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Abstract

The quantum instanton approximation is a type of quantum transition state theory that cal-

culates the chemical reaction rate using the reactive flux correlation function and its low order

derivatives at time zero. Here we present several path-integral estimators for the latter quantities,

which characterize the initial decay profile of the flux correlation function. As with the internal

energy or heat capacity calculation, different estimators yield different variances (and therefore

different convergence properties) in a Monte Carlo calculation. Here we obtain a virial(-type) esti-

mator by using a coordinate scaling procedure rather than integration by parts, which allows more

computational benefits. We also consider two different methods for treating the flux operator, i.e.,

local-path and global-path approaches, in which the latter achieves a smaller variance at the cost

of using second-order potential derivatives. Numerical tests are performed for a one-dimensional

Eckart barrier and a model proton transfer reaction in a polar solvent, which illustrates the reduced

variance of the virial estimator over the corresponding thermodynamic estimator.
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I. INTRODUCTION

Developing an accurate and practical method for computing chemical reaction rates is

one of the fundamental subjects of theoretical chemistry. In this regard the most successful

approach is probably classical transition state theory (TST),1–3 which has been applied

widely to numerous reactions including biological systems such as enzyme catalysis.4 The

robustness of TST comes from its simplicity, i.e., the rate is determined solely from the

free energy difference between the reactant and the activated complex. TST relies on the

assumption of no “recrossing” trajectories through the dividing surface, which is usually

valid at not too high temperature and for large dimensional systems. While successful in

many cases, TST has the inherent deficiency that it accounts for no quantum effects, which

needs to be addressed in order to treat low-temperature or light-atom transfer reactions. A

conventional remedy to this problem is to add quantum corrections in a posteriori manner,

e.g., by multiplying a tunneling factor that is computed along a prescribed tunneling path.5

Another strategy is to try to develop a quantum TST (QTST) by starting from the rigorous

quantum rate expression and make some approximations for neglecting recrossing effects.

Several such theories exist,6–15 though there is in principle no unique formulation (in contrast

to the classical case).

The quantum instanton (QI) approximation16–24 is a recently developed theory for chem-

ical reaction rates that is among the category of QTST. While the original derivation was

based on the semiclassical “instanton” (periodic orbit in imaginary time) model,16 the work-

ing rate expression can be understood roughly as the second-order cumulant (or Gaussian)

approximation to the flux-flux correlation function,

Cff(t) = Cff(0) +
1

2
C̈ff(0)t2 + · · · ≃ Cff(0) exp

[

1

2

C̈ff(0)

Cff(0)
t2

]

, (1)

for which the rate constant is given by

k(T ) =
1

Qr

∫ ∞

0

dtCff(t) ≃ Cff(0)

Qr

√

π

2

1
√

−C̈ff(0)/Cff(0)
(2)

(see Sec. II for details). This approximation can be viewed as a quantum analog of the

(classical) TST assumption in the sense that all possible oscillations in Cff(t) at later times

(quantum re-crossing flux) are neglected. Test calculations show that this QI approximation

gives a rate accurate to within ∼10 % of the exact rate when the reaction is “direct”, and
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also to within a factor of 2 even for cases in which significant recrossing is expected (e.g.,

the collinear Cl+HCl reaction).19 The computational merit of Eq. (2) is that it is expressed

wholly in terms of the Boltzmann operator, and thus it can be evaluated rigorously even

for complex molecular systems using imaginary-time path integrals. A previous paper has

presented such a scheme,17 in which the factor Cff(0)/Qr in Eq. (2) is evaluated as the

barrier height of a particular free energy surface, while the remaining factor is calculated as

the statistical average of some estimating function over the transition-state path ensemble.

