 2g,,dx"d(52") . (2.101)
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Recalling the four-velocity, u* = dz* /dr, we have
d
6(dr) = (3uru’ guada® + g 8o )dr.  (2.102)
Thus

B B 1, .u,,v d U A
5/A d7'=/A [5“ v’ Gy — %(guxu )](533 dr  (2.103)
where an integration by parts in the second term was performed.
Because the variation of the path dz? is arbitrary save for its
end points being zero, we obtain as the extremal condition,

d v
%(gu)\uu) - %uﬂu Juv\ = 0. (2104)
The first and second terms can be rewritten:
d du* ,
E (g,u)\uu) = gu)\ﬁ + gu)\,uuuu s
Gurw 't = 5(gunw + Gavp)uu” . (2.105)

Now using the relationship (2.95), we find

du* u v
guz\ﬁ + F/\uuu u’ =0. (2106)

Multiplying by ¢°* and summing on ), we obtain the geodesic
equation (2.85):

du?
dr

This completes the proof that the path defined by the geodesic
equation, the equation of motion of a particle in a purely gravita-
tional field, extremizes the proper time between any two events
on the path.

The straight-line path between two events in Minkowski space-
time maximizes the interval between the events. We proved that
a geodesic path, in the general case that a gravitational field is
present, will be an extremum, but if the spacetime separation of
the ends of the path is large, there may be two geodesic paths,
one of minimum and one of maximum length. The geodesic path

+ Iy, ufu” =0. (2.107)
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of a particle in spacetime is frequently referred to as its world
line. A world line is a continuous sequence of points in spacetime;
it represent the history of a particle or photon.

In a region of spacetime sufficiently small that the Minkowski
metric holds (the existence of which locality is guaranteed by the
equivalence principle), we see that the geodesic equation reduces
to that for uniform straight-line motion,

du*

dr
Therefore, the path of a particle moving under the influence
of a general gravitational field will be locally straight. But we
know that no global Lorentz frame exists in the presence of
gravitating bodies; therefore, geodesic paths will in general be
curved. However, in the above sense they will be as straight as
possible in curved spacetime.

0. (2.108)

2.5.3 COMPARISON WITH NEWTON’S GRAVITY

We confirm the assertion made earlier that the metric tensor
g takes the place in General Relativity that the Newtonian
potential occupies in Newton’s theory. Of course this must be
done in a weak field situation for it is only there that Newton’s
theory applies. For this reason, of the ten independent g,,’s,
only one can be involved in the correspondence.

We consider a particle moving slowly in a weak static gravita-
tional field. From the Special Theory of Relativity we have

dr = (di? Nn1/2 _ 2\1/2 . dr
T = (dt* —dr?)’" = (1 —v*)'"dt, V= (2.109)

where boldface symbols denote three-vectors. The slowly moving
assumption is

dr < dt

dt = dr "~
So the geodesic equation (2.85) can be written with the neglect
of the velocity terms as

d?z* 4 [ dty2
s +F00(%) =0. (2.111)

1. (2.110)
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Because the field is static, the time derivatives of g,, vanish.
Consequently,

T = 29" (29000 — Goow) = —29" goo, (1 — 6¢) . (2.112)

Because the field is weak we may take

goo = (14 0)moo (2.113)

where § << 1 and similarly for the other g,,. To first order in
the small quantities, we have

do

dzv

Lo = — 31" Moo~ (1 = &) - (2.114)

Thus the geodesic equations become
d’r ( dt d*t
dr2  2\dr dr?

The second of these tells us that 7 = at + b. So we may write

the first as

)2V6, =0. (2.115)

d’r

= = —3V§. (2.116)
Newton’s equation is

d’r

— =-VV 2.117

dt? vV, ( )

where V' is the gravitational potential. Comparing, we have
goo =1+ 2V. (2.118)

In particular, if the gravitational field is produced by a body of
mass M,
GM 2GM

- Jdoo = 1-— y (2119)
r T

V =

where G is Newton’s constant. Thus we see for weak fields how
the metric is related to the Newtonian potential.
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2.6  Covariance

2.6.1 PRINCIPLE OF GENERAL COVARIANCE

Physical laws in their form ought to be independent of the frame
in which they are expressed and of the location in the universe,
that is, independent of the gravitational field. The principle of
general covariance states that a law of physics holds in a general
gravitational field if it holds in the absence of gravity and its
form is invariant to any coordinate transformation. Physical laws
frequently involve space-time derivatives of scalars, vectors, or
tensors. We have seen that the derivative of a scalar is a vector
but that the ordinary derivative of a vector or a tensor is not
a tensor (page 28). Therefore, we need a type of derivative—
a covariant derivative—that reduces to ordinary differentiation
in the absence of gravity and which retains its form under any
coordinate transformation, that is, in any gravitational field.

2.6.2 (COVARIANT DIFFERENTIATION

Take the derivative of the expression of the covariant vector
transformation law (2.63),

dA;,  0z¥ 9z° 0A, 0%z

dae'e  Ox'm Ox'p Oxz°  Ox'POz'm” ¥
If only the first term were present we would have the correct
transformation law for a covariant tensor. Now multiply the left

and right sides of (2.89) by the left and right sides of (2.63),
respectively, and rearrange to find

oz 0z° 0%x" 4
ox'e oglv - P '€+8x’“6x”’ o

Subtracting the above two equations after renaming dummy in-
dices of summation, we get

IA Al
Ful/A)\ -

dA’ ) / Ox® P dA,
(%’5 B P;‘VA)‘) = o't OV (dmﬁ - F(),\yﬂA)\> , (2.120)

which proves the tensor character of the quantity in brackets.
This we call the covariant derivative of a covariant vector. We
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denote it by
A, = dA,
BY = dgv
and the “semicolon subscript” shall denote the covariant deriva-
tive, and imply the operations shown on the right. The covariant
derivative of a covariant vector is a second-rank covariant tensor
which reduces to ordinary differentiation in inertial frames—and
therefore locally in any gravitational field.
Through similar manipulations we find the covariant deriva-
tive of a contravariant vector,

—-T), Ay, (2.121)

A = dA#

4 = d.’EV
This is a second-rank mixed tensor because its transformation
law is

(dA'“ ” AM) _ Ox'* 0P (dAa
dz" v - 0z 0z \ dzP

The covariant derivative of a mixed tensor of arbitrary order
can be obtained by successive application of the above two rules
to each index; there is one ordinary derivative of the tensor and
an affine connection for each index with sign as indicated by the
above.

In particular, the covariant derivative of the metric tensor is

Gy
Juvixn = 8;)‘ =g = TxGpu - (2.124)

+TH A% (2.122)

+FgﬂAF~) . (2123)

In a local inertial frame, where the affine connection and the
derivative of the metric tensor vanish, we see that the covariant
derivative of the metric tensor vanishes in that frame. But be-
cause this itself is a tensor, it must vanish in all frames. Similarly,
for the covariant derivative of g,

Juvx = 0= g“" - (2125)

2.6.3 GEODESIC EQUATION FROM COVARIANCE PRINCIPLE

As an important example of the application of the covariant
derivative, consider the four-velocity of a free particle in a Lor-
entz frame in the absence of gravity. We denote the four-velocity
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by u* = dx*/dr and its equation of motion is du”/dr = 0, or
equivalently in differential form,

du" = 0. (2.126)

The covariant derivative (2.123) was introduced to preserve
the vector or tensor character so that a law expressed in such
form is preserved in form for all coordinate transformations in
accord with the principle of relativity. The equation expressing
the law is said to be covariant if its form is preserved. Therefore
the law of free motion (2.126) in a Lorentz frame in the absence
of gravity is generalized to frames in arbitrary gravitational fields
by requiring that the covariant differential of the four-velocity
vanish:

o
0=ul, dz¥ = %daz” + It u’dz”
= dut +T1 udz"”. (2.127)

Dividing the above equation by d7 yields the expected result—
the geodesic equation (2.85)—the equation of motion derived
previously for a free particle in an arbitrary gravitational field:

d?z* ., dztdz”
— =0. 2.12
dr? Wodr dr 0 ( 8)

This is an example of the application of the principle of general
covariance and it is seen to rest on the equivalence principle,
which assures us that a Lorentz frame can be erected locally.

