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Abstract 
  

Microarrays of single macrophage cell based sensors were developed and demonstrated for real 

time bacterium detection by synchrotron FTIR microscopy. The cells were patterned on gold-SiO2 

substrates via a surface engineering technique by which the gold electrodes were immobilized with 

fibronectin to mediate cell adhesion and the silicon oxide background were passivated with PEG to 

resist protein adsorption and cell adhesion. Cellular morphology and IR spectra of single, double, and 

triple cells on gold electrodes exposed to lipopolysaccharide (LPS) of different concentrations were 

compared to reveal the detection capabilities of these biosensors. The single-cell based sensors were 

found to generate the most significant IR wave number variation and thus provide the highest detection 

sensitivity. Changes in morphology and IR spectrum for single cells exposed to LPS were found to be 

time- and concentration-dependent and correlated with each other very well.  FTIR spectra from single 

cell arrays of gold electrodes with surface area of 25 µm2, 100 µm2, and 400 µm2 were acquired using 

both synchrotron and conventional FTIR spectromicroscopes to study the sensitivity of detection. The 

results indicated that the developed single-cell platform can be used with conventional FTIR 

spectromicroscopy. This technique provides real-time, label-free, and rapid bacterial detection, and may 

allow for statistic and high throughput analyses, and portability. 
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1. Introduction 
 

Cell-based sensors are hybrid systems (biological + device) that use cells’ remarkable abilities to 

detect, transduce, and amplify very small changes of external stimuli.[1] They offer new opportunities 

for many biomedical applications, including biothreat detection, drug evaluation, pollutant 

identification, and cell type determination.[2] They are generally constructed by interfacing cells to a 

transducer that converts cellular responses into detectable signals. Recent years have witnessed a 

substantial increase in application of planar microelectrode arrays for development of cell-based 

biosensors (CBBs)[3-5] since they can be easily interfaced with electronic, optical or chemical detecting 

elements.[6] The success of such CBBs relies primarily on an effective cell patterning technique that can 

create an addressable array of single or multiple cells with high precision and biostability. Major 

advantages of these sensing arrays over conventional biosensors include: rapid and inexpensive 

analyses, minimal sample size requirement, low sample contamination, high throughput, sensitivity, 

and portability. Among cell-based sensors, single cell arrays are particularly inviting; with an array of 

virtually identical cells as sensing elements integrated with real-time data acquisition technology, it is 

possible to experimentally study cellular pathways without interference from other cells, thereby 

eliminating the uncertainty incurred by neighboring cells.[7] The accurate statistical analysis of cell 

behavior is questionable without single cell based system, since only highly identical targets may 

generate meaningful statistical data.[8] 

In this study, we developed a cell-based sensor system by combining a microarray of single 

macrophage cells with synchrotron FTIR spectromicroscopy and demonstrated its sensing ability via 

real time bacterium detection. Conventional technology for detection and identification of bacteria 



 

 5  
 

using reagent-based tools, including immunoassay, genetic markers, or cell culturing, are slow and/or 

costly due to the reliance on expensive consumables. For example, salmonella detection takes 3–4 days 

for presumptive results and 5–7 days for confirmation.[9] The developed technique allows rapid 

bacterium detection in a few hours. Lipopolysaccharide (LPS) was selected as our model analyte since 

it is a major structural component of gram-negative bacterial cell wall and a potent activator of cells of 

the macrophage lineage. LPS is a major pathogenic factor causing  septic shock syndrome and death in 

critically ill patients.[10-13] The syndrome is mainly caused by an overproduction of pro-inflammatory 

cytokines after macrophage cells are activated by lipopolysaccharide.[14-20] Macrophage activation by 

LPS and its products are  both dose dependent and heterogeneous.[21-23]  

A silicon oxide substrate was patterned with an array of gold square electrodes and then surface-

modified to host a single or a group of macrophage cells on each electrode. FTIR spectra and optical 

reflectance DIC images were acquired from cell patterned substrates to study the cell morphology and 

signals before and after exposure to bacterial LPS. The responses of cells in isolated (single cell), and 

communicating (colony of the cells) states to bacterial LPS were investigated and compared using 

synchrotron spectromicroscopy. Additionally, a comparison study was performed for cellular analysis 

on the spectra generated by synchrotron and conventional FTIR sources to illustrate how the light 

source quality would affect sensitivity and resolution of the cell-based sensors. 