This computational scheme has been applied successfully to several benchmark systems

including gas-phase reactions such as CH4 + H → CH3 + H2,
18 a model proton transfer

reaction in a polar solvent,22 and an isomerization reaction of pentadiene.24

The purpose of this paper is to present an improved path-integral estimator for computing

the QI rate. In particular, we focus on the factor C̈ff(0)/Cff(0) in Eq. (2) which characterizes

the initial decay profile of Cff(t). This quantity involves several different estimators because

of the presence of the second time derivative. The estimator used in previous work was of

“thermodynamic” type,17 and its variance thus grows rapidly as a function of the number of

path variables employed in the path integration. As with the internal energy or heat-capacity

calculation,25–33 it should be possible to transform the thermodynamic estimator into a virial

form in order to reduce the statistical error. In this paper we present such a scheme based

on a coordinate scaling procedure, rather than integration by parts, which is based on the

recent study by Predescu et al.32,34 and possesses the following computational benefits: (i)

the transformation to a virial estimator is quite straightforward in contrast to integration by

parts; (ii) one can use a finite-difference technique in order to avoid explicit calculation of

potential derivatives in the virial estimator; and (iii) higher-order time derivatives of Cff(t)

such as C
(4)
ff (0), C

(6)
ff (0), ..., can also be generated with little modifications to the code, which

can be used as input for more flexible approximations21 to the true Cff(t) than Eq. (1).

The remainder of this paper is as follows: In Sec. II we summarize the working expression

of the QI theory. In Sec. III we first consider an “off-diagonal” average energy and derive

its thermodynamic and virial estimators to describe the basic idea of coordinate scaling. In

Secs. IV and V we apply the scaling procedure to quantum time correlation functions in

order to obtain a virial estimator for the reaction rate. In Sec. VI we calculate the variance

of the virial estimator for a one-dimensional Eckart barrier and a model proton transfer

reaction in a polar solvent. Sec. VII concludes.
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II. THE QUANTUM INSTANTON APPROXIMATION FOR CHEMICAL REAC-

TION RATES

The QI theory approximates the reaction rate as follows (see Ref. 16 for the derivation

motivated by semiclassical considerations):

k(T ) ≃ Cff(0)

Qr

√
π

2

~

∆H
, (3)

where Cff(0) is the zero time value of the flux-flux correlation function,35

Cff(t) = tr
[

e−βĤ/2F̂ e−βĤ/2eiĤt/~F̂ e−iĤt/~

]

(4)

with F̂ being the flux operator,

F̂ =
i

~
[Ĥ, h(x̂ − x‡)] =

1

2m
[p̂δ(x̂ − x‡) + δ(x̂ − x‡)p̂], (5)

and ∆H represents a specific type of energy variance (i.e., ∆H2 = 〈Ĥ2〉 − 〈Ĥ〉2),

∆H2 =
〈x‡|Ĥ2e−βĤ/2|x‡〉
〈x‡|e−βĤ/2|x‡〉

−
[

〈x‡|Ĥe−βĤ/2|x‡〉
〈x‡|e−βĤ/2|x‡〉

]2

. (6)

In this paper we consider a one-dimensional system with the Hamiltonian H = p2/2m+V (x)

for notational simplicity. In Eq. (5), x‡ is the location of the dividing surface that separates

the reactant and product regions. ∆H in Eq. (6) can be written more compactly as

∆H2 = −~
2

2

C̈dd(0)

Cdd(0)
, (7)

where Cdd(t) is a “delta-delta” correlation function defined by

Cdd(t) = tr
[

e−βĤ/2δ(x̂ − x‡)e−βĤ/2eiĤt/~δ(x̂ − x‡)e−iĤt/~

]

. (8)

Substituting Eq. (7) into Eq. (3) gives

k(T ) ≃ Cff(0)

Qr

√

π

2

1
√

−C̈dd(0)/Cdd(0)
, (9)

which has a formal resemblance to the Gaussian approximation to Cff(t) in Eq. (1). An

extended version of the QI theory has also been proposed, which makes a log-augmented

cumulant expansion of Cff(t) as follows,21

Cff(t) ≃ Cff(0) exp

{

b0 ln

[

1 +

(

2t

~β

)2
]

+ b1t
2 + · · · bN t2N

}

, (10)
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where coefficients {bk} are determined by a matching procedure with the direct Taylor series

expansion of Cff(t). We note that the above approximation still falls among QTST because

Cff(t) in Eq. (10) is always positive and thus does not describe any recrossing effects (see

Ref. 21 for how this extension improves upon the QI rate).

