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Abstract

We consider the class of effective supergravity theories from the weakly coupled
heterotic string in which local supersymmetry is broken by gaugino condensation in a
hidden sector, with dilaton stabilization achieved through corrections to the classical
dilaton Kähler potential. If there is a single hidden condensing (simple) gauge group,
the axion is massless (up to contributions from higher dimension operators) above
the QCD condensation scale. We show how the standard relation between the axion
mass and its Planck scale coupling constant is modified in this class of models due to a
contribution to the axion-gluon coupling that appears below the scale of supersymmetry
breaking when gluinos are integrated out. In particular there is a point of enhanced
symmetry in parameter space where the axion mass is suppressed. We revisit the
question of the universal axion as the Peccei-Quinn axion in the light of these results,
and find that the strong CP problem is avoided in most compactifications of the weakly
coupled heterotic string.
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1 Introduction

As observed by Banks and Dine [1], in a supersymmetric Yang Mills theory with a

dilaton chiral superfield that couples universally to Yang-Mills fields there is a residual R-

symmetry in the effective theory for the condensates of a strongly coupled gauge sector,

provided that there is a single condensation scale governed by a single β-function, there is

no explicit R-symmetry breaking by fermion mass terms in the strongly coupled sector, and

the dilaton S has no potential. The latter requirement is met in effective supergravity from

string theory, and explicit realizations of this scenario have been constructed [2, 3] in the

context of the weakly coupled heterotic string. Since the axion is massless above the QCD

condensation scale in these scenarios, it is a natural candidate for the Peccei-Quinn axion.

In [2, 3] gaugino and matter condensation was studied for gauge sectors that have no

dimension-two gauge invariant operators. In these effective theories, two-condensate models

have a point of enhanced symmetry where the condensing gauge sectors Ga have the same

beta-function coefficients ba, and the axion mass is proportional to |b1 − b2|. Here we are

interested in the case where one condensing gauge group GQ is SU(Nc) with a U(N) flavor

symmetry for quark supermultiplets. In the following section we construct supersymmetric

models for this case. This has the advantages that all the symmetries are manifest and the

effective Lagrangian is highly constrained by supersymmetry. In Section 2.1 we extend the

methods of [2] to the case of GQ and show that in the rigid supersymmetry limit mP → ∞
we recover known results [4]. In Section 2.2 we include a condensing hidden sector with a

gauge group Gc of the class studied in [2] and show that the point of enhanced symmetry in

this case corresponds to

bc =
Nc

8π2
. (1.1)

Although this is not a realistic model for QCD, where the condensation scale is far below the

scale of supersymmetry breaking, we recover the effective potential for light pseudoscalars by

identifying the qq̄ pseudoscalar bound states with the F-components of the quark condensate

superfields, and show that the presence of the symmetric point (1.1) is reflected in the axion

mass.

In Section 3 we consider a more realistic model in which the QCD gauge and matter

degrees of freedom are unconfined at the supersymmetry-breaking scale. We show that R-

symmetry is not broken by the large gaugino (and squark) masses because the masslessness

of the axion leaves the phase of the gaugino masses undetermined. We argue that this implies

that the symmetries of the effective theory at the supersymmetry-breaking scale must be

reflected in the effective quark-gluon theory just above the QCD condensation scale, implying
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a correction to the axion-gluon coupling. This result is confirmed by an explicit calculation

of the heavy gaugino loop contribution in Appendix A, and we recover the result of Section

2 for the axion mass.

For QCD with Nc = 3, the point of enhanced symmetry (1.1) has

bc =
3

8π2
= .038, (1.2)

which is in the preferred range .3 ≤ bc ≤ .4 found in studies of electroweak symmetry-

breaking [5] and of dark matter candidates [6] in the context of the models considered here.

As a consequence the axion mass is suppressed and higher dimension operators [1, 7] might

lead to strong CP violation. We address this question in Section 4.

Our results are summarized in Section 5. Here we use the linear supermultiplet formu-

lation for the dilaton superfield, but we expect that our results can be reproduced in the

chiral multiplet formulation.

2 Supersymmetric models

The supersymmetry breaking models of [2, 3] are based on strongly coupled hidden

sector gauge groups of the form
∏

a Ga. The generalization to supergravity [8, 9] of the VYT

effective action [10] is obtained by introducing composite field operators Ua and Πα
a that are

Ga-charged gauge and matter condensate chiral superfields, respectively:

Ua ' Wα
aWa

α, Πα
a '

∏
A

(
ΦA

a

)nA
α,a

, (2.1)

and by matching the anomalies of the effective theory to those of the underlying theory. The

Lagrangian1

LV Y T =
1

8

∫
d4θ

E

R

∑
a

Ua

[
b′a ln(e−K/2Ua) +

∑
α

bα
a ln Πα

]
+ h.c., (2.2)

has the correct anomaly structure under Kähler U(1) R-symmetry:

λa
α = Wa

α| → eiα/2λa
α, χA

α =
1√
2
DαΦA

∣∣∣→ e−iα/2χA
α ,

Ua → eiαUa, Πα
a → Πα

a , (2.3)

1We work in the Kähler U(1) superspace formalism of [11].
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conformal transformations:

λa → e3σ/2λa, ΦA → eσΦA, etc.,

Ua → e3σUa, Πα
a → edα

a σΠα
a , dα

a =
∑
A

nA
α,a, (2.4)

and modular (T-duality) transformations that involve functions of the moduli chiral super-

multiplets T I :

λa → e−iImF/2λa, χA → e−F A+iImF/2χA, FA =
∑
I

qA
I F I(T I), F =

∑
I

F I ,

Ua → e−iImF Ua, Πα
a → e−F α

a Πα
a , Fα

a =
∑
A

nA
α,aF

A, (2.5)

provided the conditions

b′a =
1

8π2

(
Ca −

∑
A

CA
a

)
, bα

a =
∑
A∈α

CA
a

4π2dα
a

, (2.6)

are satisfied, where Ca(C
A
a ) is the quadratic Casimir in the adjoint (ΦA) representation

of Ga. In the heterotic superstring theory, the anomaly under (2.5) is canceled by mod-

uli dependent string loop threshold corrections [12] and a four-dimensional version [13] of

the Green-Schwarz [14] term. In effective supergravity theories with an anomalous gauge

group U(1)X , there are additional anomaly matching conditions [3] and an additional Green-

Schwarz term [15] to restore the U(1)X invariance of the underlying string theory. The

composite chiral superfields Πα
a are invariant under the nonanomalous symmetries, and may

be used to construct an invariant superpotential [2, 3]. Provided there are no invariant chiral

fields of dimension two, and no additional global symmetries (such as chiral flavor symme-

tries), the dynamical degrees of freedom associated with the composite fields (2.1) acquire

masses [16] larger than the condensation scale Λa, and may be integrated out, resulting in

an effective theory constructed as described above with the composite fields taken to be

nonpropagating; that is, they do not appear in the Kähler potential. The dynamical axion is

massless if there is a single condensate, or if the condensing gauge groups all have the same

β-function coefficient ba, defined by

∂ga(µ)

∂ ln µ
= −3ba

2
g3

a(µ). (2.7)

In this case there is a nonanomalous R-symmetry: the axion shift compensates the anomaly

arising from the transformation (2.3). The symmetry is broken if there are condensing

gauge groups with different coefficients ba. For example in the case of two condensates with
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coefficients b1 > b2 and condensation scales Λ1 � Λ2, the axion mass is approximately given

by [2]

ma ≈
3〈`〉

√
b1

b2

[
(b1 − b2)

Λ2

Λ1

] 3
2

m 3
2
, (2.8)

where ` is the dilaton field in the linear multiplet formulation. In the classical approximation

〈`〉 = g2
s/2 ≈ .25, with gs the string coupling constant. Generally we expect 〈`〉 ∼ 1 when

string nonperturbative [17] and/or field theoretic quantum corrections [1, 18, 19] to the

dilaton Kähler potential are invoked to assure dilaton stabilization [20].