 
 
 
 
 
 
 
 



 

 6  
 

2. Results and Discussion 
 

The process of cellular attachment on the detection platforms is critical, since artifacts may be 

introduced in the infrared spectra if cells form multiple layers. The process of surface modification for 

cellular attachment on gold microelectrodes is illustrated in Figure 1. Each gold microelectrode is 

activated with an alkane thiol self-assembled monolayer (SAM) and is covalently reacted with cell 

adhesive proteins through a N-hydroxysuccinimide (NHS) coupling agent. The silicon oxide regions 

are passivated with methoxy-polyethylene glycol-silane.[24]   

 

In this platform each microelectrode hosts one to three cells depending on the electrode size. As 

will be shown later, cells will form monolayers. 

 
 
 
 
 
 
 

Figure 1. Schematic representation for activation of gold microelectrodes and passivation of silicon 

background before cell culture, presented in terms of a single gold electrode on a silicon dioxide 

background. 
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2.1 Heterogeneous cellular behavior dependent on cell state 

 

Cells in an isolated state (for example, one cell in each microelectrode) generally respond 

differently to external stimuli than when they are in a communicating state (colony of cells on a 

microelectrode). This is a topic of extensive study in cell biology and an important, but poorly 

understood issue in the development of cell-based sensors. To reveal this difference, macrophage cells 

were patterned in singlet, doublet, or triplet on each electrode by culturing substrates with cells of 

different concentrations. Figure 2 shows the exemplary optical DIC images of these cell patterns (top 
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Figure 2. Top panel: Optical DIC images of 100 µm2 patterns hosting (a) an isolated 

macrophage cell, and (b) two macrophage cells, and (c) triple cells on a single gold 

microelectrode after treatment with 1 µg/ml LPS for 21 hrs. Bottom panel: Real-time 

synchrotron IR spectra of (a) an isolated cell, (b) double cells, and (c) triple cells before 

and after treatment with LPS. 
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panel) and their corresponding IR synchrotron spectra before and after the cells were exposed to LPS at 

a concentration of 1 µg/ml for 21 hours (bottom panel). 

 

It is noted that the cells in these different states generated different spectra even before exposure to 

LPS, with, for example, the amide I spectrum peak at 1691 cm−l for cells in singlet state, 1671 cm−l for 

cells in doublet state, and 1667 cm−l for cells in triplet state. The variation in wave number after cells 

had been exposed to LPS also differs from state to state, with the cells in the singlet state resulting in 

the greatest change in wave number and thus providing the highest detection sensitivity. 

 
2.2 LPS induced morphological changes of single macrophage cells  

 

The binding of LPS may induce a variety of responses from macrophages, including the synthesis 

and secretion of the cytokines, the production of lipid mediators, and cytocidal activities. Macrophage 

stimulation by LPS is initiated through a complex cascade of bimolecular interactions such as binding 

of a water-soluble lipopolysaccharide protein (LBP) in serum and forming a protein complex.[14] This 

complex is then attracted to a cluster of receptors known as the LPS receptor complex expressed on 

macrophage cell membranes.[13] Upon recognition of LPS by this receptor, a cluster of intercellular 

transcription factors are transduced to the nucleus leading to an upregulation of various proteins 

involved in the activation cascade.  

Figure 3 shows the optical DIC images of macrophage patterned on the gold microelectrodes after 

21 hours of cell culture for (a) control cells with no LPS treatment, and cells treated with LPS at 

concentrations of (b) 0.1 µg/ml, (c) 1.0 µg/ml, and (d) 10 µg/ml. The results show that macrophage 

cells cultured with LPS underwent a marked morphological transformation. The control cells exhibited 
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a small and round shape morphology, while LPS treated cells have an enlarged, dendritic-like shape. 