III. PATH-INTEGRAL ESTIMATORS FOR OFF-DIAGONAL AVERAGE EN-

ERGY

Before proceeding, it is useful first to present the coordinate scaling idea in its simplest

form by considering an “off-diagonal” average energy defined by

Eba(β) =
〈xb|Ĥe−βĤ |xa〉
〈xb|e−βĤ |xa〉

= − ∂

∂β
ln ρba(β), (11)

where ρba(β) = 〈xb|e−βĤ |xa〉, since this quantity serves as the basis for treating a time

correlation function. Using the primitive approximation to the Boltzmann operator,

e−βĤ ≃
(

e−ǫV̂ /2e−ǫT̂ e−ǫV̂ /2
)N

(12)

with ǫ = β/N , a discretized path integral for ρba is obtained as

ρba(β) =

∫

dx1 · · ·
∫

dxN−1Wba(x1, . . . , xN−1; β), (13)

where

Wba(x1, . . . , xN−1; β) =

(

mN

2π~2β

)N/2

exp

[

− mN

2~2β

N
∑

k=1

(xk − xk−1)
2 − β

N

N
∑

k=0

wkV (xk)

]

(14)

with x0 = xa, xN = xb, and wk = 1/2 for k = 0, N and wk = 1 otherwise. Differentiating

Eq. (13) with respect to β gives a thermodynamic estimator for the energy,

Eba(β) = 〈ǫT 〉ba (15)

with

ǫT =
N

2β
− mN

2~2β2

N
∑

k=1

(xk − xk−1)
2 +

1

N

N
∑

k=0

wkV (xk), (16)

where 〈· · · 〉ba denotes an ensemble average over the weight function Wba(x1, . . . , xN−1; β).

This estimator has the well-known drawback that the statistical error grows with N due
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to cancellation of the first two terms in the right-hand side of Eq. (16). As in the case of

the internal energy or heat capacity, one can transform the above estimator into a virial

form through integration by parts. Here instead we employ a coordinate scaling procedure

that we find more useful.32–34 To this end we first write the density matrix at a different

temperature β ′,

ρba(β
′) =

∫

dx′
1 · · ·

∫

dx′
N−1Wba(x

′
1, . . . , x

′
N−1; β

′), (17)

and then transform the integration variables {x′
k} into a set of new variables {xk} according

to

x′
k = x∗

k +

√

β ′

β
(xk − x∗

k), (18)

where x∗
k is the reference point given by

x∗
k = xa + (xb − xa)

k

N
. (19)

Using the following identity (or with the method described in Appendix),

1

β ′

N
∑

k=1

(x′
k − x′

k−1)
2 =

1

β

N
∑

k=1

(xk − xk−1)
2 +

(

1

β ′
− 1

β

)

(xb − xa)
2

N
, (20)

one can rewrite Eq. (17) as

ρba(β
′) =

∫

dx1 · · ·
∫

dxN−1Wba(x1, . . . , xN−1; β)Rba(β
′), (21)

where

Rba(β
′) =

〈xb|e−β′T̂ |xa〉
〈xb|e−βT̂ |xa〉

exp

{

− 1

N

N
∑

k=0

wk [V (x′
k) − V (xk)]

}

. (22)

Note that all the β ′ dependence is now embedded in the Rba factor. Differentiating Eq. (21)

with respect to β ′ and taking the limit β ′ → β gives a virial estimator

Eba(β) = 〈ǫV 〉ba =

〈

∂Rba(β
′)

∂β ′

∣

∣

∣

∣

β′=β

〉

ba

(23)

with

ǫV =
1

2β
− m

2~2β2
(xb − xa)

2 +
1

N

N
∑

k=0

wk

[

1

2
(xk − x∗

k)V
′(xk) + V (xk)

]

. (24)

Alternatively, one may evaluate the virial estimator via finite difference as32

ǫV ≃ Rba(β + δβ) − Rba(β − δβ)