To restate the principle briefly, any law that holds in the spe-
cial theory of relativity and in the absence of gravity can be
generalized by replacing the metric n,, by g,, and replacing
ordinary derivatives by covariant derivatives.

We obtain an additional result that we need later, namely, the
equations of motion for the covariant components of the four-
velocity. The law of motion of a free particle in the special theory,
expressed in differential form as in (2.126), implies at once that
du,, = gudu” = 0. The covariant translation of this fact is

d
0 = uy,dz” = d—Z’:dx" o O (2.129)
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or

d2.’13u A d.’L‘)\%

dr? medr dr

—0. (2.130)

This is the equation corresponding to (2.128) for the covariant
acceleration. We carry the analysis a step further. Examine the
second term on the left.

1
F;);uu)\uu = §gAn(gnu,u + Gkpy — gpu,n)u)\uy
1 v
= i(gm/,u + Gkuy — g,uu,n)unu . (2131)

Because of the symmetry of the product u*u”, the last two terms
in the bracket cancel. We are left with

% = %g,w,uu“u”. (2.132)
This proves that if all the g,g are independent of some coordinate
component, say x*, then the covariant velocity u, is a constant
along the particle’s trajectory. We will use this result in a much
later chapter during a discussion of the phenomenon of dragging
of local inertial frames by a rotating star (according to which a
body dropped freely from a great distance falls, not toward the
star’s center, but is dragged ever more strongly in the sense of
the star’s rotation).

2.6.4 (COVARIANT DIVERGENCE AND CONSERVED
QUANTITIES

The element of four-volume transforms under coordinate change
as

dz"dz" dz"?da” = J da’dxtda?dax® (2.133)
where J is the Jacobian of the transformation,

ox'?

J = det
¢ oxH

. (2.134)

For brevity the four-volume element is often written d*x.
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The transformation law for the metric tensor is

ox'® |, 0x'®

L= 2.135
In Dk o8 Gv ( )

We may regard this as an element in the product of three ma-
trices. The corresponding determinant equation is

g=Jg'J=J%g (2.136)

where g = det|g,,| and is a negative quantity as can be verified
by looking at the Minkowski metric. Thus, we may write

v=g=J\/-9¢. (2.137)
If S = S'is a scalar field, then

Sv=gd'z= [ S\—gJd'z= [ §\[-gd's (2138
/V4 gd'z= [ gldz= [ g'd’z’ (2.138)
is an invariant where Vj is a prescribed four-volume. The quan-
tity

S=Sy—g (2.139)

is called a scalar density, and its integral over a region of space-
time is invariant to a coordinate transformation. Also, and very
important to us, /=g d*z is the invariant volume element.

The covariant derivative of a vector A* is given by (2.122). If
we contract indices, according to (2.76) we have a scalar. This
is the covariant divergence of A*:

AR = AR 4T AV (2.140)
From (2.93) we find
T, = 59" (Grvp + Gruw — Guvye) - (2.141)

Interchange the names of the dummy summation indices in the
second term on the right to see that it cancels the third. Thus

Thw = 59" v - (2.142)

We need still another result. Denote the cofactor of the element
gap by C*. The determinant g = det|gas| can be expanded in
any of the set of minors (i.e., any & = 0, 1, 2, or 3) in the equation

g= g(a)ﬁc(a)ﬂ (no sum on «). (2.143)
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Because the cofactor contains no elements g, we find

ag — 6(g(a)ﬂc(a)6) — agau
0Gav 09w 09w

CoF = §10% = C™ . (2.144)

Therefore,

9y
a = Va:CLW v.a - 2.145
ga agl“/g/" ) g[,l, ) ( )

We need the expression
CH = gg", (2.146)

which can be proved by multiplying by g,, and summing only
over v,

JuwC = gy g =g. (2.147)

This is the determinant expansion in minors (2.143). Thus, we
have derived the result

9o = 99" Guva - (2.148)

Hence,

Ty, =39 '9u=3(n(-g)), = \/T—g(v —9),- (2.149)
We can use this to rewrite the covariant divergence of A" as
1
A“;N = \/—__g(\/ _gAﬂ),“ (2150)
With (2.149) in (2.140), we obtain the important result for the
covariant divergence,

V=gAL, = (J=gA") . (2.151)

The left side is a scalar density. From the invariance of the inte-
gral of a scalar density over a prescribed four-volume, we have
the invariant

/V4 JogAL diy = /V4 (V—gA") , dz. (2.152)
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The right side can be converted to a surface integral over a
three-volume at a definite time z° by Gauss’ theorem.

If the covariant divergence vanishes, we get a conservation law
as follows:

A, =0 = (\/—gA“),u =0. (2.153)
As a result, we obtain

(V=94°%) o= —(v/=9gA™),, (summed over m =1 — 3(2.154)

Integrate the above expression over a three-volume at definite
time z° to find

2 [V d =~ [ (vmgAm) . d (215)
- —/S\/—_gA-dS. (2.156)

If there is no three-current \/—gA crossing the surface, then the
quantity of density /—gA° contained within V is constant,

/V\/—gAO d*r = constant (2.157)

This quantity is frequently referred to as the total charge of
whatever A* represents.

We can apply precisely the same reasoning to the covariant
divergence of an antisymmetric tensor:

If AW = A" then \/—gA", = (V/=gA"), ,(2.158)

where the quantity on the left is a vector density according to
the previous section. Similarly we can derive conservation laws
for the three-volume integral of the four densities \/—g A if the
covariant divergence vanishes and there is no three-flux through
the surface of the volume. However, if the tensor is not antisym-
metric, the above theorem does not generally apply in curved
spacetime to a tensor of more than one index.

2.7 Riemann Curvature Tensor

The order of ordinary differentiation in flat spacetime does not
matter. The order of covariant differentiation does matter in
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curved spacetime. From an investigation of this fact we arrive
at a measure of curvature.

2.7.1 SECOND COVARIANT DERIVATIVE OF SCALARS AND
VECTORS

If we take the covariant derivative of a scalar twice and then
invert the order, the answer is easily verified to be the same:

S = S = T80 = Sy = TS0, (2.159)

uv~ia

where we use the fact in the second equality that the covariant
derivative of a scalar is the ordinary derivative S,, = S ,. The
above result is symmetrical in p, v.

However for vectors and tensors, a changed order of differ-
entiation in general produces a different result. The operations
involved, all defined above, are many but straightforward. The
result for the vector A, is

Avipw — Ao = A,,ng/ ) (2.160)
where
Rg,w = Fgu,u - FgW + ngFgu — Fgurgu (2.161)

is the Riemann—Christoffel curvature tensor. We know that it is
a tensor because the left side of (2.160) is a tensor and A, is
any vector. Riemann is the only tensor that can be constructed
from the metric tensor and its first and second derivatives (cf.
Ref. [20], p. 133).