This observation is in consistence with the results reported by Saxena et al., when macrophage cells 

were cultured with LPS on a solid glass slide and exhibited an increased size and the transformation to 

dendritic-like morphology due to differentiation.[25] Here, this phenomenon was observed for the first 

time in a single-cell platform and the morphological transformation was detected in situ by FTIR as 

shown below.  

 
2.3 IR spectral changes of single macrophage cells induced by LPS of various concentrations 
 

Figure 4 (left panel) shows the IR spectra of individual macrophage cells patterned on the 

microelectrodes, and treated with LPS of different concentrations for 21 hrs. The right panel shows the 

optical images of the morphology of the cells from which the spectra was acquired. For both panels, (a) 

corresponds to the cell cultured without PLS (control), and (b) through (d) correspond to the cells 

cultured with LPS at concentrations of 0.1 µg/ml, 1.0 µg/ml, and 10 µg/ml, respectively. 

Figure 3. Optical DIC images of macrophage cells cultured on fibronectin-coated surfaces after 

culture or expose to LPS for 21 hours. (a) Control cells with no LPS treatment, and cells treated with 

LPS at concentrations of (b) 0.1 µg/ml, (c) 1.0 µg/ml, and (d) 10 µg/ml. 
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Images in Figure 4 show that all the LPS-treated cells tend to form dendritic morphology with 

an increased surface area as the LPS concentration was increased. These morphological changes are 

accompanied by the changes in IR signature, characterized by the shifts of characteristic bands of 

amide I and amide II groups of cell proteins in the FITR spectra. The peak associated with the amide I 

groups (predominantly the C=O stretching vibration of the amide) was shifted from 1691 cm−l for 

control cells to 1676 cm−l (10 µg/ml LPS), 1661−l (1 µg/ml LPS), and 1659 cm−l (0.1 µg/ml LPS) for 
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Figure 4. Left panel: real time synchrotron FTIR spectra taken 

from single macrophage cells patterned on gold electrodes with 

an area of 100 µm2. Right panel: optical DIC images of 

macrophage cells cultured with (a) no LPS, and with LPS at 

concentrations of (b) 0.1 µg/ml, (c) 1.0 µg/ml, and (d) 10 µg/ml 

for 21 hrs. 



 

 11  
 

cells treated with LPS. Clearly, the wave number decreases as LPS concentration increases (data on 

lower concentration were not shown) and reaches a maximum between 0.1 and 1.0 µg/ml. The dramatic 

differences in the spectra of the amide I between the control and LPS treated cells indicate significant 

differences in protein structure that might be due to the upregulation of various proteins and peptides 

involved in the macrophage activation cascade. This result indicates a concentration dependent 

response of single cells that can be readily detected by FTIR. It is worth noting that a shift of from 2–7 

cm−1 in wave number has been used to identify diseased tissue from healthy tissues in multi-cell 

platforms.[6,26] Here a shift in the order of a few tens of wave number (e.g., 30 cm−l observed for the 

LPS concentration of 1.0 µg/ml), which is considerably greater than the previously reported values, 

demonstrated a high sensitivity of the single cell based platform reported here. Clearly, such variation 

in wave number in response to bacterium invasion is sufficient for identification of low volume 

bacterium invasion and more importantly, the degree of such invasion.  

 

2.4   Time dependent IR spectra changes of single macrophage cells induced by LPS 
 

Figure 5 (left panel) shows IR spectra acquired by synchrotron-based FTIR microspectroscopy 

from single cells patterned on an array of gold microelectrodes exposed to LPS at a concentration of 1 

µg/ml for (b) 3.5 hrs and (c) 21 hrs. A spectrum from control cells (a), i.e., the cells without exposure to 

LPS, is also shown for comparison. The right panel of Figure 5 shows the optical images of the 

corresponding cell morphology of the single macrophage cells in the time course. The morphology of 

the LPS-treated cells was seen to change with LPS exposure time from a spherical to dendritic shape 

with a significant increase in size after 21 hrs. The corresponding IR spectra of these cells changed as 
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well over the exposure time, characterized by the noticeable shifts of amide I and amide II bands of the 

cellular proteins from high to low wave numbers and an increase in signal intensity.   