2δβ
, (25)

in order to avoid explicit calculation of the potential derivatives.
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IV. VIRIAL ESTIMATOR FOR THE TIME DERIVATIVE OF CORRELATION

FUNCTIONS

With the scaling procedure above it is now straightforward to derive a virial estimator

for the time derivative of correlation functions such as C̈ff(0) and C̈dd(0). We start with the

following correlation function,

C(t) = tr
[

e−βĤ/2A(x̂)e−βĤ/2eiĤt/~B(x̂)e−iĤt/~

]

, (26)

where Â and B̂ are arbitrary position-dependent operators [note that C(t) becomes the

delta-delta correlation function in Eq. (8) if we set A(x) = B(x) = δ(x−x‡)]. For simplicity

we work with the imaginary-time counterpart,

C̄(λ) ≡ C(−i~λ) = tr
[

e−(β/2+λ)ĤA(x̂)e−(β/2−λ)ĤB(x̂)
]

, (27)

with which the time derivative is given by (d/dt)nC(0) = (i/~)n(d/dλ)nC̄(0). Discretizing

the Boltzmann operators exp[−(β/2 ± λ)Ĥ] with P/2 time slices gives

C̄(λ) =

∫

dx1 · · ·
∫

dxP A(x0)B(xP/2)W (x1, . . . , xP ; λ), (28)

where

W (x1, . . . , xP ; λ) =

[

mP

2π~2(β + 2λ)

]P/4 [

mP

2π~2(β − 2λ)

]P/4

exp(−S) (29)

and

S =
mP

2~2(β + 2λ)

P/2
∑

k=1

(xk − xk−1)
2 +

1

P

P/2
∑

k=0

w̃k(β + 2λ)V (xk)

+
mP

2~2(β − 2λ)

P
∑

k=P/2+1

(xk − xk−1)
2 +

1

P

P
∑

k=P/2

w̃k(β − 2λ)V (xk) (30)

with x0 = xP and w̃k = 1/2 for k = 0, P/2, P and w̃k = 1 otherwise. Differentiating C̄(λ)

in Eq. (28) with respect to λ and taking the λ → 0 limit gives a thermodynamic estimator

for C̈(0) (note that the first derivative vanishes by symmetry):

C̈(0)

C(0)
= − 1

~2

〈

F 2
T + GT

〉

, (31)

where

FT =
mP

~2β2





P/2
∑

k=1

−
P

∑

k=P/2+1



 (xk − xk−1)
2 − 2

P





P/2−1
∑

k=1

−
P−1
∑

k=P/2+1



 V (xk) (32)
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and

GT =
2P

β2
− 4mP

~2β3

P
∑

k=1

(xk − xk−1)
2 (33)

with 〈· · · 〉 denoting an ensemble average over the weight function

A(x0)B(xP/2)W (x1, . . . , xP ; 0). This is the estimator that has been employed in pre-

vious work.17,18,22,23 To transform it into virial form, we write C̄(λ) in terms of temporary

variables {x′
k},

C̄(λ) =

∫

dx′
1 · · ·

∫

dx′
P A(x′

0)B(x′
P/2)W (x′

1, . . . , x
′
P ; λ), (34)

and introduce a set of new variables {xk} as follows:

x′
k =























x∗
k +

√

β+2λ
β

(xk − x∗
k) (0 < k < P/2)

x∗
k +

√

β−2λ
β

(xk − x∗
k) (P/2 < k < P )

xk (k = 0, P/2, P )

(35)

with

x∗
k = x∗

P−k = x0 + (xP/2 − x0)
k

P/2
(0 ≤ k ≤ P/2). (36)

The expression for C̄(λ) then becomes

C̄(λ) =

∫

dx1 · · ·
∫

dxP A(x0)B(xP/2)W (x1, . . . , xP ; 0)R(λ), (37)

where R(λ) = RkinRpot with

Rkin =
〈xP |e−(β/2−λ)T̂ |xP/2〉〈xP/2|e−(β/2+λ)T̂ |x0〉

〈xP |e−βT̂/2|xP/2〉〈xP/2|e−βT̂/2|x0〉
(38)

and

Rpot = exp







− 1

P

P/2
∑

k=0

w̃k [(β + 2λ)V (x′
k) − βV (xk)] (39)