2.7.2 SYMMETRIES OF THE RIEMANN TENSOR

Riemann has a number of symmetry properties that can be easily
derived from the above expression:

Rt = —R¢
vpo vap )
Rgpa + Rgup + Rﬁau —0. (2.162)

Lowering the index on the Riemann tensor, we get

Roop = gpally,, - (2.163)

o uv
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The additional symmetries follow:

Ruupa = _Ruupa = _Ruuap: (2164)

R;wpa = Rp(rw/ = Rapup, .

As a consequence of the symmetries only 20 of the 4* = 256
components of Riemann are independent. In two dimensions
there are 15 such symmetry relationships. Consequently, there
are 2* — 15 = 1 independent components of the Riemann ten-
sor, namely, the Gaussian curvature. (See Ref. [21] p. 60 and
appendix B for a discussion of curvature in two dimensions.)

We shall encounter two additional objects that are obtained
from the Riemann tensor, the Ricci tensor,

R, =R.,,, (2.165)
and the scalar curvature,
R=¢"R,, . (2.166)

Multiply the left and right side of (2.164) by ¢"’ and then re-
name indices to find

Rul/ = Ruu . (2167)

Because of this symmetry, when we raise an index on the Ricci
tensor, it is unnecessary to preserve the location,

R* =R} =R". (2.168)

From the definition of the Ricci tensor in terms of the Riemann
tensor, we have the following explicit expression:

Ry, =T%,,—T¢, —ToT0, + T8 . (2.169)

po,v uv,o o'

The first term might appear to contradict the assertion that R,
is symmetric in u, v. However the result (2.149) proves that the
Ricci tensor is symmetric.

2.7.3 TEST FOR FLATNESS

If spacetime is flat, then we may choose a rectilinear coordinate
system in which case the metric tensor is a constant throughout
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spacetime. Then according to (2.93) the nontensor I'), vanishes
in this frame in all spacetime. So also do the derivatives of Ff‘w.
Therefore the Riemann tensor (2.161) vanishes everywhere at
all times in flat spacetime. Because this is a statement about a
tensor, it is true in any coordinate system, rectilinear or not. The
converse is true but more difficult to prove: If Riemann vanishes,
spacetime is flat. We prove this later in Section 2.9.3.

2.7.4 SECOND COVARIANT DERIVATIVE OF TENSORS

An arbitrary second-rank tensor can be expressed as the sum of
products A,B,. It is simpler to start by examining the second
covariant derivative of such a product:

(AMBV);p;ff = (Au;va + AMBV;/));U
= Au;p;oBv + Aqum;a + Au;pBV;tf + Au;ova .

Interchange p, o, and subtract to find

(A,UBV);P;U = (A;LBV);U;/J
= Au(Bv;p;U B va;p) + (Au;p;tf B Au;a;p)Bv
= A,B,R* + A,R* B

vpo upo VvV -

We can form an arbitrary linear combination of such products
of first-rank tensors to obtain the result for a general tensor,

T,

uvipso

— Tyoip = Tua RS, + Tay R, . (2.170)

vpo upo

2.7.5 DBIANCHI IDENTITIES

The Bianchi identities are extremely important for the further
development of the theory of gravity, allowing us to prove that
the Einstein tensor, which we come to next, has vanishing di-
vergence.

Apply the above result to the particular case that the second-

rank tensor is the covariant derivative of a vector T, = A,

Apipie — Auiop = Apaltype + Aawlt,, - (2.171)

vpo upo

Now write down the additional two equations obtained from this
by cyclic permutation of the indices (vpo), and add the three
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equations. First study the left side of the sum. Use (2.160) to
get

LHS = (Au;l/;p o Au;p;u);o + (Au;a;v B Au;'/;o);p
(Ao = Apoin)w = (Aaltyyp)io + (Aaltis,)ip + (Aaktyg )i -

uvp uov upo

Using (2.162) in the sum of the right-hand sides of the cyclic
permutation, we are left with

RHS = Aay R%, + Aaiw RS, + AgpR®

upo uvp pov -

Equating left and right sides and cancelling common terms, we
find

Au(Ry,, . + Ry, + Rpp) =0 (2.172)
Because A, is any vector,
R o + Rigup + Bpey, = 0. (2.173)

In addition to the symmetry relationships derived earlier, the
Riemann tensor satisfies the differential equations above known
as the Bianchi identities.

2.7.6 EINSTEIN TENSOR

Let us multiply the differential equations for the Bianchi identi-
ties (2.173) by ¢", contract o with «, and use the fact, already
established, that the covariant derivatives of the metric tensor
vanish:

0 = ¢ (Rpo + Rigup + R o)
(9" R%,,) 0 + (6" Ra)ip + (9" Ro0)s - (2.174)

Examine each term in brackets using the Riemann tensor sym-
metries. The first term is

9" R, = 9" 9 R = 9" 9" Rypps = gaﬂRz/w = 9°’Rg,
J— (07

>
The second term is
g Rgay = —g" Rgua =—¢"R, =—R.
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The third term is

guVRzpa = guVR#P = R; .
Now put these results back into their brackets with the covariant

derivatives as indicated in (2.174) to obtain
0=R),-R,+R,, =2R}, —R,.
Multiply by ¢##, and note that

gupR;!;a = (gupRg);Oé = le;éa = RHV;V
gHPR;p — g.UVR;V

to arrive immediately at the vanishing divergence
(R"™ — 2¢"R),, =0. (2.175)
The object in the brackets is called the Einstein curvature tensor,
G" = R"™ — 1g"™R. (2.176)

The Einstein tensor is constructed from the Riemann curva-
ture tensor and has an identically vanishing covariant diver-
gence. It is symmetric and of second rank. Einstein was mo-
tivated to seek a tensor that contained no differentials of the
g* higher than the second—a tensor which was a linear homo-
geneous combination of terms linear in the second derivative or
quadratic in the first (in analogy with Poisson’s equation for the
gravitational potential in Newton’s theory:

V2V = dnp, (2.177)

where p is the mass density generating the field). For the expres-
sion of energy and momentum conservation, it is important that
the divergence vanish. The energy-momentum tensor of matter
accomplishes this and is of second rank.
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2.8 Einstein’s Field Equations

“The geometry of spacetime is not given; it is de-
termined by matter and its motion.”%

W. Pauli, 1919

We know that other bodies will experience gravity in the vicin-
ity of massive bodies. So mass is a source of gravity, and from the
Special Theory of Relativity we must say in general that mass
and energy are sources. We have just seen that a construction
from the Riemann curvature tensor, namely, Einstein’s tensor,
has vanishing covariant divergence. We have three possibilities,

G"™ =0, (2.178)
or
G = kT (2.179)

where T" is a symmetric divergenceless tensor constructed from
the mass-energy properties of the material medium, or

G = kT" + Agh . (2.180)

The constant A is the so-called cosmological constant. It was
not present in the original theory and was added to obtain a
static cosmology before it was known that the universe is ex-
panding. Einstein regarded its numerical value as a matter to
be settled by experiment—*“The curvature constant [A] is, how-
ever, essentially determinable, and an increase in the precision
of data derived from observations will enable us in the future to
fix its sign and determine its value” [22].