  

This suggests that the variation in wave number in response to bacterium invasion, as detected 

using the single-cell platform reported here, is sufficient for identification of a minimal volume of 

invasive bacterium in a short amount of time (hours vs. days by conventional bacterial detection 

methods).  

 

2.5 Influence of electrode size on detection sensitivity 
 

Signal intensity directly correlates with IR source brightness and the electrode size. In a gold 

patterned silicon platform maximum signal is obtained when the synchrotron IR focal point is in the 
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Figure 5.  Real time synchrotron IR spectrum of a single cell 

response to LPS (1.0 µg/ml) for different times. 
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center of gold electrode and the signal attenuation from silicon oxide regions is minimized. The high 

signal-to-noise ratio and superior brightness of the synchrotron source at a spatial resolution less than 

10 microns provide sufficient sensitivity for detection of single cells on the electrodes of 100 µm2 as 

shown above. However, a conventional IR thermal source with an effective beam diameter of ~75 µm 

requires electrodes larger than the beam size to reduce signal loss to surrounding area. To study the 

sensitivity of detection and the possibility of using conventional FTIR for bacterial detection using the 

single cell platform, the FTIR spectra from single cell arrays of gold electrodes with surface area of 25 

µm2, 100 µm2, and 400 µm2 were acquired using both synchrotron and conventional FTIR 

spectromicroscopes.  

 
Figures 6A and B show FTIR spectra acquired from single macrophage cells on microelectrodes 

of different sizes by the synchrotron and conventional FTIR, respectively. The signal intensity 

increased with the increase in electrode size in both systems. Figure 6A showed that characteristic 

peaks of cell membranes at wave number of 2800–3600 cm−1 and the characteristic peaks of cellular 

proteins at 1200–1700 cm−1 resolved well even for the smallest electrode size with a surface area of 25 

µm2. In spite of a significant signal decrease with the conventional source (Figure 6B), the IR spectral 

features of a single cell is clearly resolved for the 100 µm2 and 400 µm2 microelectrodes. These results 

indicate that the developed single-cell platform can be used with conventional FTIR spectromicroscopy 

if the electrode surface areas are larger than 100 µm2. Although increasing the size of electrodes will 

increase the signal intensity, it also increases the probability of adhesion of a second cell on an 

electrode, making single cell patterning more difficult. 
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Figure 6. FTIR detection of single macrophage cells adhered on 

sizes. (A):  Synchrotron FTIR spectra and (B) conventional FTIR 

spectra (aperture size: 90 × 90 µm2). In both Figure 6A and B, 

spectrum (a), (b), (c) correspond to 25 µm2 100 µm2, and (c) 400 

µm2, respectively. 
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Conclusions 
 

A live cell array of biosensors was fabricated by immobilizing macrophage cells on gold 

electrodes on a silicon substrate. The sensor array hosting a single cell on each electrode was found to 

generate the most significant IR wave number changes in response to bacterial infection compared to 

multiple-cell sensors and thus provide the highest detection sensitivity. The cells exposed to LPS 

tended to form dendritic structures with an increased surface area. These morphological changes are 

accompanied by variations in IR signatures. Changes in morphology and IR spectrum for single cells 

were found to be time- and concentration-dependent. This technique may provide a time- and cost-

effective means to detect and analyze bacterium invasion in a few hours compared to conventional 

bacteria detection methods in a few days. It may enable the large-scale systematic studies of equally 

cultured and spread macrophage cells and facilitate the statistical analysis over large numbers of 

individual functional cells. 