− 1

P

P
∑

k=P/2

w̃k [(β − 2λ)V (x′
k) − βV (xk)]







. (40)

Differentiating this expression for C̄(λ) with respect to λ gives the desired virial estimator,

C̈(0)

C(0)
= − 1

~2

〈

F 2
V + GV

〉

(41)

8



with

FV = − 2

P





P/2−1
∑

k=1

−
P−1
∑

k=P/2+1





[

1

2
(xk − x∗

k)V
′(xk) + V (xk)

]

(42)

and

GV =
4

β2
− 16m

~2β3
(x0 − xP/2)

2 − 1

βP

P
∑

k=1

[

3(xk − x∗
k)V

′(xk) + (xk − x∗
k)

2V ′′(xk)
]

. (43)

In practice we can avoid the calculation of first- and second-order potential derivatives by

numerically differentiating R(λ) as

C̈(0)

C(0)
≃ − 1

~2

〈

R(δλ) + R(−δλ) − 2R(0)

(δλ)2

〉

. (44)

V. TREATMENT OF THE FLUX OPERATOR

A. Local-path approach

Applying the above scheme to the flux-flux correlation function is somewhat tricky be-

cause of the nonlocal character of the flux operator (i.e., a derivative operator). Different

estimators arise depending on the route of the derivation, which in general exhibit different

magnitudes of the variance. In previous work17,18,22,23 we have employed a “local-path” es-

timator, in which the flux operator was evaluated in terms of a few path variables near the

dividing surface. This local estimator can be combined with the coordinate scaling proce-

dure as follows. First we construct a discretized path integral for C̄ff(λ) = Cff(−i~λ) as in

Sec. IV, in which the following matrix element appears:

Kfi = 〈x′
1|e−(β+2λ)Ĥ/P F̂ e−(β−2λ)Ĥ/P |x′

−1〉, (45)

where {x′
k} are temporary variables to be scaled later. Making the primitive approximation

to e−(β±2λ)Ĥ/P and evaluating the flux operator analytically via Eq. (5) gives

Kfi ≃
∫

dx′
0δ(x

′
0 − x‡)v0(λ)〈x′

1|e−(β+2λ)Ĥ/P |x′
0〉〈x′

0|e−(β−2λ)Ĥ/P |x′
−1〉, (46)

where the velocity factor v0(λ) is defined by

vk(λ) =
iP

2~

(

x′
k+1 − x′

k

β + 2λ
+

x′
k − x′

k−1

β − 2λ

)

− i~λ

mP
V ′(x′

k) (47)
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with k = 0. The effect of the flux operator is thus expressed in terms of only three path

variables. Treating another flux operator in C̄ff(λ) with the same method and performing

the coordinate scaling precisely as in the preceding section gives

C̄ff(λ) =

∫

dx1 · · ·
∫

dxP W (x1, . . . , xP ; 0)δ(x0 − x‡)δ(xP/2 − x‡)R̃(λ) (48)

with

R̃(λ) = v0(λ)vP/2(−λ)R(λ), (49)

where W (x1, . . . , xP ; 0) and R(λ) has the same definition as in Sec. IV. Thus, the time

derivative of Cff(t) can be obtained as

C̈ff(0)

Cdd(0)
≃ − 1

~2

〈

R̃(δλ) + R̃(−δλ) − 2R̃(0)

(δλ)2

〉

. (50)

Similarly, virial estimators for higher time derivatives, dnCff(0)/dtn(n = 4, 6, . . .), can be

generated using an appropriate finite-difference formula of higher order.34

B. Global-path approach

One can also devise an alternate “global-path” estimator by first performing the coordi-

nate scaling and then applying the flux operator (i.e., in an opposite order to the preceding

section). To be specific, we insert the coordinate representation of the flux operator,

F̂ =
~

2mi

∫

dx
[

−|x〉́〈x| + |x〉〈̀x|
]

