
An Incompressible Navier-Stokes with Particles Algorithm and Parallel

Implementation

Dan Martina, Phil Colellaa, and Noel Keena∗.

aApplied Numerical Algorithms Group, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA 94720

We present a variation of an adaptive projection method for computing solutions to
the incompressible Navier-Stokes equations with suspended particles. To compute the
divergence-free component of the momentum forcing due to the particle drag, we employ
an approach which exploits the locality and smoothness of the Laplacian of the projec-
tion operator applied to the discretized particle drag force. We present convergence and
performance results to demonstrate the effectiveness of this approach.

1. Introduction

Projection methods enable computation of incompressible and low Mach number flows
with computational timesteps dictated by advective timescales rather than the more re-
strictive acoustic timescales. [1] The projection operator P projects a vector field onto
the space of divergence-free vectors through use of the Hodge-Helmholtz decomposition.
Given a vector field u, there exists a vector field ud and a scalar φ such that:

u = ud + ∇φ (1)

∇ · ud = 0. (2)

Then, the projection operator may be written in the form:

Pu = ud (3)

Pu =
(

I −∇(∆−1)∇·
)

u (4)

By refining the computational mesh in regions of the domain where greater accuracy is
desired, adaptive mesh refinement (AMR) allows greater computational efficiency, focus-
ing computational resources where they are most needed. We use block-structured local
refinement of a Cartesian mesh [1], which enables parallelization in a straightforward way
by distributing logically rectangular patches among processors. [2]

∗This work supported by the NASA Earth and Space Sciences Computational Technologies Program and

by the U.S. Department of Energy: Director, Office of Science, Office of Advanced Scientific Computing,

Mathematical Information, and Computing Sciences Division under Contract DE-AC03-76SF00098.

1

2 Martin, Colella, and Keen

2. Problem Description

We wish to solve the incompressible Navier-Stokes equations with suspended particles.
The particles exert drag on the fluid, while particle motion is induced by the particle-fluid
drag forces on the particles, so the particles may move with a velocity different from that
of the local fluid. The momentum equation and divergence constraint are:

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p + ν∆u + f (5)

∇ · u = 0, (6)

where u is the velocity field, p is the pressure, ν is the kinematic viscosity, and f is the
sum of the drag force exerted by the particles on the fluid:

f(x, t) =

N
∑

k=1

f (k)(t)δ(x − x(k)(t)). (7)

N is the number of particles. We denote quantities associated with the kth particle by
the superscript (k) (other quantities are assumed to be associated with the fluid); f (k) is
the drag force exerted by the kth particle on the fluid, and x(k) is the location of the kth
particle. We treat the particle drag force as a point source, spread to the computational
mesh using δε(x), a smoothed numerical approximation to the Dirac delta function δ(r).

The fluid-particle drag force is given by a simple drag law with drag coefficient kdrag:

f (k)(t) = kdrag

(

u(k) − u(x(k)(t))
)

. (8)

The motion of a particle with mass m(k) is due to the equal and opposite force on the
particle from the fluid, along with a gravitational acceleration g:

∂u(k)

∂t
= −

f (k)

m(k)
+ g (9)

∂x(k)

∂t
= u(k). (10)

We approximate δ(r) numerically by a discrete delta function δε with the properties:

δε =
1

2D−1πεD
g(

r

ε
) (11)

g(r) ≥ 0

g(r) = 0 for r > 1
∫ 1

0

g rD−1dr = 1

The parameter ε is the particle spreading radius. We use a quadratic function for g(r).

Adaptive Incompressible Navier-Stokes with Particles 3

3. Projecting the Particle Force

Computing the update to the momentum equation requires the divergence-free contri-
bution of the particle-induced forces. There are several options.