 

3. Experimental 

Materials: The following materials and chemicals were used as received: silicon wafers of (100) 

orientation (Wafernet, CA), Nanostrip 2X (Cyantek, Fremont, CA), 11-mercaptoundecanoic acid 95% 

(11-MUA), 3-mercaptopropionic acid 99% (3-MPA), N-hydroxysuccinimide 97% (NHS), 1-ethyl-3- 

(3-dimethylamino-propyl) carbodiimide (EDAC) (Sigma, St. Louis, MO),  2-

[methoxy(polyethyleneoxy)propyl] trimethoxysilane (Mw = 460–590 Dalton) (Gelest, Morrisville, PA), 

fibronectin protein, Trypsin-EDTA, Sigmacote and lipopolysaccharide (E.-coli 0111:B4, endotoxin 

unit: 500,000) (Sigma, Milwaukee, WI). All the solvents including toluene, tri-ethyl amine, and 

dimethylformamide were purchased from Aldrich (Milwaukee, WI). Absolute ethanol was always 
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deoxygenated by dry N2 before use. RAW264.7 cells (murine monocyte/macrophage) were purchased 

from American Type Culture Collection (Manassas, VA).  The following cell cultures reagents were 

purchased from Gibco (Carlsbad, CA): Trypan Blue, Fetal Bovine Serum, HBSS (Hanks balanced Salt 

Solution), DMEM (Dulbecco's modified Eagle's medium with 4 mM L-glutamine adjusted to contain 

1.5 g/L sodium bicarbonate and 4.5 g/L glucose).    

 

Substrate Preparation: 4” p-type silicon substrates of (100) orientation were cleaned with piranha 

(hydrogen peroxide/sulfuric acid 2:5 v/v) at 120°C for 10 min, dipped in HF, and rinsed with DI water 

thoroughly. A layer of positive photoresist (1.1 µm) was then coated on the surface and patterns were 

formed on the substrate upon exposure to ultraviolet light through a mask with square patterns of 3 

different sizes (25 µm2, 100 µm2, and 400 µm2). A 10 nm titanium (Ti) layer was then deposited onto 

the photoresist-developed substrates at a deposition rate of 0.3 Å/s. Gold films of 100 nm in thickness 

were subsequently deposited onto the Ti at a deposition rate of 5 Å/s. A layer of positive photoresist 

(1.1 µm) was coated on silicon substrates patterned with 3 different sizes of gold squares (25 µm2, 100 

µm2, and 400 µm2). The photoresist was dissolved in acetone and the remaining metal films were lifted 

off. After lift off, the surfaces were exposed to buffered oxide etch (HF/ NH4F 5:1 v/v ) for 60 sec and 

rinsed with DI water to remove native oxide on silicon regions before dry oxidation. Surface oxidation 

was performed under a dry oxygen flow for 6 hrs at 400°C. The gold-patterned silicon oxide substrates 

were then cut into 8 mm × 8 mm slides. To minimize surface contaminants and unexpected scratches, 

the silicon oxide wafers were coated with a 2 µm layer of photoresist on their polished sides before 

cutting. 
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Surface Modification: The surface was modified following a previously established procedure with 

minor modifications.[27,28] The protective photoresist layer on gold-patterned silicon substrates were 

removed by 10 min sonication in acetone, 2 min sonication in ethanol, and 2 min sonication in DI 

water. The substrates were then placed in Nanostrip 2X solution (H2SO5) at room temperature for 20 

min, and dried under nitrogen, which resulted in a hydroxyl layer on the silicon oxide surface.  

The gold electrodes of the substrate were first reacted with a 20 mM mixture of alkane thiols of 

11-mercaptoundecanoic acid (MUA) and 3-mercaptopropionic acid (MPA) (1:10 v/v) for 16 hrs to 

create a self-assembled monolayer (SAM). The silicon oxide background was passivated with PEG. 

The PEG solution was prepared in nitrogen-filled reaction flasks by adding 3 mM methoxy-PEG-silane 

in deoxygenated toluene containing 1% triethylamine as catalyst. The Nanostrip treated substrate was 

then placed in a separate nitrogen-filled flask that was rendered hydrophobic with Sigmacote to 

minimize the side reaction of PEG with the flask. The PEG reaction proceeded under nitrogen at 60°C 

for 18 hrs. Physically adsorbed moieties were removed from the PEG-treated surface by sonication in 

toluene and ethanol for 5 min each, followed by rinsing with DI water and drying under nitrogen. The 

substrate with alkane thiol self-assembled monolayers on gold and M-PEG-silane on silicon oxide 

background was immersed in an aqueous solution of 150 mM EDAC and 30 mM N-

hydroxysuccinimide (NHS) for 30 min to attach the NHS group to the –COOH terminus of SAMs. The 

substrate with NHS on gold and PEG on silicon oxide was sterilized with 70% ethanol for 15 min, and 

exposed to fibronectin protein at a concentration of 0.05 mg/ml in a phosphate buffer solution (PBS) of 

pH = 8.2 at room temperature for 45 min. To remove loosely bound moieties from the surface after 

each step of the surface modification, the substrate was rinsed with the original solvents and deionized 