(51)

with |x〉́ = ∂|x〉/∂x into the imaginary-time flux correlation function as

C̄ff(λ) =

(

~

2m

)2 ∫

dxa

∫

dxbδ(xa − x‡)δ(xb − x‡)

×
{

〈̀xa|e−(β/2−λ)Ĥ |xb〉́〈xb|e−(β/2+λ)Ĥ |xa〉

+〈xa|e−(β/2−λ)Ĥ |xb〉〈̀xb|e−(β/2+λ)Ĥ |xa〉́

−〈̀xa|e−(β/2−λ)Ĥ |xb〉〈̀xb|e−(β/2+λ)Ĥ |xa〉

−〈xa|e−(β/2−λ)Ĥ |xb〉́〈xb|e−(β/2+λ)Ĥ |xa〉́
}

, (52)

which can be written more compactly as

C̄ff(λ) =

∫

dxa

∫

dxbδ(xa − x‡)δ(xb − x‡)

×F2〈x−
a |e−(β/2−λ)Ĥ |x−

b 〉〈x+
b |e−(β/2+λ)Ĥ |x+

a 〉, (53)
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where an operator representing the “square“ of the flux operator is given by

F2 =

(

~

2m

)2

lim
x±

a →xa

lim
x±

b
→xb

{

∂2

∂x+
a ∂x+

b

+
∂2

∂x−
a ∂x−

b

− ∂2

∂x+
a ∂x−

b

− ∂2

∂x−
a ∂x+

b

}

. (54)

Next we use a generalized scaling relation of the form (see Appendix):

〈x′
b|e−β′Ĥ |x′

a〉 =

∫

dx1 · · ·
∫

dxN−1Wba(x1, . . . , xN−1; β)R#
ba(β

′), (55)

where

R#
ba(β

′) =
〈x′

b|e−β′T̂ |x′
a〉

〈xb|e−βT̂ |xa〉
exp

{

− 1

N

N
∑

k=0

wk [β ′V (x′
k) − βV (xk)]

}

, (56)

and

x′
k = x̄′

k +

√

β ′

β
(xk − x∗

k), (57)

x̄′
k = x′

a + (x′
b − x′

a)
k

N
. (58)

Other quantities such as Wba and x∗
k are defined the same as in Sec. III. We note that the

end-points (x′
a, x

′
b) are included in the coordinate transformation in addition to β ′. Applying

the above relation to the density matrix elements in Eq. (53) with N = P/2 and appropriate

choice of end-points gives

C̄ff(λ) =

∫

dx1 · · ·
∫

dxP δ(x0 − x‡)δ(xP/2 − x‡)W (x1, . . . , xP ; 0)F2R#(x±
a , x±

b , λ), (59)

where R#(x±
a , x±

b , λ) = R#
kinR

#
pot with

R#
kin =

〈x−
a |e−(β/2−λ)T̂ |x−

b 〉〈x+
b |e−(β/2+λ)T̂ |x+

a 〉
〈xP |e−βT̂ /2|xP/2〉〈xP/2|e−βT̂ /2|x0〉

, (60)

R#
pot = exp







− 1

P

P/2
∑

k=0

w̃k

[

(β + 2λ)V (x+′

k ) − βV (xk)
]

− 1

P

P
∑

k=P/2

w̃k

[

(β − 2λ)V (x−′

k ) − βV (xk)
]







, (61)

and

x±′

k = x̄±
k +

√

β ± 2λ

β
(xk − x∗

k), (62a)

x̄+
k = x+

a + (x+
b − x+

a )
k

P/2
, (62b)

x̄−
k = x−

b + (x−
a − x−

b )
k − P/2

P/2
. (62c)
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The kth coordinate in Eq. (62) with plus and minus signs are defined for 0 ≤ k ≤ P/2 and

P/2 ≤ k ≤ P , respectively. The time derivative of Cff(t) can be obtained by differentiating

the factor F2R#(x±
a , x±

b , λ) with respect to λ, where the F2 operator is applied analytically

using up to second-order potential derivatives.34 The latter operation is costly but often

not too demanding because F2 involves only the coordinates that define the (generalized)

reaction coordinate, e.g., only a few Cartesian coordinates that describe the reacting atoms.