It is apparent that the cosmological constant corresponds to a
constant energy density A/(87) and a constant pressure of the
same numerical value but of opposite sign. The cosmological
constant is sometimes referred to as the vacuum energy density.
In any case it is small; its value has been recently measures by
perlmutter. Its effect is indeed cosmological; stellar structure is
unaffected by it. We need not consider the cosmological term
further.

5Very importantly, the converse is also true.
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The first set of differential equations (2.178) are those that
must be satisfied by the metric in empty space outside material
bodies and energy concentrations. An example is the gravita-
tional fields outside a star.

The second set of differential equations (2.179) determine the
gravitational fields g"” inside a spacetime region of mass-energy
and in addition determine how the mass-energy is arranged by
gravity. With appropriate T*¥ it would provide the equations of
stellar structure. We have yet to fix the constant k. This can be
done by looking to the weak field limit where the General Theory
of Relativity should agree with Newton’s well-tested, weak-field
theory.

There are several remarkable notes we can make at this point.
Einstein’s field equations tell spacetime how to curve and mass-
energy how to configure itself and how to move. Spacetime acts
upon matter and in turn is acted upon by matter. This was Ein-
stein’s intuition and motivation in seeking a theory that placed
spacetime and matter as co-determiners in nature. He was dis-
pleased with the Special Theory of Relativity as anything but a
local theory, for it gave spacetime an absolute status.

Second, the Einstein field equations are nonlinear in the fields
g". (This can be verified by tracing back through the objects
from which the Einstein tensor is constructed.) Nonlinearity
means that the gravitational field interacts with itself. This is
because the field carries energy, and mass-energy in any form is
a source of gravity. The nonlinearity of the Einstein equations
accounts for some of the extraordinary phenomena encountered
in strong gravity, including black holes [23] and the reversal of
the centrifugal force in their vicinity [24].

We have seen in (2.175) that the Einstein tensor has identically
vanishing covariant divergence. Hence (2.179) requires of the
matter tensor that

™., =0. (2.181)
The corresponding equation in flat space is
™ ,=0. (2.182)

Vanishing of the ordinary divergence of the energy-momentum
tensor in the Special Theory of Relativity corresponds to the
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conservation of energy and momentum. However, (2.181) does
not assure us of the constancy of any quantity in time. In fact
(2.179) ensures that matter and the gravitational fields exchange
energy, or in other words do work on each other, for it is the
divergence of G* — kKT* that vanishes. So neither matter nor
the gravitational field can by itself conserve energy in any sense.
No contradiction exists with laboratory experiments performed
on earth. Over the dimensions of a typical laboratory, spacetime
is essentially flat, and nothing that could be done in a laboratory
could possibly disturb this flatness in any perceptible way.

This brings us back to the comparison of the weak-field limit
between Newton’s theory and Einstein’s. The inverse-square law
of the force between massive objects is not required by the in-
ner structure of Newton’s theory. He could have postulated an
inverse « law, that force F' ~ Mm/r®, and then attempted to
fit o to the astronomical data of the solar system. Depending on
what weight was given to the precession of planets, one would
have found a value of « close to two.

Einstein’s theory does not possess the flexibility of Newton’s
in this regard. We saw in (2.119) that Einstein predicts precisely
the inverse square law. In this sense, he could claim as his own all
the successes of the Newtonian theory in explaining the motion
of planets in the solar system. They were computed with the
inverse-square law, there being no flexibility in the choice of the
power in his theory.

Concerning the precession of planets, an isolated planet in or-
bit about the sun under an inverse square law is an ellipse whose
orientation is fixed in space. However the total precession of the
orbit of Mercury is observed to be about 5600 seconds/century.
Most of this is caused by the fact that an earthbound observer
is not in an inertial frame far from the sun. For example, sup-
pose that Mercury did not orbit about the sun, but instead held
a fixed position. Nevertheless, from the earth it would be ap-
pear to move, sometimes to the left of the sun, sometimes to
the right, and alternately passing in front of and in back of the
sun. Taking account of this correction to the apparent motion
of Mercury due to the earth’s own motion, the precession of
Mercury is about 574 seconds/century. This value is about 43
seconds/century larger than the precession computed by New-



2. General Relativity 60

tonian physics as due to the perturbation of the orbit by other
planets, a small but disturbing discrepancy. An early triumph of
Einstein was that he calculated, within the observational errors,
the precise value of the excess precession. In Newton’s theory
only mass contributes to gravity, whereas in Einstein’s theory
the kinetic energy of the motion of the planets contributes as
well.

2.9 Relativistic Stars

Einstein’s field equations are completely general and simple in
appearance. However, they are exceedingly complicated because
of their nonlinear character and because spacetime and matter
act upon each other. As already remarked, there is no prior ge-
ometry of spacetime. There are a few cases in which solutions can
be found in closed form. One of the most important closed-form
solutions is the Schwarzschild metric outside a static spherical
star. Another is the Kerr metric outside a rotating black hole.
Einstein’s equations can also be solved numerically as the cou-
pled differential equations for the interior structure of a spherical
static star, which are called the Oppenheimer—Volkoff equations
for stellar structure.

In this section we take up the important problem of deriv-
ing the equations that govern spacetime and the arrangement of
matter in the case of relativistic spherical static stars. They are
the basic equations that underlie the development of neutron
star models. They also demonstrate the mathematical existence
of Schwarzschild black holes. They can also be used to develop
white dwarf models, though Newtonian gravity is a good ap-
proximation for these stars.

2.9.1 METRIC IN STATIC ISOTROPIC SPACETIME

We seek solutions to Einstein’s field equations in static isotropic
regions of spacetime such as would be encountered in the interior
and exterior regions of static stars. Under these conditions the
g are independent of time (z° = t) and ¢"™ = 0. We choose
spatial coordinates 2! = r, 22 = 60, and 2® = ¢. The most
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general form of the line element is then
dr? = U(r)dt> = V(r)dr* — W(r)r?*(df* + sin® § d¢®) (2.183)

We may replace r by any function of r without disturbing the
spherical symmetry. We do so in such a way that W(r) = 1.
Then we may write

drt = e® g2 — 20 dr? — 12 dp? — r?sin? 0 dg? | (2.184)
where A, v are functions only of r. Comparing with
dr? = G dz* dz”

, we read off 7

oo = €2U(r), g1 = —€2A(T), 922 = —7"2, 933 = —r? sin’ 0,
9w =9""=0 (n#v). (2.185)
Hence, from g, 9" = 6f,, we have in this special case
Gup = 1/g"  (not summed). (2.186)

According to its definition as a contraction of the Riemann
tensor, the Ricci tensor can be written

Ry, =T%,,—T¢, —To T8, +TeTs . (2.187)

po,v uv,o e
We can derive the nonvanishing affine connections (2.93), which

are symmetric in their lower indices, from the metric tensor
whose general form for static isotropic regions was derived above:

[y =v et Y =v,

Iy =X, Ity =T =1/r,

Il = —re I3, = cotf , (2.188)
[, = —rsin®fe 2 | I'2, = —sinfcosh.