In the case that there is just one hidden sector condensing gauge group Gc, the axion

remains massless above the scale ΛQCD of quark and gluon condensation in the standard

model, and is a candidate for the Peccei-Quinn axion. However in this case there is an

enlarged symmetry in the limit of one or more massless quarks, leading to light condensates

mπ < ΛQCD, and the result (2.8) is modified.

In order to more closely model QCD, in this section we consider supergravity models

with a strongly coupled gauge group Gc⊗SU(Nc) with N ≡ Nf < Nc vector-like flavors. We

first extend the construction of the effective VYT action to this case, and show that in the

flat SUSY limit it reduces to the results [4] based on the holomorphy of the superpotential.

2.1 The VYT action for SU(Nc) with chiral flavor symmetry

We have N “quark” and N “anti-quark” chiral supermultiplets QA and Qc
A, respectively. We

take the quark condensates to be the matrix-valued “meson” superfield ΠA
B = QAQc

B. We

do not assume a priori that these are static fields. For Ga = SU(Nc) ≡ GQ we take

LQ
V Y T =

1

8

∫
d4θ

E

R
UQ

[
b′Q ln(e−K/2UQ) + bα

Q ln(detΠ)
]
+ h.c. (2.9)

For the elementary fields we have CQ = Nc, CA
Q = 1

2
,
∑

A CA
Q = N . Under Kähler U(1)

R-symmetry (2.3) anomaly matching requires

b′Q =
1

8π2
(Nc −N) , (2.10)

and under the conformal transformation (2.4) with Π→ e2σΠ, we require

3b′Q + 2Nbα
Q =

1

8π2
(3Nc −N) = 3bQ, (2.11)

where bQ is the β-function coefficient as defined in (2.7). Putting these together gives (2.10)

and

bα
Q =

1

8π2
, bQ = b′Q +

2N

3
bα
Q, (2.12)
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in agreement with the general result (2.6) with dα
Q = 2N for πα

Q = detΠ. If Q,Qc have

modular weights qI ,q
c
I , under T-duality (2.5)

Q → e−FQ

Q, Qc → e−FQc

Qc, FQ =
∑
I

qIF
I(T I), qI = diag(q1

I , . . . q
N
I ), (2.13)

and similarly for FQc
. The modular anomaly matching condition

b′Q + bα
Qqα

I =
1

8π2

{
CQ +

∑
A

CA
Q

[
2qA

I + 2(qc)A
I − 1

]}
, qα

I =
∑
A

(
qA
I + (qc)A

I

)
, (2.14)

is also satisfied by (2.10) and (2.12). Finally, like the underlying theory, (2.9) is invariant

under flavor SU(N)L ⊗ SU(N)R, while under chiral U(1) transformations

Q → eiβQ, Qc → eiβQc (2.15)

the anomaly matching condition

2Nbα
Q =

∑
A

CA
Q

4π2
(2.16)

is also satisfied.

For the superpotential we take

W (Π) = η−2Tr

[∏
I

η2qI
I Π

∏
J

η
2qc

J
J M

]
, (2.17)

where M is the mass matrix and ηI = η(T I), η =
∏

I ηI . The component Lagrangian for

the effective theory with just this SU(Nc) condensate can easily be inferred from the results

of [2]. Solving the equation of motion for ReFQ gives

uQ = eiωQλQ[det(ΠΠ†)]−1/2(Nc−N),

λQ = e−1e[k+K(Π)]/2
∏
I

[
2RetI |η(tI)|4

](b−b′
Q)/2b′

Q |η(tI)|−2bα
Qqα

I /b′
QΛ

(3Nc−N)/(Nc−N)
Q ,(2.18)

where

Λa = exp(−s(`)/3ba), s(〈`〉) = g−2
s , (2.19)

is defined as the scale at which the one loop running coupling ga(µ) blows up:

g−2
a (Λa) = g−2

s + 3ba ln(Λa/mP ), (2.20)

in reduced Planck mass units, mP = 1, that we use throughout.2 To compare with previous

results [4] we take the rigid SUSY limit, and neglect the moduli and the dilaton; s(`) → g−2
0 .

2A correction that accounts for the fact that the string scale differs from the Planck scale by µs = gsmP

is encoded in the ek factor in |ūa|2.
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Then the superpotential reduces to the standard VY one:

W (UQ) =
1

4
UQ

[
g−2
0 + b′Q ln(UQ) + bα

Q ln(detΠ)
]
. (2.21)

Keeping UQ static and imposing the equation of motion for the auxiliary field FQ gives the

potential

−V = Tr
[
F̄πK′′Fπ +

{
Fπ

(
M +

1

4
bα
QuQΠ−1

)
+ h.c.

}]
, uQ = e−1

(
Λ3Nc−N

Q

detΠ

)1/(Nc−N)

(2.22)

where K′′ is the (tensor-valued) Kähler metric for Π. Since ∂(detΠ)p/∂Π = pΠ−1 detΠp,

the potential (2.22) is derivable from the following superpotential for the dynamical superfield

Π:

WΠ = Tr(MΠ)− (Nc −N)

32π2e

(
Λ3Nc−N

Q

(detΠ)

)1/(Nc−N)

, (2.23)

which, up to a factor3 −2/e, is the superpotential found in [4].

We may also consider the case – more closely resembling QCD – where only n < N chiral

supermultiplets have masses below the condensation scale u
1/3
Q ∼ ΛQ, while m = N − n

chiral supermultiplets have masses MA above that scale. The latter decouple at scales below

their masses, which explicitly break the nonanomalous U(N)L ⊗ U(N)R symmetry to a

U(n)L ⊗ U(n)R symmetry if m = N − n quarks are massive. They do not contribute to the

chiral anomaly at the SU(Nc) condensation scale. To account for these effects we replace

(2.9) by

LQ
V Y T =

1

8

∫
d4θ

E

R
UQ

{
b′n ln(e−K/2UQ) + bα

Q

[
ln(detΠn)−

m∑
A=1

ln MA

]}
+ h.c., (2.24)

where b′n = (Nc− n)/8π2 and Πn is an n× n matrix-valued composite operator constructed

only from light quarks. (2.24) can be formally obtained from (2.9) by integrating out the

heavy quark condensates as follows. As the threshold MA is crossed, set detΠn+A →
πA detΠn+A−1 and take the condensate πA ∼ QAQc

A to be static: K(Πn+A) → K(Πn+A−1).