VI. NUMERICAL TESTS

We now apply the above estimators to a one-dimensional system with the Eckart potential

barrier,

V (x) = V0sech
2(x/a), (63)

where V0 = 0.425 eV, a = 0.734 au, and the mass is 1060 au, which corresponds roughly to

the H+H2 reaction. Table 1 lists the statistical error of C
(2)
dd /Cdd and C

(n)
ff /Cdd (n = 2, 4, 6)

obtained with 1 million path samples (note that the time arguments are always t = 0 and

are omitted hereafter). Three estimators are compared: the thermodynamic estimator, the

local-path virial estimator in Sec. VA, and the global-path virial estimator in Sec. VB. The

latter two differ only in the treatment of the flux operator. The number of path variables

used was P = 8 for T =1000 K and P =40 for T =200 K, which have a discretization error

of ∼2 % of the exact (P → ∞) value. The dividing surface was always set at the top of the

barrier with x‡ = 0 in Eq. (5). The reader is referred to Refs. 21 and 34 on how these time

derivatives can be used to improve the approximate rates.

We see from Table 1 that the virial estimators always exhibit a smaller statistical error

than the thermodynamic estimator, as expected. Between the two virial estimators, the

global-path version has a smaller variance than the local one by using more information

on the entire path. The exceedingly small errors of the global-path estimator (< 0.1 %)

at T = 1000 K are somewhat fortuitous, because at this temperature the system is close

to the free-particle limit and the global-path estimator becomes exact for a free particle

irrespective of the number of path variables.36 This situation does not occur for the local-

path virial estimator, where the velocity factor in Eq. (47) must be averaged even for a

free particle to give the correct result. Another important fact is that the variance of the

virial estimators is nearly independent of the order of time derivatives in contrast to the

12



thermodynamic estimator, which agrees qualitatively with the previous study by Predescu

for the same system using a Fourier-like path integral.34

Figure 1 plots the statistical error of C
(2)
ff /Cdd and C

(6)
ff /Cdd at T = 200 K as a function of

the number of path variables P . The variance of the thermodynamic estimator grows rapidly

with P , and the growth rate is especially large for C
(6)
ff . The local-path virial estimator also

exhibits an increasing variance, which is caused by the appearance of P in the numerator

of the velocity factor in Eq. (47). The global-path virial estimator, on the other hand,

has a nearly constant variance regardless of the value of P , thus facilitating the systematic

convergence to the P → ∞ limit.

Next we apply the present method to a model proton transfer reaction37 in a polar solvent,

AH +B → A−+HB+, where A, H , and B represent a hydrogen-bonding complex dissolved

in liquid methyl chloride at T = 250 K. The details of the model is given in Ref. 37. Here

we quantize only the proton degree of freedom with P = 40 and use the path integral

Monte Carlo (MC) scheme described in Ref. 22. Figure 2 shows the convergence of C̈dd/Cdd,

C
(n)
ff /Cdd (n = 2,4) as a function of MC cycles. In all cases the virial estimators outperform

the thermodynamic estimators in convergence rate. In particular, the convergence of C̈dd

is very rapid when using the virial estimator, which is beneficial in calculating the QI rate

in Eq. (9). On the other hand, the statistical error becomes larger for C
(n)
ff /Cdd, and it

was difficult to converge with 2 million path samples for n ≥ 6. This is in contrast to the

one-dimensional Eckart barrier studied above, where the variance of the virial estimator

was nearly independent of the order of time derivatives. Apart from differences in the

dimensionality of the system, the variance may be increased by stiff potential walls in the

solute potential (defined with Morse-like functions),37 because the virial estimator for C
(n)
ff

depends implicitly on the higher-order potential derivatives. For example, the local-path and

global-path virial estimators for C
(6)
ff depend on 7th- and 8th-order potential derivatives,

although the numerical calculation by finite difference needs only the 1st- and 2nd-order

derivatives of the potential. It is not clear at present to what extent this behavior is common

for other potentials (including polynomial potentials). Nevertheless, the fast convergence of