The primes denote differentiation with respect to r. Hence, for
static isotropic spacetime

" I 12 2V 2(v—=>X)
ROO = (—l/ +/\l/—l/ —7)6 5

"Note that in (2.184) some authors use the opposite signs for time and space
components, and some use the functions v, A but without the factor 2, or use
different notation altogether for the metric. Great care has to be exercised in
using results from different sources.
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Rll = "\ + 1/'2 _ 2_/\I
r
R22 = (1 + T’VI — 7‘)\/)6_2/\ —1 y
R33 = R22 sin2 0. (2189)

2.9.2 THE SCHWARZSCHILD SOLUTION

In the empty space outside a static star Einstein’s equation is
G, =0, or equivalently

Ry = 39uwR. (2.190)
Multiply by ¢®*, and sum on the dummy index to find
RS = 162R. (2.191)

v

Contract by setting o = v, and sum to get
R=2R = R=0. (2.192)
Hence, the vanishing of Einstein’s tensor implies
Gw=0 = R=0, R, =0. (2.193)

In empty space, Einstein’s equation is equivalent to the van-
ishing of the Ricci tensor or, equivalently, the scalar curvature.
Its form for static isotropic spacetime was worked out in the
previous section.

From the vanishing of Ry, R;; we find that

N+ =0. (2.194)

(Do not confuse v and A when used to denote indices and when
used to denote the metric functions as in the above equation.)
For large r, space must be unaffected by the star and therefore
flat so that A and v tend to zero; therefore

A+v=0. (2.195)
Using these results in Ryo = 0, we find that
(1+2r/)e” =1. (2.196)
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This condition integrates to

2GM
go=e’=1- — (r>R), (2.197)

where M is the constant of integration, and we introduced New-
ton’s constant. Having studied the Newtonian approximation,
one identifies M with the mass of the star. From the foregoing
results,

2GM
T

g1 = —e2 — _em2 — _(1 _

)_1 (r > R). (2.198)

This completes the derivation of the Schwarzschild solution of
1916 of Einstein’s equations outside a spherical static star. It
was the first exact solution found for Einstein’s equations. The
proper time is

dr’ =

r? sin” 0 dp?

(1- 2y (1= 258

)_ldr2 — r2de2—
.

(r>R), (2.199)

where R, in this context, denotes the radius of the star.
Let us summarize the Schwarzschild solution found above:

2GM
goo(r) = e = (1 B ), r>R,

2GM~\ -1
911(7”):_6%(”:_(1_ r ) , r>R,

gn(r) = —r?,  g(r,0) = —r’sin4. (2.200)

Notice that the Schwarzschild metric is singular at the radius r =
rs = 2G'M. This does not mean that spacetime itself is singular
at that radius, but only that this particular metric is. Other
nonsingular metrics have been found, in particular, the Kruskal—
Szerkeres metric [25, 26]. However, further analysis shows that if
rg lies outside the star where the Schwarzschild solution holds,
then it is a black hole—no particle or even light can leave the
region r < rg. This radius rg is called the Schwarzschild radius
or singularity or horizon. But because the above metric holds
only outside the star, rs has no special significance if it is smaller



2. General Relativity 64

than the radius of the star. For then a different metric holds
inside the star which does not possess a singularity. We come to
this solution shortly.

2.9.3 RIEMANN TENSOR OUTSIDE A SCHWARZSCHILD STAR

If spacetime is flat, then the Riemann curvature tensor vanishes
(Section 2.7.3). We are now prepared to address the converse
(albeit not rigorously): if spacetime is curved, some components
of the Riemann tensor are finite (which components, of course,
will depend upon how convoluted spacetime is).

The metric tensor and, indeed, the affine connection for the
empty space outside a massive body were computed in the pre-
ceding section. We have seen in Section 2.4.3 that massive bodies
curve spacetime. So we know that the Schwarzschild metric ten-
sor refers to curved spacetime. Referring to the definition of the
Riemann tensor (2.161) and the specific form that the affine con-
nection takes for a static spherical star (2.188), we can compute

R = (V" + 207 — V' X)) (2.201)

Thus we exhibit at least one nonvanishing component of the
Riemann tensor in the curved spacetime outside a Schwarzs-
child star. This suggests that Riemann is not identically zero
in curved spacetime. An actual proof that if Riemann is finite
then spacetime is curved requires the formulation of parallel
transport, which we do not take up here. We declare, without
rigorous proof, that the Riemann tensor vanishes if and only if
spacetime is flat. Notice that, far from an isolated star where
spacetime approaches flatness, Riemann approaches zero as it
should.

2.9.4 ENERGY-MOMENTUM TENSOR OF MATTER

From the success of Newtonian physics in describing celestial
mechanics and other weak gravitational field phenomena, we
know that mass is a source of gravity. From the experimental
verifications of the Special Theory of Relativity, we know that
all forms of energy are equivalent and must contribute equally
as sources of gravity. Normally, of course, it is mass that domi-
nates, and the average mass density in the solar system and in
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the universe is very small; that is why Newtonian physics is so
accurate under the typical conditions mentioned above.

An essential aspect of Einstein’s curvature tensor is that it au-
tomatically has vanishing covariant divergence (2.175). It is also
a symmetric second-rank tensor. Accordingly, mass-energy—the
source of the gravitational field—must be incorporated into a di-
vergenceless, symmetric, second- rank tensor in flat space. As a
tensor, it can be transcribed immediately to its form in an arbi-
trary spacetime frame by the general covariance principle. Such
a tensor is the energy-momentum tensor.

In other parts of this book we shall be interested in specific
theories of dense matter from which we will be able to explicitly
construct the energy-momentum tensor of the theory. Here we
are interested in the general form such a tensor takes. Frequently,
matter may be regarded as a perfect fluid. The fluid velocity is
assumed to vary continuously from point to point. The perfect
fluid energy-momentum tensor in the Special Theory of Relativ-
ity can be expressed in terms of the local values of the pressure
p and energy density € as in (2.49). The General Relativistic
energy-momentum tensor can be written immediately using the
Principle of General Covariance spelled out on page 47:

T = —pg" + (p + €)uru" ,
guwutu’ =1.

In the above equations, u* is the local fluid four-velocity
dz*
w2
¢ dr
and satisfies (2.202) because of (2.53).
The pressure and total energy density (including mass) are

related by the equation of state of matter, frequently written in
either form

(2.202)

p=ple) or e=¢€(p) (2.203)

where p and € are the pressure and energy density (including
mass) in the local rest-frame of the fluid. In the next section
we shall see how the equations for stellar structure involve these
quantities and this relationship.
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2.9.5 THE OPPENHEIMER—VOLKOFF EQUATIONS

We are now prepared to derive the differential equations for
the structure of a static, spherically symmetric, relativistic star.
For the region outside a star, we found that the vanishing of
the Einstein tensor was equivalent to the vanishing of the Ricci
tensor or the scalar curvature. This is not the case for the interior
of the star. We need both the Ricci tensor and scalar curvature
to construct the Einstein tensor. The general form of the metric
for a static isotropic spacetime was obtained in (2.185). From
Section 2.9.1 we find the scalar curvature,

2
R = ¢"™R, =e "Ry —e Ry — — R
T
2 N l/’}

= e’z’\{—QV" +2NV -2 — S 44— 4
T T r

2
+ 2 (2.204)
It is more convenient to work with mixed tensors. For example,

Gy’ =Ry — iR (2.205)

is obtained with the results of Section 2.9.1 for a static isotropic
field, namely,

90 = 9ovg” = goog™ = 1. (2.206)

So using results obtained earlier in this section we can find that
the components of the Einstein tensor are

Gl = e (1 -2rN)—-1= —d%[r(l —e ],
r’G' = e (1 +2r) -1,
G2 = 2 (y/r +2 N+ v — )‘I)
2 - r ’
G = G2 (2.207)

Because of the assumption that the star is static, the three-
velocity of every fluid element is zero, so

ub =0 (p#0), u® =1//900 , (2.208)
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according to (2.202). The energy-momentum tensor expressed as
a mixed tensor, we have the nonzero components in the present
metric,