The simplest approach is to add the forcing due to particle drag directly to the momen-
tum equation, and then project the resulting velocity field. Unfortunately, this forcing
tends to be singular, so taking the derivatives necessary for a projection method is prob-
lematic from an accuracy standpoint. [3]

A second approach is to analytically determine the projection of the discrete delta
function used to spread the particle force onto the mesh. [3] If the projection operator is
(I − grad(∆−1)div), then we can define Kε = {Kij} such that P(f) = Kεf :

Kε(x) = (I − grad(∆−1)div)δε (12)

In an infinite domain, the operators can commute:

Kε(x) = δεI − grad div(∆−1)δε (13)

Note that ∆−1δε may be evaluated analytically with the proper choice of δε.
Then, the projection of the forces on the grid may be computed:

Pf =
∑

k

f (k)Kε(x − x(k)) (14)

While this approach avoids the accuracy issues of the first approach, it is expensive.
Since Kε does not have compact support, the cost of this approach is O(NpNg), where
Np is the number of particles, and Ng is the number of grid points.

We surmount this with the realization that while the projection of the drag force does
not have compact support, the Laplacian of the projected drag force does. Taking the
Laplacian of (13), again using the commutability of the operators in an infinite domain,

∆Kε = ∆δε − grad div(δεI) (15)

Note that this does have compact support, since δε = 0 for r > ε.
Now define a discrete approximation to (15) at a grid location indexed by i:

D
(k)
i

= ∆hf (k)Kε(· − x(k)) (16)

where ∆h is the discrete Laplacian operator with grid spacing h, and the (·−x(k)) signifies
evaluation at grid points, i.e. (ih − x(k)). Then,

(∆h)−1D(k) = f (k)Kε(· − x(k)) (17)

Using the compact support of δε. we may evaluate D in the local neighborhood of the
particle:

D
(k)
i

= ∆hf (k)Kε(· − x(k)) for |ih − x(k)| < (ε + Ch) (18)

4 Martin, Colella, and Keen

where C is a safety factor. Then,

Di =
∑

k

D
(k)
i

(19)

PIf(ih) ≈ (∆h)−1D (20)

We solve (20) with infinite-domain boundary conditions on PIf(x) (the subscript I

indicates the use of infinite-domain boundary conditions as opposed to the standard pro-
jection operator P(u), which includes physical boundary conditions on the velocity).

To better approximate the no-normal-flow boundary condition at physical walls, we also
use image particles for all particles near the wall. For each particle within (Ch+ ε) of the
wall, we add an image particle on the other side of the wall with the opposite velocity field
normal to the wall. This provides a first-order approximation to the no-flow boundary
condition, taking account of the particles near the wall. The boundary condition will be
strictly enforced by the projection step of the fluid update.

4. Discretization of Advance

The particle drag force projection outlined above is combined with the incompressible
AMR Navier-Stokes algorithm in [1] to produce an AMR incompressible Navier-Stokes
with suspended particles solver. For algorithmic simplicity, this implementation does not
refine in time.

We begin with the discrete solution on a locally refined Cartesian mesh at time tn. The
velocity field u and pressure p are cell-centered. Each particle’s position x(k),n and velocity
u(k),n are also known. To advance the solution from time tn to time tn+1 = tn + ∆t, we
proceed as follows.

We first compute the drag force at time tn, f (k),n on each particle using (8). Fluid
velocities are computed at particle locations using quadratic interpolation of the cell-
centered velocity un.

Using the approach outlined above, we compute the projected force PI(f
n) using

infinite-domain boundary conditions.
Then, we compute a provisional update u∗ in much the same way as in [1]:

u∗ = un + ∆t
(

−[(u · ∇)u]n+ 1
2 − grad(pn− 1

2) + [ν∆u] + PI(f
n)

)

(21)

where the nonlinear advective term [(u · ∇)u]n+ 1
2 is computed using the second-order

upwind scheme outlined in [1], including PI(f
n) as a forcing term in the predictor step,

and [ν∆u] is computed using a second-order L0-stable Runge-Kutta scheme [5].
We now update the particle velocities and positions using the analytic solutions for

(9-10) (for compactness of notation, u(k),n refers to the particle velocity at time tn, while
un refers to the fluid velocity at time tn interpolated to the particle position x(k),n):

u(k),n+1 = (u(k),n − un −
m(k)g

kdrag

)e
−

∆tkdrag

m(k) + un +
m(k)g

kdrag

(22)

x(k),n+1 = x(k),n +
m(k)

kdrag

(

u(k),n −
m(k)g

kdrag

− un
)