Then including the superpotential term W (πA) = −MAπA, the equation of motion for FA

gives πA = e−K/2uQ/32π2MA, giving (2.24) up to some constant threshold corrections. The

flat SUSY analogue of (2.21) is now

W =
1

4
UQ

{
g−2
0 + b′n ln(UQ) + bα

Q

[
ln(detΠ)−

m∑
A=1

ln MA

]}
, (2.25)

3The factor e comes from the fact that we take the derivative of
∫
U lnU , while the authors of [4] start

with
∫
< λλ > lnΛ and determine < λλ > from threshold matching. The minus sign comes from the

convention of [11]: u ∼ WαWα| = −λλ.
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and we recover (2.22)–(2.23) with now

ΛQ = e−1/3bng2
m∏

A=1

M
b3/3bn

A , 3bn =
3Nc − n

8π2
= 3b′n + 2nb3, (2.26)

which corresponds to running g−2(µ) from g−2(1) = g−2
0 to g−2(ΛQ) = 0 using the β-function

coefficient (3Nc − n − A)/8π2 for mA ≤ µ ≤ mA+1, again in agreement with the results of

nonperturbative flat SUSY analyses [4].

2.2 Supergravity with strongly coupled Gc ⊗ SU(Nc)

We consider the supergravity action defined by

L = LK + LP + LV Y T + LGS + LTh, (2.27)

where LGS and LTh contain, respectively, the Green-Schwarz terms and threshold corrections

discussed above,

LP =
1

2

∫
d4θ

E

R
eK/2W, (2.28)

is the superpotential term, and

LK =
∫

d4θ E [−3 + 2Ls(L)] (2.29)

contains the locally supersymmetric extension of the Einstein and Yang-Mills terms as well

as the kinetic terms for matter through the Kähler potential

K = k(L) + K(Π)−
∑
I

ln
(
T I + T̄ Ī

)
, k′(L) + 2Ls′(L) = 0. (2.30)

The Yang-Mills term arises from the modified linearity conditions [11] defined by the chiral

projections of the real field L:(
D̄2 − 8R

)
L = −

∑
a

(WαWα)a ,
(
D2 − 8R̄

)
L = −

∑
a

(
W β̇W β̇

)
a
. (2.31)

Below the condensation scale Λa we make the replacement (WαWα)a → Ua in (2.31). The

VYT term is given by (2.9)–(2.12) for a = Q. For Gc we follow [2] and take dimension-three

operators for the Πα
c in (2.2), giving the anomaly matching conditions:

bc = b′c +
∑
α

bα
c =

1

8π2

(
Cc − 1

3

∑
A CA

c

)
,

b′c =
1

8π2

(
Cc −

∑
A

CA
c

)
, bα

c =
1

12π2

∑
A

CA
c . (2.32)
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For the superpotential we now take

W =
∑
α

cα

∏
I

η
2(qα

I −1)
I Πα

c + η−2Tr

[∏
I

η2qI
I Π

∏
J

η
2qc

J
J M

]
, (2.33)

and we approximate the Kähler potential for Π by4

K(Π) = µ−2Tr

[∏
I

(T I + T̄ Ī)−qIΠΠ†∏
J

(T J + T̄ J̄)−qc
J

]
. (2.34)

We can make a holomorphic field redefinition such that5 it becomes obvious that the moduli

are still stabilized at self dual points with vanishing F-terms, namely

Π =
∏
I

η−2qI
I Π′∏

J

η
−2qc

J
J , (2.35)

and then drop the prime. Then the last line in (2.18) becomes

λQ = e−1e[k+K(Π)]/2
∏
I

[
2RetI |η(tI)|4

](b−b′
Q−bα

Qqα
I )/2b′

Q Λ
(3Nc−N)/(N−Nc)
Q , (2.36)

and the Kähler potential and superpotential are now

K(Π) = µ−2Tr

{∏
I

[
(T I + T̄ Ī)|ηI |4

]−qI
ΠΠ†∏

J

[
(T J + T̄ J̄)|ηJ |4

]−qc
J

}
,

W =
∑
α

cα

∏
I

η
2(qα

I −1)
I Πα

c + η−2Tr (ΠM) . (2.37)

Then the moduli derivatives KI(Π) and ∂I [e
KW (Π)] with the new Π variables fixed vanish

at the self dual points. To study the potential for the other fields we may set the moduli at

their ground state values. We could neglect the moduli altogether in this toy model since

modular invariance and Kähler R-symmetry give the same anomaly matching conditions.

However it is also interesting to check that mixing of the axion with ImtI = Im T I
∣∣∣ makes no

4We could take a more general form of the Kähler potential, e.g., K ∼ TrΠΠ†/TrΠ, TrΠΠ†/(detΠ)1/N

or (TrΠΠ†)
1
2 ; these would give essentially the same result with µ2 ∼ v.

5We took the superpotential to be modular invariant; in the context of string theory, this implies an
implicit assumption that the vev that induces the mass term does not break modular invariance. This need
not be the case for the more realistic QCD model discussed in Section 3 where the masses are generated by
the MSSM Higgs vev vH � Λc; as a result there can be small corrections to the effective theory of order
vH/Λc. These do not affect our conclusions which depend only on the residual R-symmetry above the QCD
confinement scale and, for CP violation discussed in Section 4, on unbroken T-duality above Λc.
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difference. Since we are only concerned with the phase Nδ of detM, we make the simplifying

assumption that M = meiδ1. Then 〈Π〉 = veiφπ1, and a convenient parameterization is

Π = SeiP, S = v

[
1 +

µ

v
√

2

(
σ +

σ0√
N

)]
, P = φπ +

µ

v
√

2

(
a +

a0√
N

)
,

detΠ = detSei(Nφπ+µ
√

Na0/v
√

2), Tr|Π|2 = TrS2, Tr|Π|−2 = TrS−2,

〈σ〉 = 〈σ0〉 = 〈a〉 = 〈a0〉 = 0, σ =
√

2
∑

i

Tiσ
i, a =

√
2
∑

i

Tia
i, (2.38)

where Ti is a generator of flavor SU(N) in the fundamental representation:

TrTi = 0, TrT 2
i =

1

2
. (2.39)

The component Lagrangian for bosons then takes the form

L = LKE − V, (2.40)

The potential is

V =
k′

16`

∣∣∣ρce
iωc(1 + bc`) + λQ| detΠ|−1/(Nc−N)eiωQ(1 + `b′Q)− 4eK/2`η−2meiδTrΠ

∣∣∣2
− 3

16

∣∣∣bcρce
iωc + b′QλQ| detΠ|−1/(Nc−N)eiωQ − 4eK/2η−2meiδTrΠ

∣∣∣2
+
∑
I

KIĪF
IF̄ Ī + TrF̄πK′′Fπ,

KIĪF̄
Ī =

4RetIζ(tI) + 1

8RetI

[
(b− bc)ρce

iωc + (b− b′Q)λQ| detΠ|−1/(Nc−N)eiωQ

+4eK/2η−2meiδTrΠ
]

(F̄πK′′)A
B =

1

4

{
µ−2Π

A

B

[
bcρce

iωc + b′QλQ| detΠ|−1/(Nc−N)eiωQ − 4eK/2η−2meiδTrΠ
]

−bα
QλQ

(
Π−1

)A

B
| detΠ|−1/(Nc−N)eiωQ − 4eK/2η−2mδA

Beiδ
}

, (2.41)

which can be written in the form

V = A1(S) + A2(S) cos(ω′
c − ω′

Q) + m0Tr
{
e−iµa/v

√
2
[
A3(S)eiω′

c + A4(S)eiω′
Q

]
+ h.c.