T=¢, T}/F=-p (n#0). (2.209)

I

So the (00) component of the Einstein equations gives
rG, = —d%{r(l — e 2N = kr?T,° = kr2e(r). (2.210)
This can be integrated immediately to yield
e =14 é/or e(r)ridr. (2.211)
Let us define

M(r) = 4n /0 " e(r)ridr (2.212)

and let R denote the radius of the star, the radial coordinate
exterior to which the pressure vanishes. Zero pressure defines
the edge of the star because zero pressure can support no ma-
terial against the gravitational attraction from within. Denote
the corresponding value of M (R) by

M= M(R). (2.213)
Now comparing (2.119, 2.197, 2.198) we see that, to obtain
agreement with the Newtonian limit, we must choose

k= —87G (2.214)

and interpret M as the gravitational mass of the star. Therefore,
M(r) is referred to as the included mass within the coordinate
r. So Einstein’s field equations can now be written

Gt = —8nGTH". (2.215)
From the above, we have found so far that

(1 B QGM(T))—1 ’

— _2Mr) — _
911(7°) € ,

(2.216)

which agrees with (2.198), but now we see that g;1(r) has the
same form inside and outside the star although it is the included
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mass M (r), not the total mass, that appears in the interior so-
lution.

Having learned the constant of proportionality in Einstein’s
equations (2.215), let us now write out the field equations for
a spherically symmetric static star, including the one we have
already solved. In passing we note that our solution gives a re-
lationship between the included mass M (r) at any radial coord-
inate and the metric function g11(r) or A(r), but we have yet to
learn how to compute one or the other. The differential equa-
tions from (2.207) are

1 2\ 1
0 — -2 _
G, = e (r2 - ) — 3= 8nGe(r), (2.217)
1 2V 1
1 — -2 —
G, = e (r2 + " ) — 5= 81Gp(r), (2.218)

V=X

G2 = e (1/" + 2 =NV + ) = 8nGp(r)(2.219)
G? = G, =8rGp(r). (2.220)

The last equation contains no information additional to that
provided by those preceding it.

To simplify notation, choose units so that G = ¢ = 1. Solve
(2.217) to find

—2r\ = (1 — 8mre)e** — 1 (2.221)
and (2.218) to find
2rv = (14 8mrip)e® — 1. (2.222)
Take the derivative of (2.222) and then multiply by 7:
2rv + 2r*)" = [27")\'(1 + 87r’p) + (167r%p + 87rr3p')]62’\ :
Solve for v" using (2.222, 2.221):

2r2y" =1+ (167r%p + 8mrp')e* (2.223)
—(1 4 87r?p) (1 — 87r?e)e™*. (2.224)

Square (2.222) to obtain the result

2r’V” = 1(1 4 8nr’p)’e* — (1 + 87r’p)e™* +

(2.225)

1
3 -
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The last four numbered equations provide expressions for \', v/,
V" and v in terms of p, p', €, and €?* the latter of which,
according to (2.216), can be expressed in terms of the included
mass. Therefore the metric can be eliminated altogether by sub-
stitution of the above results into the remaining field equation
(2.219). After a number of cancellations, we emerge with the

result

dp _ _[p(r) + e(r)][M(r) + 4mr’p(r)]
dr rlr — 2M(r)] '

This and equation (2.212) represent the reduction of Einstein’s
equations for the interior of a spherical, static, relativistic star.
These equations are frequently referred to as the Oppenheimer—
Volkoff equations. The stars they describe—static and spher-
ically symmetric—are sometimes referred to as Schwarzschild
stars.

Given an equation of state (2.203), the stellar structure equa-
tions (2.212) and (2.226) can be solved simultaneously for the
radial distribution of pressure, p(r), and hence for the distri-
bution of mass-energy density €(r). Moreover, in any detailed
theory of dense matter, the baryon and lepton populations are
obtained as a function of density; hence the distribution of parti-
cle populations in a star can be found coincident with a solution
of the Oppenheimer—Volkoff equations.

It may seem curious that the expression (2.212) for mass has
precisely the same form as one would write in nonrelativistic
physics for the mass whose distribution is given by ¢(r). How
can this be, inasmuch as we know that spacetime is curved by
mass and mass in turn is moved and arranged by spacetime in
accord with Einstein’s equations? The answer is that (2.212) is
not a prescription for computing the total mass of an arbitrary
distribution €(r). There are no arbitrary distributions in grav-
ity; rather €(r) is precisely prescribed by another of Einstein’s
equations (2.226). As such, M comprises the mass of the star
and its gravitational field. Because of the mutual interaction of
mass-energy and spacetime, there is no meaning to the question
“What is the mass of the star?” in isolation from the field en-
ergy. That is why we refer to M as the gravitational mass or
the mass-energy of the star. It is the only type of mass that en-

(2.226)
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ters Einstein’s theory and is the only stellar mass to which we
will refer in this book. Therefore, we shall generally refer to a
star’s mass as simply the mass without the adjective “gravita-
tional”. Sometimes a so-called proper mass is defined. It appears
nowhere in Einstein’s equations and is an artifact.

It does make sense to inquire about the mass of the totality of
nucleons in a star if they were dispersed to infinity. This mass
is referred to as the baryon mass. The difference between gravi-
tational mass and baryon mass, if negative, is the gravitational
binding of the star. As we shall find, the gravitational binding is
of the order of 100 MeV per nucleon in stars near the mass limit
as compared to 10 MeV binding by the strong force in nuclei.

Notice that, according to (2.226), the pressure is a monotonic
decreasing function from the inside of the star to its edge be-
cause all the factors in (2.226) are positive, leaving the explicit
negative sign. This makes sense. Any region is weighted down
by all that lies above. We have assumed that the denominator
in (2.226) is positive. Overall this is true of the earth, the sun,
and a neutron star. In fact, 2M/R < 8/9 for any static stable
star. It can also be shown that 2M(r)/r < 1 for all regions of
a stable star [27]; so indeed we are justified in taking the last
factor in (2.226) as positive.

In (2.199) we saw a singularity in the Schwarzschild solution
if a star lies within » = 2M. Such stars are highly relativis-
tic objects called black holes. No light or particle can escape
from within their Schwarzschild radius. A luminous star is highly
nonrelativistic. A neutron star is relativistic. Newtonian gravity
would not produce the same results as General Relativity. This
fact is clear, given that 2M can be as large as SR for a neutron
star, which makes the denominator of (2.226) a large correction
(as much as 9 instead of 1).

We already have an expression for the radial metric function
both inside and outside a star. It is sometimes useful to have the
time metric function ggo. No general expression for the solution
can be obtained, as for g1, (2.216). However using the latter in
(2.222) we obtain a differential equation,

dv _ M(r)+ 4rrip(r)
dr r[r —2M(r)]

(2.227)
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The solution must match the exterior solution (2.198). This is

easily accomplished. If v(r) is a solution, we can add any con-

stant to it and still have a solution. We obtain the correct con-
dition at R if we make the change

2M

— 1 i

v(r) — v(r) = v(R) + { In(1 - )

We can start the integration at » = 0 with any convenient value

of v(0), say zero.
Alternately, once the OV equations have been solved so that
p(r) and hence ¢(r) are known, one can find v(r) by integration

r<R. (2.228)

dv 1 dp
e B 2.92
dr p+edr’ (2.229)

r 1 dp
v(r) = —/ — + constant, v(oco)=0. (2.230)
0 p+edr

The Oppenheimer—Volkoff equations can be integrated from
the origin with the initial conditions M (0) = 0 and an arbitrary
value for the central energy density €(0), until the pressure p(r)
becomes zero at, say R. Because zero pressure can support no
overlying matter against the gravitational attraction, R defines
the gravitational radius of the star and M (R) its gravitational
mass. For the given equation of state, there is a unique rela-
tionship between the mass and central density €(0). So for each
possible equation of state, there is a unique family of stars, pa-
rameterized by, say, the central density or the central pressure.
Such a family is often referred to as the single parameter se-
quence of stars corresponding to the given equation of state.