(1 − e
−

∆tkdrag

m(k)) + ∆t(un +
m(k)g

kdrag

) (23)

Adaptive Incompressible Navier-Stokes with Particles 5

We then use u(k),n+1 and x(k),n+1 to compute the projected drag force (again using infinite-
domain boundary conditions) PI(f

∗). Then, we modify u∗ to make the update second-
order in time, and project to complete the update:

un+1 = P
(

u∗ + ∆t
[

grad(pn− 1
2) −

1

2
PI(f

n) +
1

2
PI(f

∗)
])

(24)

grad(pn+ 1
2) = (I − P)

(

u∗ + ∆t
[

grad(pn− 1
2) −

1

2
PI(f

n) +
1

2
PI(f

∗)
])

(25)

Note that the projection is also applied to PI(f); to enforce the physical boundary
conditions, since PI(f) was computed using infinite-domain boundary conditions. We
use the approximate cell-centered projection described in [1].

5. Evaluating PI(f)

We want to approximate the divergence-free contribution of the drag force PI(f).
In indicial notation,

(PIf(x))i =
∑

k

f
(k)
j (δij∆ − ∂i∂j)(∆

−1)δε(x − x(k)) (26)

Define K
(k)
ij (x) = (δij∆ − ∂i∂j)(∆

−1)δε(x − x(k)). Then,

PIf(x)i =
∑

k

f
(k)
j K

(k)
ij (27)

Approximate D = ∆K by D̃ = {D̃ij}:

D̃
(k)
ij (x) =

{

(∆hK
(k)

ij)(x) if r < ε + Ch

0 otherwise
(28)

Then,

PIf(x)i =
∑

k

f
(k)
j K

(k)
ij (x) (29)

∆hPIf(x)i =
∑

k

f
(k)
j ∆hK

(k)
ij (x) (30)

≈
∑

k

f
(k)
j D̃

(k)
ij (x) (31)

PIf(x)i ≈ (∆h)−1
∑

k

f
(k)
j D̃

(k)
ij (x). (32)

We solve (32) with infinite-domain boundary conditions on PIf(x). [4].

6 Martin, Colella, and Keen

6. AMR implementation

By focusing computational effort on the neighborhood of the particles, AMR can in-
crease efficiency and improve parallel performance. The particles are distributed onto the
same block-structured meshes as the fluid solver, but with a different processor distri-
bution to balance the particle loads independently from the fluid solver workload. This
results in a better overall balance, at the cost of some added communication between the
two processor distributions. The code was implemented using the Chombo framework [6].

7. Convergence – Single Particle Settling

We use a simple test problem to demonstrate the accuracy and effectiveness of this
approach. A single particle with mass 0.001g starts at rest in a fluid in a 1 m3 cubic
domain. As the particle accelerates downward due to gravity, a velocity is induced in the
fluid due to the particle drag. We use kdrag = 0.04, ε = 6.25cm, and ν = 0.004 cm2

s
.

Because there is no analytic solution available for this problem, we compute a solution
on a uniform 2563 fine mesh and treat this as the “exact” solution against which we
compare other computed solutions. The convergence of the x−velocity in the L2 norm
(other velocity components and norms are similar) is shown in Figure 1 for uniform mesh
and for a single level of refinement with refinement ratios of 2 and 4. Because the timestep
and the cell spacing are reduced simultaneously (the timestep is halved when the cell
spacing is halved), the second order convergence in these plots demonstrates convergence
in both time and space. Also, if AMR is effective, the errors of the adaptive computations
should approach those of the uniform mesh computation with the equivalent resolution
(i.e. a 643 computation with one level of refinement with a refinement ratio of 2 should
have the same error as a 1283 uniform mesh computation. This is borne out in Figure 1.