}
+m2

0A5(S, a2), ω′
a = ωa − δ − φπ − νa0 − i ln(η/η̄), ν =

µ

v
√

2N
, (2.42)

where the Ai are real and independent of the condensate phases, and

m0 = eK/2|η|−2m (2.43)
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is the quark mass. Using the parameterization (2.38), the kinetic energy term is, dropping

a total derivative,

LKE =
k′

4`
BmBm − bcω̃c∇mBc

m − b′Qω̃Q∇mBQ
m + i

b

2
Bm

∑
I

(
`′I∂mtI − h.c.

)
−1

2
(∂mσ∂mσ + ∂mσ0∂

mσ0 + ∂ma∂ma + ∂ma0∂
ma0)−KIJ̄∂tI∂t̄J̄ ,

ω̃c = ωc − i ln(η/η̄), ω̃Q = ωQ − i ln(η/η̄) +
N

Nc −N
(φπ + νa0) ,

`′I =
∂`I

∂tI
=

∂

∂tI
ln
[
|η(tI)|4(tI + t̄I)

]
. (2.44)

Defining B̃m = Bm
c −Bm

Q , the equations of motion for ωa and a0 give

∇mBm = − 1

bc

∂V

∂ωc

∣∣∣∣∣
a0,ωQ

− 1

b′Q

∂V

∂ωQ

∣∣∣∣∣
a0,ωc

= − 1

bc

∂V

∂ω′
c

∣∣∣∣∣
ω′

Q

− 1

b′Q

∂V

∂ω′
Q

∣∣∣∣∣
ω′

c

,

∇mB̃m = − 1

bc

∂V

∂ωc

∣∣∣∣∣
a0,ωQ

+
1

b′Q

∂V

∂ωQ

∣∣∣∣∣
a0,ωc

= − 1

bc

∂V

∂ω′
c

∣∣∣∣∣
ω′

Q

+
1

b′Q

∂V

∂ω′
Q

∣∣∣∣∣
ω′

c

,

2a0 =
b′QNν

2(Nc −N)

(
∇mBm −∇mB̃m

)
+

∂V

∂a0

∣∣∣∣∣
ωc,ωQ

= −ν

 ∂V

∂ω′
c

∣∣∣∣∣
ω′

Q

+
Nc

N −Nc

∂V

∂ω′
Q

∣∣∣∣∣
ω′

c

 , (2.45)

where subscripted fields are held fixed. The equations of motion for the three-form potentials

Γ = ∗B, Γ̃ = ∗B̃, that are dual to the one-forms Bm, B̃m, give

k′

`
Bm = −∇m

(
bcω̃c + b′Qω̃Q

)
− i

∑
I

b

2

(
`′I∂mtI − h.c.

)
,

0 = −∇m

(
bcω̃c − b′Qω̃Q

)
⇒ ω̃Q =

bc

b′Q
ω̃c + φ0, (2.46)

where φ0 is a constant phase. There are therefore two independent neutral axions (besides

ImtI) that we can take to be a0 and

ω = bc (ω′
c + νa0 + φc) = bcω̃c = b′Q

(
ω′

Q +
Ncνa0

Nc −N
+ φQ

)
, (2.47)

where φc and φQ are constant phases. Using

∂V

∂ω

∣∣∣∣∣
a0

=
1

bc

∂V

∂ω′
c

∣∣∣∣∣
ω′

Q

+
1

bQ

∂V

∂ω′
Q

∣∣∣∣∣
ω′

c

∂V

∂a0

∣∣∣∣∣
ω

= −ν

 ∂V

∂ω′
c

∣∣∣∣∣
ω′

Q

+
Nc

N −Nc

∂V

∂ω′
Q

∣∣∣∣∣
ω′

c

 , (2.48)
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and combining (2.45) and (2.46), we obtain the equations of motion of the dual scalar

Lagrangian6

L = −2`

k′

(
∂mω −

∑
I

b

2
Im`′I∂mtI

)(
∂mω −

∑
I

b

2
Im`′I∂mtI

)
− V

−1

2
(∂mσ∂mσ + ∂mσ0∂

mσ0 + ∂ma∂ma + ∂ma0∂
ma0)−KIJ̄∂tI∂t̄J̄ , (2.49)

with V given by (2.42) and (2.47). There are two dynamical degrees of freedom associated

with the phases relevant for the strong CP problem, the axion ω and the phase φπ. Setting

the other fields at their vacuum values, (2.42) takes the form

V (ω, φπ) = Ã1 + Ã2 cos ω′
c + Ã3 cos ω′

Q + Ã4 cos(ω′
c − ω′

Q), (2.50)

where Ã1 = A1(v) + m2
0A5(v, 0), etc. The potential (2.50) is minimized for

0 =
∂V

∂ωa

= −Ã2 sin ω′
c − Ã4 sin(ω′

c − ω′
Q) = −Ã3 sin ω′

Q + Ã4 sin(ω′
c − ω′

Q). (2.51)

This has CP conserving solutions ω′
a = 0, π. There might also be a CP violating solution

ω′
a 6= 0 provided

−1 < cosω′
c = −1

2

(
Ã4

Ã3

+
Ã3

Ã4

− Ã3Ã4

Ã2
2

)
< 1,

−1 < cosω′
Q = −1

2

(
Ã4

Ã2

+
Ã2

Ã4

− Ã2Ã4

Ã2
3

)
< 1, (2.52)

However the global minimum will occur for the CP conserving vacuum with ω′
a = 0, π that

maximizes the (negative) coefficients of the two largest of |Ãi6=1|. For example if Ã2 > Ã3 >

Ã4 > 0, the global minimum occurs7 for 〈V 〉 = Ã1 − Ã2 − Ã3 + Ã4.

To study the effective theory for the axion and the mesons we can set the moduli and

the static condensates at their ground state values. The canonically normalized mesons

σ0, σ, a0, a are defined as in (2.38) and

a = −
√

2`

k′
ω (2.53)

is the canonically normalized axion.8 In the limit of vanishing meson masses, m0 → 0, the

potential depends only on the scalars σ and one linear combination, mostly a0, of neutral

6It is straightforward to check that all the equations of motion are the same as for the original Lagrangian;
see, for example [2].