2.9.6 GRAVITATIONAL COLLAPSE AND LIMITING MASS

In Newtonian physics mass alone generates gravity. In the Spe-
cial Theory of Relativity mass is equivalent to energy, so in the
general theory all forms of energy contribute to gravity. It is
surprising that pressure also plays a most consequential role
in the structure of relativistic stars beyond the role it plays in
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Newtonian gravity. Pressure supports stars against gravity, but
surprisingly, it ultimately assures the gravitational collapse of
relativistic stars whose mass lies above a certain limit.

Pressure appears together with energy density in determining
the monotonic decrease of pressure (2.226) in a relativistic star.
Gravity acts to compress the material of the star. As it does so,
the pressure of the material is increased toward the center. But
inasmuch as pressure appears on the right side of the equation,
this increase serves to further enhance the grasp of gravity on the
material. Therefore, for stars of increasing mass, for which the
supporting pressure must correspondingly increase, the pressure
gradient (which is negative) is increased in magnitude, making
the radius of the star smaller because its edge necessarily occurs
at p = 0. As a consequence, if the mass of a relativistic star
exceeds a critical value, there is no escape from gravitational
collapse to a black hole [28]. Whatever the equation of state,
the one-parameter sequence of stable configurations belonging
to that equation of state is terminated by a maximum-mass
compact star. The mass of this star is referred to as the mass
limit or limiting mass of the sequence.

2.10 Action Principle in Gravity

We arrived at Einstein’s equations by noting the vanishing di-
vergence of the Einstein curvature tensor and equating it to the
energy-momentum tensor of matter as the source of the gravita-
tional field. We did not comment on how the energy-momentum
tensor might be obtained. In general, this tensor is not given
but must be calculated from a theory of matter. In what frame
should the theory be solved? Evidently in the general frame of
the gravitational field. But this is an entirely different problem
than is normally solved in many-body theory.

We are accustomed to solving problems in nuclear and par-
ticle theory in flat spacetime (or even flat space) in which the
constant Minkowski metric 7,,, appears, not a general and as yet
unspecified field g, (z). A tacit assumption is made in passing
from the energy-momentum tensor in a Lorentz frame (2.49) to
its form (2.202) in a general frame by means of the principle of
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general covariance, as was done in deriving the Oppenheimer—
Volkoff equations of stellar structure. The local region over which
Lorentz frames extend is assumed to be sufficiently large that
the equations of motion of the matter fields can be solved in a
Lorentz frame, that is, in the absence of gravity, and the corre-
sponding energy-momentum tensor constructed from the solu-
tion for such a region.

As we shall see in the next chapter, the local inertial frames in
the gravitational field of neutron stars (and therefore for the less
dense white dwarfs and all other stars) are actually sufficiently
extensive that the matter from which they are constituted can
be described by theories in flat Minkowski spacetime. We shall
refer to such a situation as a partial decoupling of matter from
gravity. In other words, the equations of motion for the matter
and radiation fields can be solved in Minkowski spacetime. The
solutions will provide the means of calculating the energy den-
sity and pressure of matter ¢ and p throughout the star. But
the general metric functions of gravity g,,(z) reappear on the
right side of Einstein’s field equations in the energy-momentum
tensor, (2.202), when referred to a general frame in accord with
the principle of general covariance. Therefore the gravitational
fields g, (x) still appear on both sides of Einstein’s field equa-
tions, and matter in bulk shapes spacetime just as spacetime
shapes and moves matter in bulk. However, the local structure
of matter is determined only by the equations of motion in Min-
kowski spacetime.

There are conceivable situations where the partial decoupling
just described may not hold. In that case the equations of motion
themselves contain, not the Minkowski metric tensor (a diago-
nal tensor with constant elements), but the general, spacetime-
dependent, metric tensor. This is the fully coupled problem and
obviously would be enormously difficult to solve. While we do
not encounter this situation in this book (see as an example
where strong coupling is used, Refs. [29, 30]), nonetheless it
is worth seeing in symbolic form what the fully coupled prob-
lem looks like. The expectation that the stress-energy tensor
should be obtained in general from a theory of matter by solv-
ing the field equations of the theory in a general gravitational
field will be verified. It is also interesting to see Einstein’s equa-
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tions emerge from a variational principle.

We employ the gravitational action principle. As in all cases,
the Lagrangian of gravity ought to be a scalar. We have en-
countered the Ricci scalar curvature R = ¢g"”R,,,, and from it,
as Hilbert did, the Lagrangian density can be formed (with a
prefactor that can be known only in hindsight):

1

167rGR\/_g' (2.231)
Here G is Newton’s constant and g is the determinant of the
metric g,,, which is negative for our choice of signature for
the metric. (Recall, for example, the Minkowski metric, or the
Schwarzschild metric.) We also define the Lagrangian density

L = Linv/—9 (2.232)

from the Lagrangian L,, of the matter and radiation fields ¢.
The total action is

I= /(ﬁg ¥ L) d's. (2.233)

Ly=

The coupled field equations for the matter and metric func-
tions emerge as the conditions that yield vanishing variation of
the action with respect to all the fields—the gravitational fields
described by g,, and matter fields described by ¢. The manip-
ulations are quite tedious and are relegated to the next section.
The field equations obtained are

oL oL
-9 =0, 2.234
55 %38, (2234
G" = —8rGT , (2.235)

where G* = R™ — 2g" R is the Einstein tensor. The first of the
field equations reduces to the familiar Euler-Lagrange equations
in the limit of weak gravitational fields (g, — 7,,). We shall
encounter the Euler-Lagrange equations in studying theories of
dense nuclear matter. The second are Einstein’s field equations
(2.215).

The matter-radiation energy-momentum tensor that emerges
from the variational principle is given by

0L,

TR = _ghv [, 4+ 222m
09

(2.236)
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The second term is

2aLm _9 0Ly 10(gapd’¢) _ OLnm
00, 0(0.0)2  0Ogu 0(0,9)

Combining these results yields the canonical form of the energy-
momentum tensor in field theory (for example, see Ref. [8]) ex-
cept that the Minkowski tensor is replaced by the general metric
of gravity. Thus we have

0.

oL
T — uuLm + m
9t 2 50,0

where the sum is over the various fields ¢ in L,,. In this way we
see how the equations couple all matter and gravitational fields,
&(x), ..., g"(x) in the general case.