Figure 2 shows the serial CPU times on a 2 GHz Opteron processor and the total
number of cells advanced for the 2563 uniform-mesh computation and for the equivalent-
resolution adaptive cases with a single refinement level with refinement ratios of 2 and
4. The values are normalized by the uniform-mesh values, to make it easier to evaluate.
Even for this simple test case, the use of AMR results in significant savings, both in the
number of cells advanced (a crude indicator of memory use), and in CPU time. The space
between the two lines represents the overhead due to adaptivity.

8. Parallel Performance – particle cloud with a vortex ring

To demonstrate the parallel performance of this algorithm, we use a different problem
which has enough particles to distribute effectively, and which has more complicated fluid
dynamics beyond the drag-induced flow. We compute a three-dimensional vortex ring in
a 1-meter cube domain with 32,768 particles arranged in a 32 × 32 × 32 array, spanning
15cm ≤ x, y ≤ 85cm, and 25cm ≤ z ≤ 75cm. For this problem, the vorticity distribution
is specified, from which the initial velocity is computed. The vortex ring is specified by a
location of the center of the vortex ring (x0, y0, z0), the radius of the center of the local
cross-section of the ring from the center of the vortex ring r, and the strength Γ.

The cross-sectional vorticity distribution in the vortex ring is given by ω(ρ) = Γ
aσ2 e

(ρ

σ
)3 .

ρ is the local distance from the center of the ring cross-section, a = 2268.85, and σ = 2.75.

Adaptive Incompressible Navier-Stokes with Particles 7

 1e-05

 1e-04

 0.001

 16 32 64 128 256

er
ro

r

1/h for base level

L2 Convergence of x-velocity

Uniform Mesh
refRatio = 2
refRatio = 4

2nd Order

Figure 1. Convergence for the single particle settling problem. x− axis is 1
h0

, while the
y− axis is the L2 error.

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4

Refinement Ratio

Scaled Cellcounts and Serial runtimes

scaled CPU times
scaled cells advanced

Figure 2. Scaled run times and cell counts for the single particle settling problem.

8 Martin, Colella, and Keen

Prob size Num Max Mem AMR Run Particle update
Procs (MB) (sec) (sec)

32x32x32 8 72.5 100.4 0.59
64x64x64 16 115.7 178.4 1.2
64x64x64 64 75.8 103.4 0.38

128x128x128 32 317.8 597.3 3.73
128x128x128 64 175.1 352.4 2.24
128x128x128 128 117.3 220.8 1.41

Table 1
Parallel performance for vortex-ring problem with 32,768 particles.

Base Problem Num Large Problem Large num Scaled
Size Procs Size processors Efficiency

32x32x32 8 64x64x64 64 0.97
64x64x64 16 128x128x128 128 0.81

Table 2
Scaled Efficiencies computed from Table 1.

The vortex ring is centered at (50cm, 50cm, 40cm), with a radius of 2cm and Γ = 1.5×105.
The number of particles is held fixed while we decrease the mesh spacing. In three

dimensions, as we halve the cell spacing while holding the number of particles constant, the
asymptotic computational size (both in CPU time and memory) of the problem increases
by a factor of 8. The particle spreading radius ε is also held fixed at 6.25cm as the mesh
spacing is decreased because the particles in this problem represent physical particles,
rather than point charges. Therefore, the work involved in the particle-fluid drag force
projection should also increase by a factor of 8 as the mesh spacing is halved.

Run times and maximum memory usage for this problem on a Compaq AlphaServer
(“halem.gsfc.nasa.gov”) are shown in Table 1. We compute a scaled efficiency by com-
paring the CPU times between two runs which differ by a factor of two in base grid size
and a factor of 8 in number of processors. The resulting efficiencies are shown in Table 2.

REFERENCES

1. D Martin and P. Colella, J Comp Phys. No. (2000).
2. C A Rendleman et al, Computing and Visualization in Science 3 (2000), 147.
3. R Cortez and M Minion, J Comp Phys 161 (2000) 428.
4. R A James, J Comp Phys 25 (1977).
5. E H Twizell, A B Gumel, and M A Arigu, Advances in Comput. Math. 6 (1996) 333.
6. P Colella et al, “Chombo Software Package for AMR Applications”, available at

http://seesar.lbl.gov/ANAG/software.html.