7As usual we fine-tune the dilaton Kähler potential to make the potential positive semi-definite.
8The sign is chosen to give the standard coupling, (2.71) below; see (32) of [7].
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pseudoscalars: √
1 + c2

aη =
Nc −N

νN
(ω′

c − ω′
Q + φc − φQ) = a0 + caa ≈ ao,

ca =
v

µ
8π2

√
k′

N`

(
1−

b′Q
bc

)
� 1. (2.54)

The other (mostly axion) neutral pseudoscalar and the charged pseudoscalars are massless

Goldstone bosons of the nonanomalous symmetry SU(N)L ⊗ SU(N)R ⊗ U(1), where the

nonanomalous U(1) is defined by (2.3) and (2.15) with

αbc =
1

8π2
[α (Nc −N) + 2βN ] . (2.55)

If m0 6= 0, flavor-chiral U(1) symmetry is broken, and there is no longer the freedom to

choose the R-parity of Q; in this case the classical R-symmetry has β = α/2, and it is

anomalous at the quantum level unless

bc =
Nc

8π2
=

b′QNc

Nc −N
. (2.56)

Writing

ω′
c = −ν

√
1 + c2

aη −
ω

Nbc

(
8π2bc −Nc

)
− φc,

ω′
Q = −

νNc

√
1 + c2

a

Nc −N
η − ω

Nbc

(
8π2bc −Nc

)
− φQ, (2.57)

we see explicitly that the potential (2.42) depends only on one neutral pseudoscalar η at the

point of enhanced symmetry (2.56). With the vev’s 〈ω′
a〉 determined as described above, the

potential for the light pseudoscalars takes the form

V (a, a) = −cTreiµ(a−c′
aa/

√
N)/v

√
2 + h.c., c = m0

∣∣∣∣∣A3(v)− A2(v)

|A2(v)|
A4(v)

∣∣∣∣∣ = v2

µ2
m2

a,

c′a =
ma

ma

=

√
k′

N`

v(8π2bc −Nc)

µbc

. (2.58)

For example, if we assume ρc � |uc|, m0|Π|, and use the condition of (approximately)

vanishing vacuum energy [2]:

k′/` ≈ 3b2
c/(1 + bc`)

2, (2.59)

the minimum of the potential when m0 → 0 is given by

〈cos(ω′
c − ω′

Q)〉 =
α

|α|
, µv = v

1
2 ≈

γµ2Λ3bQ/b1

m 3
2

1/2(2+3bQN/b3

, Λ =

(
b′QλQ

4

)b1/3bQ

∼ ΛQ,

(2.60)
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where

α =
bα
Q

b′Q
−

3(bc − b′Q)

2b′Q(1 + bc`)
, γ =

√
α2 + 3− |α| > 0, (2.61)

and the η, σ masses are

mη ≈ 2m 3
2

√
|α|/γ, mσ0 ≈ 2m 3

2

√
6− 2|α|γ/γ, mσ ≈ 2m 3

2

√
2− |α|γ/γ, (2.62)

where

m 3
2
≈ bc

4
ρc (2.63)

is the gravitino mass. When m0 is turned on there are small shifts in the vacuum value

(2.60) and the masses (2.62), and the pseudoscalars a, a acquire masses as in (2.58) with

c = 4m2
0Λ

7
4 (m 3

2
)

3
4 µ

1
2

(
3〈cos ω′

Q〉 − βγ〈cos ω′
c〉
)
, β = 1− 3

1 + bc`
, (2.64)

and the minimum is CP conserving with 〈cos ω′
Q,c〉 = ±1 so as to make c positive.

The above supersymmetric model is not a realistic model for QCD for several reasons.

The composite operators uQ and Π|θ=θ̄=0 are composed of gauginos and squarks that get

large masses proportional to m 3
2
, while the true light degrees of freedom are the quarks and

gauge bosons. The corresponding composite operators are the axillary fields FQ,F that have

been eliminated by their equations of motion. We would like to trade the former for the

latter. More precisely, the composite gauge fields are

S ∼ (F · F )QCD = −FQ + uQM̄ + h.c., P ∼ (F · F̃ )QCD = 4∇mBQ
m. (2.65)

The equation of motion for Fa forces the coefficient of Sa to vanish, consistent with the

definition g−2(Λa) = 0 of the Ga scale Λa, and (2.2) correctly reproduces [2] the running

of g−2 from the string scale to the condensation scale provided supersymmetry is unbroken

above that scale. This is not the case for QCD, and the effective “QCD” Lagrangian (2.9)

or (2.24) is not valid below the scale Λc of supersymmetry breaking. The arguments of the

logs are effective infra-red cut-offs. For gauginos and squarks, they should be replaced by

the actual masses, as was done in (2.24) for quark supermultiplets with masses above the

QCD condensation scale.

The gaugino and squark mass terms

Lmass = −k′ρc

16`

(
eiωcλ̄RλL + h.c.

)
−m2

3
2
|q̃|2 (2.66)

are invariant under (2.3) which is spontaneously broken by the vacuum value uc 6= 0, but

remains an exact (nonlinearly realized) symmetry of the Lagrangian, since the anomaly can
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be canceled by an axion shift as long as QCD nonperturbative effects can be neglected. Since

Uc transforms the same way as UQ an effective theory with the correct anomaly structure

under (2.3) and (2.15) is obtained by replacing (2.24) by

LQ
V Y T =

1

8

∫
d4θ

E

R
UQ

{
b1 ln(e−K/2UQ) + b2 ln(e−K/2Uc) + b3

[
ln(detΠn)−

∑
A=1

ln MA

]}
+h.c.,

(2.67)

provided

b3 =
1

8π2
= bα

Q, b1 + b2 =
Nc − n

8π2
≡ b′n, (2.68)

and we can choose b1 and b2 to better reflect the correct infrared cut-offs for squarks and

gauginos. The potential is still of the form (2.42), except that the functions Ai depend on the

parameter b2/b1, which modifies the masses (2.62), but the axion mass is unchanged since it

depends only on b1 + b2 = b′n. We may write the effective Lagrangian below the QCD scale

in terms of the quark condensate Fn by using its equation of motion. Putting everything

except the light pseudoscalars at their vacuum values, to leading order in 1/mP we obtain

F̄n ≈
(
σe−iP′ − c0

)
eiδ,

P′ =
µ

v
√

2

(
a− c′aa√

n

)
=

µ

v
√

2
a− 8π2bc −Nc

bcn

√
k′

2`
a, c0 = µ2m0, (2.69)

and the effective potential for the light pseudoscalars takes the form

c0σ
′eiP′

+ h.c. + O(m2
0) = cTrFn + h.c. + O(m2

0), c = c0
σ′

σ
, (2.70)

which is the standard result in QCD if TrF is identified with the quark condensate. To check

that this identification is correct, we note that above the condensation scales the Lagrangian

contains the coupling

L 3 −a

4

√
k′

2`

∑
a

(F · F̃ )a ≡ −
a

4F

∑
a

(F · F̃ )a. (2.71)

Under the Kähler U(1) transformation (2.3) and the transformation (2.15) on the n light

quark supermultiplets, the anomalies induce a shift

δL 3 −1

4

[
αbc(F · F̃ )c + (αb′n + 2nβ3)(F · F̃ )Q

]
, (2.72)

which is canceled in the nonanomalous case (2.55) by the axion shift

a → a− αbc

√
2`

k′
, (2.73)
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This gives

Fn → eiαbFFn, bF =
8π2bc −Nc

n
, (2.74)

which matches the phase transformation of the quark condensate:

χLχc
L → eiαbχχLχc

L, bχ = 2
β

α
− 1 =

8π2bc −Nc + n

n
− 1 = bF. (2.75)

For n = 2 we identify the factor exp(iµa/v
√

2) in the parametrization (2.38) with the oper-

ator Σ = e2iπiTi/Fπ of standard chiral Lagrangians, where πi are the canonically normalized

pions, and Ti is a generator of SU(2) normalized as in (2.39). That is, we identify ai with

πi and

µ/v = 2/Fπ, Fπ ≈ 93MeV (2.76)

giving

ma =
|8π2bc −Nc|

bcn

√
nFπ

F
√

2
mπ =

√
3|8π2bc −Nc|Fπ

2
√

n(1 + bc`)
mπ, (2.77)

where F is the axion coupling defined in (2.71), and we used (2.59). If we assume bc` � 1,

bc = .036, which is the preferred [6] value for LSP dark matter in the BGW model [2], we

are very close to the symmetric point for Nc = 3: 8π2bc = 2.84, so we get an (accidental)

suppression of the axion mass; if bc` � 1 and n = 2:

ma ≈ 5× 10−13eV, F ≈ 5.5× 1019GeV. (2.78)

The value of F is larger than the classical value with k′ = 1/`, ` = g2/2 ≈ .25, giving

F class ≈ 1/2
√

2 ≈ 8.6 × 1017GeV, due to the corrections to the dilaton Kähler potential

needed for dilaton stabilization. One also finds in the literature a different normalization for

the axion couping

L 3 − na

32π2fa

∑
b

(F · F̃ )b, fa =
nF

8π2
, (2.79)

giving fa = 1.4× 1018GeV, and f class
a = 2.2× 1016, in agreement with the calculation of [21].