(DI) water, respectively. 
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Cell Culture: RAW264.7 of passage less than 10 was cultured at 37°C in a 5% CO2–humidified 

incubator and grown in DMEM medium supplemented with 10% (v/v) heat-inactivated FBS, 4 mM L-

glutamine, 1.5 g/L sodium bicarbonate, 4.5 g/L glucose, 100 units/ml penicillin, and 100 g/ml 

streptomycin. Cells were subcultured by a cell scrapper. Solutions of lipopolysaccharide were prepared 

by dissolving lipopolysaccharide (500,000 endotoxin units/mg) from E.-coli 0111:B4 in HBSS to a 

stock concentration of 1 mg/ml. RAW264.7 cells at a concentration of 2.5 × 105 cells/ml in DMEM 

media were incubated with patterned substrates for 21 hrs and the cell-patterned substrates were then 

exposed to LPS at a concentrations of 0.1, 1.0, or and 10 µg/ml. 

 

Differential Interference Contrast (DIC) Reflectance Microscopy: Cell culltured surfaces were 

visulized with a differential interference contrast (DIC) reflectance microscope (Nikon E800 Upright 

Microscope, NY, NY) equiped with DIC-20× (N.A. 0.46) and DIC-50× (N.A. 0.8) objectives. Images 

were acquired with a Coolsnap camera (series A99G81021, Roper scientific Inc, AZ, USA) attached to 

the microscope and a computer. 

 

FTIR Spectromicroscopy: Synchrotron FTIR spectra were acquired from cell-patterned surfaces 

through a Nicolet Magna 760 FTIR bench and a Nicolet Nic-PlanTM IR microscope with a computer-

controlled x–y–z sample stage (via Nicolet Atlµs™ and OMNIC software) and an MCT-A detector at 

Beamline 1.4.3 of the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory, 

Berkeley CA [29,30]. The sample was measured between wave number 650 and 10,000 cm–1 set by the 

KBr or XT-KBr beamsplitter and MCT-A detector ranges. The synchrotron infrared light is focused to 
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a diffraction-limited spot size with a wavelength-dependent diameter of approximately 3–10 µm across 

the mid-IR range of interest.[31-33] An on-stage temperature controlled mini incubator was used to 

maintain a proper environment for cellular analysis. Prior to infrared analysis, the cell culture medium 

was replaced with fresh sterile medium and the substrate covered with a layer of the medium was 

transferred to the mini incubator. Synchrotron FTIR spectra of 128 scans at a resolution of 8 cm−1 were 

acquired from individual electrodes patterned with cells. Background spectra were collected from 

empty surface areas of the same substrate right before data collection. All spectra were baseline-

corrected and normalized. An appropriately scaled water vapor spectrum was subtracted from the 

spectra of the cells. Conventional source FTIR microscopic spectra were obtained from cell-patterned 

surfaces using a Thermo-Electron Nexus 870 bench and a Thermo-Electron Continuum infrared 

microscope with an MCT-A detector at Beamline 1.4.4 of the ALS under the same conditions set for  

the synchrotron measurements, except that an aperture size of 90 × 90 µm2 were employed to maximize 

the signal intensity. 
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Table of content: 
 

Microarrays of single macrophage cell based sensors were developed for real time bacterium 

detection by synchrotron FTIR sepctromicroscopy. Time- and concentration-dependent morphological 

and IR spectral changes for single cells exposed to bacterial lipopolysaccharide are demonstrated. This 

technique provides real-time, label-free, and rapid bacteria detection, and may allow for statistic and 

high throughput analyses, and portability.  
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