2nd time derivatives even for the present stiff potential is very encouraging when considering

future applications of the QI theory to more complex chemical reactions in condensed phases.
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VII. CONCLUDING REMARKS

Our main purpose in this paper has been to show how a virial estimator for the time

derivative of correlation functions can be obtained straightforwardly via a coordinate scaling

procedure, and that the resulting estimator has an expected smaller variance than the ther-

modynamic estimator. We have also presented two methods for treating the flux operator,

i.e., local-path and global-path approaches, in which the latter has a smaller variance. The

second time derivative of Cdd(t) and Cff(t) are clearly the most important quantities for the

QI rate in Eq. (9) or in Eq. (2). An open problem is how to best utilize the higher-order

derivatives in order to improve the accuracy of approximate rates. While some progress has

been made in this direction,21,34 more studies would be useful if we consider the availability

of C
(n)
ff (0) at least for systems with well-behaved potentials.
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APPENDIX: USING THE FEYNMAN-KAC FORMULA

The scaled expression (21) can also be obtained as follows. Utilizing the integration

variables {yk} defined by

x′
k = x∗

k +

√

~2β ′

m
yk, (A.1)

one can transform Eq. (17) as follows,

ρba(β
′) = 〈xb|e−β′T̂ |xa〉E exp

{

−β ′

N

N
∑

k=0

wkV (x′
k)

}

(A.2)
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with

E(· · · ) =

∫

dy1 · · ·
∫

dyN−1 exp
{

−N
2

∑N
k=1(yk − yk−1)

2
}

(· · · )
∫

dy1 · · ·
∫

dyN−1 exp
{

−N
2

∑N
k=1(yk − yk−1)2

} , (A.3)

which becomes the Feynman-Kac formula in the N → ∞ limit with {yk} representing the

standard Brownian bridge. Rewriting the above equation as

ρba(β
′) = 〈xb|e−βT̂ |xa〉E exp

{

− β

N

N
∑

k=0

wkV (xk)

}

Rba(β
′), (A.4)

where Rba(β
′) is defined by Eq. (22) and

xk = x∗
k +

√

~2β

m
yk, (A.5)

and changing integration variables from {yk} to {xk} results in Eq. (21). Combining

Eqs. (A.1) and (A.5) gives the coordinate transformation in Eq. (18). Similar procedures

can be used to obtain a generalized expression in Eq. (55).
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FIG. 1: Relative statistical error (%) of the thermodynamic, local-path virial, and global-path virial

estimators for (a) C
(2)
ff /Cdd and (b) C

(6)
ff /Cdd computed for the one-dimensional Eckart barrier at

T = 200 K. P is the number of path variables.

FIG. 2: Statistical convergence of the thermodynamic, local-path virial, and global-path virial

estimators for (a) C
(2)
dd /Cdd, (b) C

(2)
ff /Cdd, and (c) C

(4)
ff /Cdd computed for a model proton transfer

reaction in a polar solvent.
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Fig. 1 (a)
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Fig. 1 (b)
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Fig. 2 (a)
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Fig. 2 (b)
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Fig. 2 (c)
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TABLE I: Relative statistical error (%) of the thermodynamic, local-path virial, and global-path

virial estimators for the one-dimensional Eckart barrier. One million paths are sampled with 8 and

40 path variables for T = 1000 and 200 K, respectively.

thermodynamic virial (local-path) virial (global-path)

T = 1000 K

C
(2)
dd /Cdd 0.5 0.024 0.024

C
(2)
ff /Cdd 1.2 0.34 0.012

C
(4)
ff /Cdd 2.3 0.33 0.014

C
(6)
ff /Cdd 2.6 0.33 0.015

T = 200 K

C
(2)
dd /Cdd 1.1 0.27 0.27

C
(2)
ff /Cdd 3.3 1.4 0.41

C
(4)
ff /Cdd 8.1 1.7 0.44

C
(6)
ff /Cdd 25 2.0 0.51
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