9"%0,¢ , (2.237)

2.10.1 DERIVATIONS

We write down most of the steps in deriving the Einstein field
and matter-radiation equations from the variation of the action.
The gravitational and matter fields will be subjected to arbitrary
variations except the values and first derivatives will be kept
constant on the boundaries. We concentrate on the gravitational
part because that is the hardest. First, from (2.68) and (2.96)
we readily obtain by differentiation,

ga,u,g Guv + gau(rylw + F/WU) =0
Multiply by ¢%” and sum on v to find
9, = —g™Th, — g™ T, . (2.238)

Next, evaluate

@"V=9). = 9" N9+ (V=9)0
= —g"T /=9 9"Th =9+ 9" (V/=9),0-
Use (2.149) to find

(9" \/=9).0 = <_gup1“;g — "', +guv[1§p) /—g. (2.239)
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Now set ¢ = v and contract. After a cancelation of two terms,
find,

(9""\/=9)y = —g"Th \/—9. (2.240)

The above results can now be employed to rewrite the gravi-
tational action (where, as usual, we set G = ¢ = 1 whenever
convenient);

1671, = /R\/—g dz. (2.241)
From (2.169) define

L= ¢ (U1, - T0,T0,)
M = g™ (1%, -T5,). (2.242)

With these definitions the scalar curvature becomes
R=M-L. (2.243)
Use (2.239) and (2.240) to find
My/=g = (9"T5vV=9)w = (¢"T,V=9)0
—(9"'V=9). T + ("' V=9) .17, - (2.244)

The first two terms are perfect differentials and so contribute
nothing under the integral because of the vanishing of the fields
and their derivatives on the boundaries. After some manipula-
tion, the remaining two terms are found to be 2L,/—g. Conse-
quently,

1671, = / Ly—gd's
= [ (T, ~T,10,) Vegds . (2:245)

Now evaluate the variation, examining separately the two terms
in the integrand. Use (2.149) and (2.240) to rewrite the variation
of the first term;

5 (915,10 ,\/=g) =
r%,6(9" (vV=9)a) = T2s0(9°"/=9) s — T5,T%,8(g" /=) -
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Use (2.238) to develop the variation of the second term in (2.245)
and find

89" T T,/=0) = ~T58(6"" ov/=9) — ThaT5s8(6"/=3)

Assemble the above two results and introduce the perfect dif-
ferentials with compensating terms to form the variation of the
integrand of (2.245);

0Ly, = [000(9"'V=9)]a — [Cagd(9™v=9)].
(=T + Dy + Tl — TAT0)0(9" V/=9)

The first two terms are perfect differentials and yield zero be-
cause the variations vanish on the boundary. The remaining
bracket is the Ricci tensor (2.169). Therefore, we have for the
variation of the gravitational action

1y = 15— [ Rud(e”v=g)d's. (2.246)
Next, again from (2.68) deduce that
59% = —g"*g""6gas (2.247)
Also, from (2.148) find
2V/=9(V=9)a = (V=9V=9) 0 = 90 = 99" G-

Consequently,

(V=9)a = 5V=99" 9uv,a. - (2.248)

With this result we now have
g\ —g) = — (g’“‘“g"ﬁ — %g’“‘”g“ﬂ) V—90005. (2.249)
Recalling the definition of Einstein’s curvature tensor, we have
obtained
oI, = —% / G /=G 6gas d'z . (2.250)

Thus we derive Einstein’s field equation in empty space from
the vanishing of the variation of the gravitational action.
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If we add the action of matter and radiation fields to the grav-
itational action, we get the total action. Under arbitrary vari-
ations of the gravitational and other fields we insist that the
total action vanish. This leads to the Euler-Lagrange equations
(2.234) for the matter-radiation fields and to the Einstein equa-
tions (2.235) for the gravitational fields. Note, however, that the
equations of motion for the matter-radiation fields contain the
gravitational fields ¢ and they reduce to the usual form in
Minkowski spacetime only when the g*” can be replaced by the
Minkowski tensor.

Return now to the total action (2.233) and vary all fields. Also
use the result (2.250) for the variation of £,

1 oL, 0L,
o1 = [ 1a v + (2 0,20 Yy,

oL oL

" _9,—_5¢| d'x. (2.251
{ o0 3(3u¢)} ] ( )

The last term in each curly brackets was obtained by an inte-

gration by parts, as follows:

oL oL oL
a—fuaf,u - au (WM(V) - au%dfa

where f stands for either g,, or ¢. The integral over the first
term on the right vanishes because the f are not varied on the
boundary. Because the variations are otherwise arbitrary, the
vanishing of the action implies the vanishing of the coefficients of
the varied fields. The variation of the matter fields yields (2.234)
(where we have removed /—g because it is unaffected by the ¢
variation). The variation of the gravitational fields yields

0B — _ OLm OLnm >
GY\/—g = 167 <8ga5 8Vagaﬁ,u . (2.252)
This equation shows how the gravitational and matter fields are
coupled. We use it to derive (2.235) by showing that the right
side is the energy-momentum tensor in the form (2.236). The
familiar form (2.237) then follows. Evaluate the first term on
the right side of 2.252:

Om _y, OV=9 (2.253)
agaﬂ agaﬂ
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Because

dg
= gg" 2.254
mm ( )

which follows by differentiating the identity g = g,,g"", we ob-
tain

0L, | s 8Lm)
=(—L1g*L, + V=. 2.255

The matter Lagrangian will not usually depend on derivatives of
the metric, but only on the metric itself. Thus, with the above
equation we have derived (2.235) with the energy momentum
tensor given by (2.236).

2.11 Problems for Chapter 2

1. Derive and solve the equations (2.12) for the Lorentz trans-
formation (2.15).

2. Derive the transformation for an arbitrary boost, (2.18).
3. Derive the four-velocity components (2.42).

4. Check that the energy-momentum tensor takes the form
(2.49).

5. Derive the coordinate expression for g,, in (2.53). Review
the motion of a free particle in an arbitrary gravitational
field, and derive the geodesic equation of motion, (2.85).

6. Derive the transformation property of the Christoffel sym-
bol (2.90).

7. Prove the expression of the affine connection (2.93).

8. Prove the expression involving the Christoffel symbols
(2.96).

9. Obtain the geodesic equation (2.107) as the extremal of the
propertime.

10. Follow all the steps in the derivation of the gy in (2.119).
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Derive the expression (2.122) for the covariant derivative of
a contravariant vector.

Two esoteric-looking results that are used in the varia-
tional principle for the derivation of Einstein’s equations
are (2.148) and (2.149). Derive them in detail.

Review the details of the derivation of the conservation of
total charge (2.157).

Derive (2.160) and with it the expression for the Riemann
curvature tensor (2.161).

Derive the expression for the Ricci tensor (a contraction
of the Riemann tensor) given by (2.169). Show that it is
symmetric, though not manifestly so.

Prove the Bianchi identities (2.173), thus paving the way to
the proof that the Einstein curvature tensor has vanishing
covariant divergence (2.175). Prove the latter also. Einstein
was unaware of the Bianchi identities and this delayed his
discovery of General Relativity.

From the above, understand the three possibilities of Sec-
tion 2.8.

Derive at least three of the expressions for the affine con-
nections in static spherical isotropic spacetime (2.188).

Derive the Schwarzschild solution for relativistic static stars
(2.200).

Derive the relationship of the components of the Einstein
tensor to the metric functions of static spherical spacetime
(2.207).

Derive all intermediate steps including the identification of
k with the Newton constant G' (2.214).

Derive the explicit Einstein equations for a static spherical
star, (2.217) to (2.220).

Go through the details of manipulation of the above equa-
tions that are outlined in (2.221) to (2.225).
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24. Hence, derive the Oppenheimer—Volkoff equation (2.226).

25. Follow the principle steps in the derivation of the coupled
matter and gravitational fields as expressed by (2.234) and
(2.235) as given in Section 2.10.1.
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