In models with an anomalous U(1), there are other factors that determine the spectrum, and

bc can be quite different. In general these factors tend to raise the scale of supersymmetry

breaking unless bc is smaller and/or ` is considerably larger than its classical perturbative

value g2
s/2 ≈ 0.25. Either of these would increase fa and probably increase ma by moving bc

away from the symmetric point.

The result (2.77) appears to differ from the standard result by a factor 1 − Nc/8π
2bc.

However, F is the axion coupling to Yang Mills fields above the scale of supersymmetry

breaking. We will see in the next section that when we integrate out the gluinos of the

supersymmetric extension of the Standard Model, we generate a correction that modifies the

axion coupling strength F−1 to (FF̃ )Q by precisely that factor.
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3 QCD

In the real world squarks and gauginos are unconfined at the scale of Gc condensation;

they get masses proportional to m 3
2
. Therefore we integrate them out, as well as the dilaton

and moduli, to get an effective theory for quarks and gauge bosons. For present purposes,

we can ignore the fact that quark masses come from Higgs couplings and just take the quark

superpotential and Kähler potential to be

Wq(q̂, Q̂) = η−2
(
meiδ q̂T q̂c + Q̂T MQ̂c

)
, Kq = q̂†q̂ + (q̂c)†q̂c + Q̂†Q̂ + (Q̂c)†Q̂c,

q̂T = (q̂1, . . . , q̂n), Q̂T = (Q̂1, . . . , Q̂m), m + n = N. (3.1)

The chiral superfields Q̂A = (Q̃A, QA, FA) have masses MA � ΛQCD, and we have used

a nonanomalous SU(N) transformation to make their mass matrix real and diagonal and

to diagonalize the mass matrix of the light quarks q̂i = (q̃i, qi, fi) which we take to have

degenerate eigenvalues: |mi| = m � ΛQCD. The relevant part of the Lagrangian at the

SUSY-breaking scale is (dropping kinetic terms for heavy fields and setting the moduli at

self-dual points)

L = Lkin − V − LY , χ = (q, qc), φ = (q̃, q̃c), X = (Q,Qc), Φ = (Q̃, Q̃c),

Lkin =
k′

4`
BmBm − bcωc∇mBc

m −
i

2
(χ̄LγmDmχL − h.c.)− 1

4g2(m 3
2
)
F · F,

V =
k′

16`

∣∣∣ρce
iωc(1 + bc`) + λ̄RλL − 4`eK/2Wq(q̃, Q̃)

∣∣∣2
− 3

16

∣∣∣bcρce
iωc − 4eK/2Wq(q̃, Q̃)

∣∣∣2 + F T F̄ + fT f̄ ,

F̄A =
1

4

[
bcρce

iωcΦ†
A − 4eK/2Wq(q̃, Q̃)Φ†

A − 4(M0)AΦA

]
,

f̄i =
1

4

[
bcρce

iωcφ†i − 4eK/2Wq(q̃, Q̃)φ†i − 4m0e
iδφi

]
,

LY = QT M0Q
c + eiδm0q

T qc +
(
Φ†X + φ†χ

)2
Wq(q̃, Q̃)

−i
√

2
[
χT (λ · T )φ̄ + XT (λ · T )Φ̄

]
+ h.c.,

Bm = ∗(db + Γ)m + ωm, Dmχ = Dmχ +
ik′

4
Bmχ, (3.2)

where Dm is a gauge covariant derivative, M0 is defined analogously to m0, and bmn, Γmnp

and ωm are, respectively, a two-form potential, a three-from potential, and the Chern-Simons

one-form for unconfined gauge fields: ∇mωm = 1
4
F · F̃ .

If we neglect the small mass m0, the Lagrangian (3.2) is invariant under the nonanomalous
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transformation

λa → eiα/2λa, ΦA → eiα/2ΦA, XA → XA, φi → eiβαφi, χi → eiγαχi,

ωc → ωc + α, β =
bc − b′n
2nb3

, γ = β − 1

2
=

8π2bc −Nc

2n
, (3.3)

where b′n and b3 are defined as in (2.68). In order to keep this approximate symmetry manifest

in the low energy effective theory, we redefine the squark and quark fields so as to remove

the ωc-dependence from all terms in the Lagrangian for the heavy fields that do not involve

the mass m0:
9

λa = eiωc/2λ′a, ΦA = eiωc/2Φ′
A, XA = X ′

A, φi = eiβωcφ′i, χi = eiγωcχ′
i. (3.4)

The primed fields are invariant under (3.3), and when expressed in terms of them, V and LY

have no dependence on ωc when m0 → 0; this assures that any effects of integrating out the

heavy fields will be suppressed by powers of m0/MA, m0/m 3
2

relative to the terms retained.

However, these transformations induce new terms in the effective Lagrangian. First, because

the transformation (3.4) with ωc held fixed is anomalous, it induces a term

L′ 3 ∆L = −ωcbc

4
(F · F̃ )Q. (3.5)

Secondly there are shifts in the kinetic terms; the ones that concern us here are the fermion

derivatives:

∂mλL = eiωc/2
(
∂mλ′L +

i

2
∂mωcλ

′
L

)
, ∂mχL = eiγωc (∂mχ′

L + iγ∂mωcχ
′
L) , (3.6)

which corresponds to a shift in the axial connections Am in the fermion connections:

∆Aλ
m = −1

2
∂mωc, ∆Aχ

m = −γ∂mωc. (3.7)

Quantum corrections induce a nonlocal operator coupling the axial connection to FF̃ ; at

scales µ2 ∼ 2 � m2
λ through the anomalous triangle diagram:

Lqu 3 −
1

4
(F · F̃ )Q

1

2

(
Nc

4π2
∂mAλ

m +
n

2π2
∂mAχ

m

)
. (3.8)

The contribution to (3.8) from the shift (3.7) exactly cancels the shift (3.5) in the tree level

Lagrangian, leaving the ωFF̃ S-matrix element unchanged by the redefinition (3.4). However

9We are implicitly making invariant other heavy fields, such as the dilatino (χ′` = eiωcχ`) and gravitino
(ψ′

µ = e−iωcψµ), that also transform under (3.3) in order to insure invariance of the full classical Lagrangian.
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at scales µ2 � m2
λ, we replace 2 → m2

λ in the first term of (3.8) because the contribution

decouples, but the analogous contribution (3.5) to the tree Lagrangian L′ remains in the

effective low energy Lagrangian. This is a reflection of the fact that the classical symmetry

(3.3) of the unprimed variables is anomalous. The gluino contribution to that anomaly is not

canceled by the gluino mass term, because the gluino mass does not break the symmetry;

its phase ωc is undetermined above ΛQCD and transforms so as to make the mass term

invariant. To see that the gluino contribution to the anomaly does not decouple, we write

the (unprimed) gaugino contribution to the one-loop action as

S1 = − i

2
Tr ln(i 6D + mλ) = SA + SN , (3.9)

where

SA = − i

2
Tr ln(i 6D) (3.10)

is mass-independent and contains the gaugino contribution to the anomaly:

δL 3 δSA = − αNc

32π2
(F · F̃ )Q. (3.11)

The mass-dependent piece

SN = − i

2
Tr ln(−i 6D + mλ) +

i

2
Tr ln(−i 6D) (3.12)

is finite and therefore nonanomalous. A constant mass term would break the symmetry and

the contribution from SN would exactly cancel that from SA in the limit µ/mλ → 0. However

it clear that SN is invariant under (2.3) because the gaugino mass is covariant. In Appendix

A we explicitly show by direct calculation that gaugino loops give the contribution (3.11)

under (3.3) in the limit mλ � µ, which in this limit arises only from the phase of the mass

matrix. This implies that the effective low energy theory must contain a coupling

Leff 3 Lanom = −ωcNc

32π2
(F · F̃ )Q, (3.13)

which is precisely the term that is generated by the redefinitions in (3.4). The difference

(S1)λ − (S1)λ′ in the one-loop actions calculated with primed and unprimed gaugino fields

is just given by the first expression for δS1 in (A.4), in the limit of small ω → α, which can

trivially be integrated to include arbitrary ω. In order to respect the full classical invariance

of the Lagrangian, we have to include the transformation on the squarks and quarks, giving

the effective coupling in (3.5).
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Setting the squarks and gauginos, as well as the heavy quarks, to zero gives the effective

light field tree Lagrangian at a scale ΛQCD < µ < MA:

L = Lkin − V − LY + ∆L, V =
1

16`

[
k′(1 + bc`)

2 − 3b2
c`
]
ρ2

c ,

Lkin =
k′

4`
BmBm − bcωc∇mBc

m −
i

2
(χ̄′γmDmχ′ − h.c.)−

∑
a

1

4g2
a(µ)

(F · F )a,

Dmχ′
L = Dmχ′

L +
ik′

4
Bmχ′

L + iγ∂mωcχ
′
L, LY = ei(δ+2γωc)m0q̄

′
Rq′cL + h.c.,

∇mBm = ∇mBc
m +

1

4
F · F̃ = ∇m(∗Γ)m +

1

4
F · F̃ . (3.14)

The equations of motion for Γ and ωc give (the equation for bmn is redundant; this field can

be absorbed into Γ by a gauge transformation Γ → Γ− db)

0 =
k′

2`
Bm + bc∇mωc +

k′

2
jm jm = χ̄′

Lσmγ5χ
′
L,

0 = bc∇mBc
m +

∂

∂ωc

LY − 2γ∇mjm +
bc

4
(F · F̃ )Q

= bc

(
∇mBm −

1

4
F · F̃

)
+

∂

∂ωc

LY − 2γ∇mjm +
bc

4
(F · F̃ )Q

= −bc

[
∇m

(
2`

k′
bc∇mωc + `jm

)
+

1

4
F · F̃

]

+
∂

∂ωc

LY + 2γ∇mjm +
bc

4
(F · F̃ )Q, (3.15)

which is the scalar equation of motion for the equivalent Lagrangian

L = − `

k′
∂mω∂mω − i

2
(χ̄′

LγmDmχ′
L − h.c.)−

[
ei(δ+2γω/bc)m0q

′T q′c + h.c.
]

−
∑
a

1

4g2
a(µ)

(F · F )a +
ω

4
[F · F̃ − (F · F̃ )Q],

Dmχ′
L = Dmχ′

L +
i

2bc

(2γ − bc`) ∂mωχ′
L, ω = bcωc. (3.16)

If we ignore m0 the QCD part of (3.16) is invariant under a shift in ω by a constant, which

is the same as the nonanomalous symmetry (3.3), after the redefinitions (3.4).

From now on we drop the primes on the quark fields. We define the canonically nor-

malized axion as in (2.53) and include explicitly the QCD instanton-induced term, since it

cannot be treated as a total derivative when we approach the QCD scale where we obtain

an effective Lagrangian for pseudoscalars. Then, in terms of four-component Dirac spinors,
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the Lagrangian (3.16) reads,

L = −iq̄ 6Dq −m0

(
ei(δ−a/f)q̄RqL + h.c.

)
− 1

2
∂ma∂ma

−1

4

g−2
γ (µ)F 2 +

√
k′

2`
aF · F̃


γ

− 1

4

(
g−2

Q (µ)F 2 +
θ

8π2
F · F̃

)
Q

,

6Dq = 6Dq − i

2

√
k′`

2

(
1− 2γ

bc`

)
6∂aγ5q, f−1 =

√
k′

2`

8π2bc −Nc

nbc

, (3.17)

where the subscript γ stands for10 QED. The first term in the quark connection is the

standard one; in the classical limit k′ = `−1 it reduces to −iγ5a/2
√

2 = −iγ5Ims/4Res. The

second term is a result of the quark field redefinition in (3.4). The Lagrangian (3.17) has a

classical symmetry

a → a + α, q → e−iγ5α/fq (3.18)

that is anomalous unless (neglecting δLQED) f−1 = 0, which is just the condition (2.56)

found previously. We can now make an anomalous chiral transformation on the quarks to

remove the θ term from (3.17):11

q → eiθγ5/nq. (3.19)

Below the QCD confinement scale the physical degrees of freedom are the pions; with the

usual parameterization

v3eiφΣa
b = v3(ei(φ+2π/Fπ))a

b ∼ qa
L(q̄R)b, π =

1

2

∑
i

πiλi, 〈π〉 = 0. (3.20)

Using standard chiral symmetry arguments we get the effective Lagrangian

Leff =
1

4
F 2

πTr
(
∂µΣ∂µΣ†

)
+

1

2
∂µa∂µa + iF 2

π

√
k′`

2
(1− 2γ/bc`) ∂µaTr{Σ, ∂µΣ†}

+
1

2
λv3

[
Tr(e−ia′/fΣm0) + h.c.

]
, a′ = a− f(δ + φ− 2θ/n). (3.21)

The third term on the RHS’s of (3.21) is the coupling of the universal axion to the chiral

U(1) Noether current as implied by (3.17). Since Trπ = 0 it does not introduce any mixing

of the axions with the pions. The potential for the light pseudoscalars a, π is identical to

that in (2.70). Since since m0〈Σ〉 is real the potential is an even function of a′ and has a

10We have ignored a shift in the axion coupling to (FF̃ )γ analogous to (3.5) which is canceled in the
S-matrix element by the loop contribution analogous to (3.8).

11See for example the discussion in Ch. 23.6 of [22].
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minimum at 〈a′〉 = 0, so CP is conserved. If we take n = 2 and allow for mu 6= md, the mass

terms are

Vm =
1

2
λv2

[
(mu + md)

(
~π2

F 2
π

+
a′2

f 2

)
− 2 (mu −md)

a′π0

fFπ

]

≈ 1

2
m2

π

2π+π− +

(
π0 +

Fπ(1− z)

f(1 + z)
a′
)2
+

1

2
m2

aa
2
0, (3.22)

where

a0 ≈ a′ − Fπ(1− z)

f(1 + z)
π0, ma ≈ 2mπ

Fπ

√
z

f(1 + z)
, z =

mu

md

. (3.23)

To see that this12 is the standard result [23] for n = 2, we note that if we undo the redefinition

of the quarks in (3.4) by a transformation q → q′′ = e−iaγ5/2fq, we put back a term

L 3 − na

32π2f
(F · F̃ )Q = −

√
k′

2`

(
1− b0

bc

)
a

4
(F · F̃ )Q, (3.24)

which differs from the universal axion coupling (2.71) by the gaugino contribution (3.13)

that is generated when the gauginos are integrated out.

4 CP violation

At the point of enhanced symmetry bc = 8π2Nc, the nonanomalous symmetry (3.3)

does not include a chiral transformation on the quarks, and one loses the solution to the CP

problem. The axion decouples from the quarks in the effective Lagrangian (3.17), and its vev

cannot be adjusted to make the quark mass matrix real in the θ = 0 basis. There is no reason

to expect that nature sits at this point, but if the axion mass is very small one should worry

about other sources of an axion potential, such as higher dimension operators [1]. These

were studied in [7] in the context of the modular invariant gaugino condensation models

considered here. Modular invariance severely restricts the allowed couplings; the leading

contribution to the axion mass takes the form

m′2
a ≈

p3|u|2k′λ|η2e−K/2u|p

4b2
c`

[3bc − (1 + bc`)k
′] (4.1)

where λ is a dimensionless coupling constant, and p is the smallest integer allowed by T-

duality. An orbifold compactification model with three complex moduli and an [SL(2,Z)]3

12The coupling constant fa used in [23] is a factor two larger than the one defined in (2.79) and used
in [21]. Taking this into account we agree with [23], but differ by a factor two with [21] and [22]. The latter
uses Fπ = 186MeV, and factors of two are missing in the arguments of substitutions q̄q → f(π0/Fπ).
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symmetry has p = 12, and, with the values of the various parameters used above and

λ ≈ 1, one finds m′
a ≈ 10−63eV, which is completely negligible. However if the symmetry is

restricted, for example, to just SL(2,Z) one has p = 4 and the contribution from (4.1) is of

the order of (2.78). The axion potential is now

V (a) = −f 2m2
a cos(a/f +φ0)− f ′2m′2

a cos(a/f ′), f ′−1 =
p

bc

F−1 =
pn

8π2bc −Nc

f−1, (4.2)

where we have absorbed constant phases in a and/or in φ0 = −(δ + φ + 2θ/n) so as to

make the coefficients negative. The strong CP problem is avoided if for some value of bc

the vacuum has 〈θ̄〉 = 〈n(a/f + φ0)/2〉 < 10−9 for any value of φ0. For values of bc in the

preferred [5, 6] range .3 ≤ bc ≤ .4 this does not occur. For example for bc = .036 with

p = 4 and f ′/f ≈ 1/50, this requires f ′2m′2
a /f2m2

a < 10−10, whereas evaluating (4.2) gives

f ′2m′2
a /f2m2

a ≈ 4 × 10−4 in this case. A numerical analysis shows that the CP problem is

avoided provided p ≥ 5, that is, provided the T-duality group is not the minimal one, which

is the case for most compactifications of the weakly coupled heterotic string.

5 Conclusions

We have shown that there is an enhanced symmetry point where the universal string

axion mass vanishes even in the presence of quark masses in string-derived models where

supersymmetry is broken by condensation of a simple gauge group in a hidden sector. As

a consequence, the axion mass can be suppressed relative to conventional estimates [21] for

the mass of the string axion. The conditions under which the universal axion can serve

as the Peccei-Quinn axion were examined and it was found that the strong CP problem

is avoided for all but the minimal SL(2,Z) version of the T-duality group of the weakly

coupled heterotic string. Most compactifications have a larger T-duality group, and from a

phenomenological point of view, a larger group is desirable for generating [25] the R-parity of

the MSSM. Although our results were obtained using the linear supermultiplet formulation

for the dilaton superfield, we expect that they can be reproduced in the chiral multiplet

formulation. The implications of our results for cosmological observation will be presented

elsewhere.
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Appendix

A Anomaly

Consider the tree Lagrangian for a Majorana fermion λ

L = − i

2
λ̄ 6Dλ− 1

2
λ̄Lm̄λR + h.c., Dm = Dm + iAmγ5, Dm = ∂m + iT · am,

Am =
1

2
∂mω, m̄ = m† = eiωµ, (A.1)

where am is a gauge field. The classical Lagrangian is invariant under

λL → eiα/2λL, ω → ω + α. (A.2)

This symmetry is broken at the quantum level by the anomaly:

δL 3 − α

32π2
F · F̃ . (A.3)

For µ → 0 this is just determined by the standard triangle diagram for the a2A three-point

function. If the mass of λ were constant it would explicitly break the symmetry (A.2) and

the explicit breaking would exactly cancel the anomalous breaking, given no contribution to

the 3-point function at momentum scales |p2| � µ2. However since the mass term in (A.1)

respects the symmetry, the contribution to (A.3) is independent of the mass parameter µ.

Here we show this explicitly in the limit of very large mass, using the methods of [24]. Under

(A.2) the effective action (3.9) changes by

δS1 = − i

2
Tr ln(i 6D − γ5δ 6A + mλ + δm) +

i

2
Tr ln(i 6D + mλ)

= − i

2

∫ d4p

(2π)4

∞∑
n=0

Tr(−R)nδR,

R = − 1

p2 − µ2

(
{pm, Gm}+ GmGm −

i

2
σ · Ĝ + i ̂[6D, mλ]

)
, σmn =

i

2
[γm, γn],

δR = − 1

p2 − µ2
(6p−mλ) (δ 6A− δmλ) ,

mλ = µeiωγ5 , f̂ = e−iD·∂/∂pf(x)eiD·∂/∂p, Gmn = [Dm, Dn], (A.4)
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and Gm is also an expansion in the operator D · ∂/∂p acting on Gmn. For µ → 0, each term

in the sum is infrared divergent, and the derivative expansion must be resummed to give

(A.3). For large µ the only contribution to (A.3) that is not proportional to an inverse power

of µ2 involves δmλ = iγ5αmλ and Gmn 3 iFmn:

δS1 3 − i

2

∫ d4p

(2π)4
TrR2δR 3 i

8

∫ d4p

(2π)4
Tr

(σ ·G)2mλδmλ

(p2 + µ2)3

= −
∫ ip2dp2

16π2

µ2iα

(p2 + µ2)3
G · G̃ = − α

32π2
F · F̃ . (A.5)

In the models considered the symmetry is only global, α = constant in (A.2), but this has no

bearing on the calculation or the anomaly. When we sum over all the gaugino contributions

we get a factor Nc.
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